diff -r 000000000000 -r 212417b74b72 rt/emul/compact/src/main/java/java/util/concurrent/locks/AbstractQueuedSynchronizer.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/rt/emul/compact/src/main/java/java/util/concurrent/locks/AbstractQueuedSynchronizer.java Sat Mar 19 10:46:31 2016 +0100 @@ -0,0 +1,2330 @@ +/* + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +/* + * This file is available under and governed by the GNU General Public + * License version 2 only, as published by the Free Software Foundation. + * However, the following notice accompanied the original version of this + * file: + * + * Written by Doug Lea with assistance from members of JCP JSR-166 + * Expert Group and released to the public domain, as explained at + * http://creativecommons.org/publicdomain/zero/1.0/ + */ + +package java.util.concurrent.locks; +import java.util.*; +import java.util.concurrent.*; +import java.util.concurrent.atomic.*; +import sun.misc.Unsafe; + +/** + * Provides a framework for implementing blocking locks and related + * synchronizers (semaphores, events, etc) that rely on + * first-in-first-out (FIFO) wait queues. This class is designed to + * be a useful basis for most kinds of synchronizers that rely on a + * single atomic int value to represent state. Subclasses + * must define the protected methods that change this state, and which + * define what that state means in terms of this object being acquired + * or released. Given these, the other methods in this class carry + * out all queuing and blocking mechanics. Subclasses can maintain + * other state fields, but only the atomically updated int + * value manipulated using methods {@link #getState}, {@link + * #setState} and {@link #compareAndSetState} is tracked with respect + * to synchronization. + * + *

Subclasses should be defined as non-public internal helper + * classes that are used to implement the synchronization properties + * of their enclosing class. Class + * AbstractQueuedSynchronizer does not implement any + * synchronization interface. Instead it defines methods such as + * {@link #acquireInterruptibly} that can be invoked as + * appropriate by concrete locks and related synchronizers to + * implement their public methods. + * + *

This class supports either or both a default exclusive + * mode and a shared mode. When acquired in exclusive mode, + * attempted acquires by other threads cannot succeed. Shared mode + * acquires by multiple threads may (but need not) succeed. This class + * does not "understand" these differences except in the + * mechanical sense that when a shared mode acquire succeeds, the next + * waiting thread (if one exists) must also determine whether it can + * acquire as well. Threads waiting in the different modes share the + * same FIFO queue. Usually, implementation subclasses support only + * one of these modes, but both can come into play for example in a + * {@link ReadWriteLock}. Subclasses that support only exclusive or + * only shared modes need not define the methods supporting the unused mode. + * + *

This class defines a nested {@link ConditionObject} class that + * can be used as a {@link Condition} implementation by subclasses + * supporting exclusive mode for which method {@link + * #isHeldExclusively} reports whether synchronization is exclusively + * held with respect to the current thread, method {@link #release} + * invoked with the current {@link #getState} value fully releases + * this object, and {@link #acquire}, given this saved state value, + * eventually restores this object to its previous acquired state. No + * AbstractQueuedSynchronizer method otherwise creates such a + * condition, so if this constraint cannot be met, do not use it. The + * behavior of {@link ConditionObject} depends of course on the + * semantics of its synchronizer implementation. + * + *

This class provides inspection, instrumentation, and monitoring + * methods for the internal queue, as well as similar methods for + * condition objects. These can be exported as desired into classes + * using an AbstractQueuedSynchronizer for their + * synchronization mechanics. + * + *

Serialization of this class stores only the underlying atomic + * integer maintaining state, so deserialized objects have empty + * thread queues. Typical subclasses requiring serializability will + * define a readObject method that restores this to a known + * initial state upon deserialization. + * + *

Usage

+ * + *

To use this class as the basis of a synchronizer, redefine the + * following methods, as applicable, by inspecting and/or modifying + * the synchronization state using {@link #getState}, {@link + * #setState} and/or {@link #compareAndSetState}: + * + *

+ * + * Each of these methods by default throws {@link + * UnsupportedOperationException}. Implementations of these methods + * must be internally thread-safe, and should in general be short and + * not block. Defining these methods is the only supported + * means of using this class. All other methods are declared + * final because they cannot be independently varied. + * + *

You may also find the inherited methods from {@link + * AbstractOwnableSynchronizer} useful to keep track of the thread + * owning an exclusive synchronizer. You are encouraged to use them + * -- this enables monitoring and diagnostic tools to assist users in + * determining which threads hold locks. + * + *

Even though this class is based on an internal FIFO queue, it + * does not automatically enforce FIFO acquisition policies. The core + * of exclusive synchronization takes the form: + * + *

+ * Acquire:
+ *     while (!tryAcquire(arg)) {
+ *        enqueue thread if it is not already queued;
+ *        possibly block current thread;
+ *     }
+ *
+ * Release:
+ *     if (tryRelease(arg))
+ *        unblock the first queued thread;
+ * 
+ * + * (Shared mode is similar but may involve cascading signals.) + * + *

Because checks in acquire are invoked before + * enqueuing, a newly acquiring thread may barge ahead of + * others that are blocked and queued. However, you can, if desired, + * define tryAcquire and/or tryAcquireShared to + * disable barging by internally invoking one or more of the inspection + * methods, thereby providing a fair FIFO acquisition order. + * In particular, most fair synchronizers can define tryAcquire + * to return false if {@link #hasQueuedPredecessors} (a method + * specifically designed to be used by fair synchronizers) returns + * true. Other variations are possible. + * + *

Throughput and scalability are generally highest for the + * default barging (also known as greedy, + * renouncement, and convoy-avoidance) strategy. + * While this is not guaranteed to be fair or starvation-free, earlier + * queued threads are allowed to recontend before later queued + * threads, and each recontention has an unbiased chance to succeed + * against incoming threads. Also, while acquires do not + * "spin" in the usual sense, they may perform multiple + * invocations of tryAcquire interspersed with other + * computations before blocking. This gives most of the benefits of + * spins when exclusive synchronization is only briefly held, without + * most of the liabilities when it isn't. If so desired, you can + * augment this by preceding calls to acquire methods with + * "fast-path" checks, possibly prechecking {@link #hasContended} + * and/or {@link #hasQueuedThreads} to only do so if the synchronizer + * is likely not to be contended. + * + *

This class provides an efficient and scalable basis for + * synchronization in part by specializing its range of use to + * synchronizers that can rely on int state, acquire, and + * release parameters, and an internal FIFO wait queue. When this does + * not suffice, you can build synchronizers from a lower level using + * {@link java.util.concurrent.atomic atomic} classes, your own custom + * {@link java.util.Queue} classes, and {@link LockSupport} blocking + * support. + * + *

Usage Examples

+ * + *

Here is a non-reentrant mutual exclusion lock class that uses + * the value zero to represent the unlocked state, and one to + * represent the locked state. While a non-reentrant lock + * does not strictly require recording of the current owner + * thread, this class does so anyway to make usage easier to monitor. + * It also supports conditions and exposes + * one of the instrumentation methods: + * + *

+ * class Mutex implements Lock, java.io.Serializable {
+ *
+ *   // Our internal helper class
+ *   private static class Sync extends AbstractQueuedSynchronizer {
+ *     // Report whether in locked state
+ *     protected boolean isHeldExclusively() {
+ *       return getState() == 1;
+ *     }
+ *
+ *     // Acquire the lock if state is zero
+ *     public boolean tryAcquire(int acquires) {
+ *       assert acquires == 1; // Otherwise unused
+ *       if (compareAndSetState(0, 1)) {
+ *         setExclusiveOwnerThread(Thread.currentThread());
+ *         return true;
+ *       }
+ *       return false;
+ *     }
+ *
+ *     // Release the lock by setting state to zero
+ *     protected boolean tryRelease(int releases) {
+ *       assert releases == 1; // Otherwise unused
+ *       if (getState() == 0) throw new IllegalMonitorStateException();
+ *       setExclusiveOwnerThread(null);
+ *       setState(0);
+ *       return true;
+ *     }
+ *
+ *     // Provide a Condition
+ *     Condition newCondition() { return new ConditionObject(); }
+ *
+ *     // Deserialize properly
+ *     private void readObject(ObjectInputStream s)
+ *         throws IOException, ClassNotFoundException {
+ *       s.defaultReadObject();
+ *       setState(0); // reset to unlocked state
+ *     }
+ *   }
+ *
+ *   // The sync object does all the hard work. We just forward to it.
+ *   private final Sync sync = new Sync();
+ *
+ *   public void lock()                { sync.acquire(1); }
+ *   public boolean tryLock()          { return sync.tryAcquire(1); }
+ *   public void unlock()              { sync.release(1); }
+ *   public Condition newCondition()   { return sync.newCondition(); }
+ *   public boolean isLocked()         { return sync.isHeldExclusively(); }
+ *   public boolean hasQueuedThreads() { return sync.hasQueuedThreads(); }
+ *   public void lockInterruptibly() throws InterruptedException {
+ *     sync.acquireInterruptibly(1);
+ *   }
+ *   public boolean tryLock(long timeout, TimeUnit unit)
+ *       throws InterruptedException {
+ *     return sync.tryAcquireNanos(1, unit.toNanos(timeout));
+ *   }
+ * }
+ * 
+ * + *

Here is a latch class that is like a {@link CountDownLatch} + * except that it only requires a single signal to + * fire. Because a latch is non-exclusive, it uses the shared + * acquire and release methods. + * + *

+ * class BooleanLatch {
+ *
+ *   private static class Sync extends AbstractQueuedSynchronizer {
+ *     boolean isSignalled() { return getState() != 0; }
+ *
+ *     protected int tryAcquireShared(int ignore) {
+ *       return isSignalled() ? 1 : -1;
+ *     }
+ *
+ *     protected boolean tryReleaseShared(int ignore) {
+ *       setState(1);
+ *       return true;
+ *     }
+ *   }
+ *
+ *   private final Sync sync = new Sync();
+ *   public boolean isSignalled() { return sync.isSignalled(); }
+ *   public void signal()         { sync.releaseShared(1); }
+ *   public void await() throws InterruptedException {
+ *     sync.acquireSharedInterruptibly(1);
+ *   }
+ * }
+ * 
+ * + * @since 1.5 + * @author Doug Lea + */ +public abstract class AbstractQueuedSynchronizer + extends AbstractOwnableSynchronizer + implements java.io.Serializable { + + private static final long serialVersionUID = 7373984972572414691L; + + /** + * Creates a new AbstractQueuedSynchronizer instance + * with initial synchronization state of zero. + */ + protected AbstractQueuedSynchronizer() { } + + /** + * Wait queue node class. + * + *

The wait queue is a variant of a "CLH" (Craig, Landin, and + * Hagersten) lock queue. CLH locks are normally used for + * spinlocks. We instead use them for blocking synchronizers, but + * use the same basic tactic of holding some of the control + * information about a thread in the predecessor of its node. A + * "status" field in each node keeps track of whether a thread + * should block. A node is signalled when its predecessor + * releases. Each node of the queue otherwise serves as a + * specific-notification-style monitor holding a single waiting + * thread. The status field does NOT control whether threads are + * granted locks etc though. A thread may try to acquire if it is + * first in the queue. But being first does not guarantee success; + * it only gives the right to contend. So the currently released + * contender thread may need to rewait. + * + *

To enqueue into a CLH lock, you atomically splice it in as new + * tail. To dequeue, you just set the head field. + *

+     *      +------+  prev +-----+       +-----+
+     * head |      | <---- |     | <---- |     |  tail
+     *      +------+       +-----+       +-----+
+     * 
+ * + *

Insertion into a CLH queue requires only a single atomic + * operation on "tail", so there is a simple atomic point of + * demarcation from unqueued to queued. Similarly, dequeing + * involves only updating the "head". However, it takes a bit + * more work for nodes to determine who their successors are, + * in part to deal with possible cancellation due to timeouts + * and interrupts. + * + *

The "prev" links (not used in original CLH locks), are mainly + * needed to handle cancellation. If a node is cancelled, its + * successor is (normally) relinked to a non-cancelled + * predecessor. For explanation of similar mechanics in the case + * of spin locks, see the papers by Scott and Scherer at + * http://www.cs.rochester.edu/u/scott/synchronization/ + * + *

We also use "next" links to implement blocking mechanics. + * The thread id for each node is kept in its own node, so a + * predecessor signals the next node to wake up by traversing + * next link to determine which thread it is. Determination of + * successor must avoid races with newly queued nodes to set + * the "next" fields of their predecessors. This is solved + * when necessary by checking backwards from the atomically + * updated "tail" when a node's successor appears to be null. + * (Or, said differently, the next-links are an optimization + * so that we don't usually need a backward scan.) + * + *

Cancellation introduces some conservatism to the basic + * algorithms. Since we must poll for cancellation of other + * nodes, we can miss noticing whether a cancelled node is + * ahead or behind us. This is dealt with by always unparking + * successors upon cancellation, allowing them to stabilize on + * a new predecessor, unless we can identify an uncancelled + * predecessor who will carry this responsibility. + * + *

CLH queues need a dummy header node to get started. But + * we don't create them on construction, because it would be wasted + * effort if there is never contention. Instead, the node + * is constructed and head and tail pointers are set upon first + * contention. + * + *

Threads waiting on Conditions use the same nodes, but + * use an additional link. Conditions only need to link nodes + * in simple (non-concurrent) linked queues because they are + * only accessed when exclusively held. Upon await, a node is + * inserted into a condition queue. Upon signal, the node is + * transferred to the main queue. A special value of status + * field is used to mark which queue a node is on. + * + *

Thanks go to Dave Dice, Mark Moir, Victor Luchangco, Bill + * Scherer and Michael Scott, along with members of JSR-166 + * expert group, for helpful ideas, discussions, and critiques + * on the design of this class. + */ + static final class Node { + /** Marker to indicate a node is waiting in shared mode */ + static final Node SHARED = new Node(); + /** Marker to indicate a node is waiting in exclusive mode */ + static final Node EXCLUSIVE = null; + + /** waitStatus value to indicate thread has cancelled */ + static final int CANCELLED = 1; + /** waitStatus value to indicate successor's thread needs unparking */ + static final int SIGNAL = -1; + /** waitStatus value to indicate thread is waiting on condition */ + static final int CONDITION = -2; + /** + * waitStatus value to indicate the next acquireShared should + * unconditionally propagate + */ + static final int PROPAGATE = -3; + + /** + * Status field, taking on only the values: + * SIGNAL: The successor of this node is (or will soon be) + * blocked (via park), so the current node must + * unpark its successor when it releases or + * cancels. To avoid races, acquire methods must + * first indicate they need a signal, + * then retry the atomic acquire, and then, + * on failure, block. + * CANCELLED: This node is cancelled due to timeout or interrupt. + * Nodes never leave this state. In particular, + * a thread with cancelled node never again blocks. + * CONDITION: This node is currently on a condition queue. + * It will not be used as a sync queue node + * until transferred, at which time the status + * will be set to 0. (Use of this value here has + * nothing to do with the other uses of the + * field, but simplifies mechanics.) + * PROPAGATE: A releaseShared should be propagated to other + * nodes. This is set (for head node only) in + * doReleaseShared to ensure propagation + * continues, even if other operations have + * since intervened. + * 0: None of the above + * + * The values are arranged numerically to simplify use. + * Non-negative values mean that a node doesn't need to + * signal. So, most code doesn't need to check for particular + * values, just for sign. + * + * The field is initialized to 0 for normal sync nodes, and + * CONDITION for condition nodes. It is modified using CAS + * (or when possible, unconditional volatile writes). + */ + volatile int waitStatus; + + /** + * Link to predecessor node that current node/thread relies on + * for checking waitStatus. Assigned during enqueing, and nulled + * out (for sake of GC) only upon dequeuing. Also, upon + * cancellation of a predecessor, we short-circuit while + * finding a non-cancelled one, which will always exist + * because the head node is never cancelled: A node becomes + * head only as a result of successful acquire. A + * cancelled thread never succeeds in acquiring, and a thread only + * cancels itself, not any other node. + */ + volatile Node prev; + + /** + * Link to the successor node that the current node/thread + * unparks upon release. Assigned during enqueuing, adjusted + * when bypassing cancelled predecessors, and nulled out (for + * sake of GC) when dequeued. The enq operation does not + * assign next field of a predecessor until after attachment, + * so seeing a null next field does not necessarily mean that + * node is at end of queue. However, if a next field appears + * to be null, we can scan prev's from the tail to + * double-check. The next field of cancelled nodes is set to + * point to the node itself instead of null, to make life + * easier for isOnSyncQueue. + */ + volatile Node next; + + /** + * The thread that enqueued this node. Initialized on + * construction and nulled out after use. + */ + volatile Thread thread; + + /** + * Link to next node waiting on condition, or the special + * value SHARED. Because condition queues are accessed only + * when holding in exclusive mode, we just need a simple + * linked queue to hold nodes while they are waiting on + * conditions. They are then transferred to the queue to + * re-acquire. And because conditions can only be exclusive, + * we save a field by using special value to indicate shared + * mode. + */ + Node nextWaiter; + + /** + * Returns true if node is waiting in shared mode + */ + final boolean isShared() { + return nextWaiter == SHARED; + } + + /** + * Returns previous node, or throws NullPointerException if null. + * Use when predecessor cannot be null. The null check could + * be elided, but is present to help the VM. + * + * @return the predecessor of this node + */ + final Node predecessor() throws NullPointerException { + Node p = prev; + if (p == null) + throw new NullPointerException(); + else + return p; + } + + Node() { // Used to establish initial head or SHARED marker + } + + Node(Thread thread, Node mode) { // Used by addWaiter + this.nextWaiter = mode; + this.thread = thread; + } + + Node(Thread thread, int waitStatus) { // Used by Condition + this.waitStatus = waitStatus; + this.thread = thread; + } + } + + /** + * Head of the wait queue, lazily initialized. Except for + * initialization, it is modified only via method setHead. Note: + * If head exists, its waitStatus is guaranteed not to be + * CANCELLED. + */ + private transient volatile Node head; + + /** + * Tail of the wait queue, lazily initialized. Modified only via + * method enq to add new wait node. + */ + private transient volatile Node tail; + + /** + * The synchronization state. + */ + private volatile int state; + + /** + * Returns the current value of synchronization state. + * This operation has memory semantics of a volatile read. + * @return current state value + */ + protected final int getState() { + return state; + } + + /** + * Sets the value of synchronization state. + * This operation has memory semantics of a volatile write. + * @param newState the new state value + */ + protected final void setState(int newState) { + state = newState; + } + + /** + * Atomically sets synchronization state to the given updated + * value if the current state value equals the expected value. + * This operation has memory semantics of a volatile read + * and write. + * + * @param expect the expected value + * @param update the new value + * @return true if successful. False return indicates that the actual + * value was not equal to the expected value. + */ + protected final boolean compareAndSetState(int expect, int update) { + // See below for intrinsics setup to support this + return unsafe.compareAndSwapInt(this, stateOffset, expect, update); + } + + // Queuing utilities + + /** + * The number of nanoseconds for which it is faster to spin + * rather than to use timed park. A rough estimate suffices + * to improve responsiveness with very short timeouts. + */ + static final long spinForTimeoutThreshold = 1000L; + + /** + * Inserts node into queue, initializing if necessary. See picture above. + * @param node the node to insert + * @return node's predecessor + */ + private Node enq(final Node node) { + for (;;) { + Node t = tail; + if (t == null) { // Must initialize + if (compareAndSetHead(new Node())) + tail = head; + } else { + node.prev = t; + if (compareAndSetTail(t, node)) { + t.next = node; + return t; + } + } + } + } + + /** + * Creates and enqueues node for current thread and given mode. + * + * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared + * @return the new node + */ + private Node addWaiter(Node mode) { + Node node = new Node(Thread.currentThread(), mode); + // Try the fast path of enq; backup to full enq on failure + Node pred = tail; + if (pred != null) { + node.prev = pred; + if (compareAndSetTail(pred, node)) { + pred.next = node; + return node; + } + } + enq(node); + return node; + } + + /** + * Sets head of queue to be node, thus dequeuing. Called only by + * acquire methods. Also nulls out unused fields for sake of GC + * and to suppress unnecessary signals and traversals. + * + * @param node the node + */ + private void setHead(Node node) { + head = node; + node.thread = null; + node.prev = null; + } + + /** + * Wakes up node's successor, if one exists. + * + * @param node the node + */ + private void unparkSuccessor(Node node) { + /* + * If status is negative (i.e., possibly needing signal) try + * to clear in anticipation of signalling. It is OK if this + * fails or if status is changed by waiting thread. + */ + int ws = node.waitStatus; + if (ws < 0) + compareAndSetWaitStatus(node, ws, 0); + + /* + * Thread to unpark is held in successor, which is normally + * just the next node. But if cancelled or apparently null, + * traverse backwards from tail to find the actual + * non-cancelled successor. + */ + Node s = node.next; + if (s == null || s.waitStatus > 0) { + s = null; + for (Node t = tail; t != null && t != node; t = t.prev) + if (t.waitStatus <= 0) + s = t; + } + if (s != null) + LockSupport.unpark(s.thread); + } + + /** + * Release action for shared mode -- signal successor and ensure + * propagation. (Note: For exclusive mode, release just amounts + * to calling unparkSuccessor of head if it needs signal.) + */ + private void doReleaseShared() { + /* + * Ensure that a release propagates, even if there are other + * in-progress acquires/releases. This proceeds in the usual + * way of trying to unparkSuccessor of head if it needs + * signal. But if it does not, status is set to PROPAGATE to + * ensure that upon release, propagation continues. + * Additionally, we must loop in case a new node is added + * while we are doing this. Also, unlike other uses of + * unparkSuccessor, we need to know if CAS to reset status + * fails, if so rechecking. + */ + for (;;) { + Node h = head; + if (h != null && h != tail) { + int ws = h.waitStatus; + if (ws == Node.SIGNAL) { + if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) + continue; // loop to recheck cases + unparkSuccessor(h); + } + else if (ws == 0 && + !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) + continue; // loop on failed CAS + } + if (h == head) // loop if head changed + break; + } + } + + /** + * Sets head of queue, and checks if successor may be waiting + * in shared mode, if so propagating if either propagate > 0 or + * PROPAGATE status was set. + * + * @param node the node + * @param propagate the return value from a tryAcquireShared + */ + private void setHeadAndPropagate(Node node, int propagate) { + Node h = head; // Record old head for check below + setHead(node); + /* + * Try to signal next queued node if: + * Propagation was indicated by caller, + * or was recorded (as h.waitStatus) by a previous operation + * (note: this uses sign-check of waitStatus because + * PROPAGATE status may transition to SIGNAL.) + * and + * The next node is waiting in shared mode, + * or we don't know, because it appears null + * + * The conservatism in both of these checks may cause + * unnecessary wake-ups, but only when there are multiple + * racing acquires/releases, so most need signals now or soon + * anyway. + */ + if (propagate > 0 || h == null || h.waitStatus < 0) { + Node s = node.next; + if (s == null || s.isShared()) + doReleaseShared(); + } + } + + // Utilities for various versions of acquire + + /** + * Cancels an ongoing attempt to acquire. + * + * @param node the node + */ + private void cancelAcquire(Node node) { + // Ignore if node doesn't exist + if (node == null) + return; + + node.thread = null; + + // Skip cancelled predecessors + Node pred = node.prev; + while (pred.waitStatus > 0) + node.prev = pred = pred.prev; + + // predNext is the apparent node to unsplice. CASes below will + // fail if not, in which case, we lost race vs another cancel + // or signal, so no further action is necessary. + Node predNext = pred.next; + + // Can use unconditional write instead of CAS here. + // After this atomic step, other Nodes can skip past us. + // Before, we are free of interference from other threads. + node.waitStatus = Node.CANCELLED; + + // If we are the tail, remove ourselves. + if (node == tail && compareAndSetTail(node, pred)) { + compareAndSetNext(pred, predNext, null); + } else { + // If successor needs signal, try to set pred's next-link + // so it will get one. Otherwise wake it up to propagate. + int ws; + if (pred != head && + ((ws = pred.waitStatus) == Node.SIGNAL || + (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) && + pred.thread != null) { + Node next = node.next; + if (next != null && next.waitStatus <= 0) + compareAndSetNext(pred, predNext, next); + } else { + unparkSuccessor(node); + } + + node.next = node; // help GC + } + } + + /** + * Checks and updates status for a node that failed to acquire. + * Returns true if thread should block. This is the main signal + * control in all acquire loops. Requires that pred == node.prev + * + * @param pred node's predecessor holding status + * @param node the node + * @return {@code true} if thread should block + */ + private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { + int ws = pred.waitStatus; + if (ws == Node.SIGNAL) + /* + * This node has already set status asking a release + * to signal it, so it can safely park. + */ + return true; + if (ws > 0) { + /* + * Predecessor was cancelled. Skip over predecessors and + * indicate retry. + */ + do { + node.prev = pred = pred.prev; + } while (pred.waitStatus > 0); + pred.next = node; + } else { + /* + * waitStatus must be 0 or PROPAGATE. Indicate that we + * need a signal, but don't park yet. Caller will need to + * retry to make sure it cannot acquire before parking. + */ + compareAndSetWaitStatus(pred, ws, Node.SIGNAL); + } + return false; + } + + /** + * Convenience method to interrupt current thread. + */ + private static void selfInterrupt() { + Thread.currentThread().interrupt(); + } + + /** + * Convenience method to park and then check if interrupted + * + * @return {@code true} if interrupted + */ + private final boolean parkAndCheckInterrupt() { + LockSupport.park(this); + return Thread.interrupted(); + } + + /* + * Various flavors of acquire, varying in exclusive/shared and + * control modes. Each is mostly the same, but annoyingly + * different. Only a little bit of factoring is possible due to + * interactions of exception mechanics (including ensuring that we + * cancel if tryAcquire throws exception) and other control, at + * least not without hurting performance too much. + */ + + /** + * Acquires in exclusive uninterruptible mode for thread already in + * queue. Used by condition wait methods as well as acquire. + * + * @param node the node + * @param arg the acquire argument + * @return {@code true} if interrupted while waiting + */ + final boolean acquireQueued(final Node node, int arg) { + boolean failed = true; + try { + boolean interrupted = false; + for (;;) { + final Node p = node.predecessor(); + if (p == head && tryAcquire(arg)) { + setHead(node); + p.next = null; // help GC + failed = false; + return interrupted; + } + if (shouldParkAfterFailedAcquire(p, node) && + parkAndCheckInterrupt()) + interrupted = true; + } + } finally { + if (failed) + cancelAcquire(node); + } + } + + /** + * Acquires in exclusive interruptible mode. + * @param arg the acquire argument + */ + private void doAcquireInterruptibly(int arg) + throws InterruptedException { + final Node node = addWaiter(Node.EXCLUSIVE); + boolean failed = true; + try { + for (;;) { + final Node p = node.predecessor(); + if (p == head && tryAcquire(arg)) { + setHead(node); + p.next = null; // help GC + failed = false; + return; + } + if (shouldParkAfterFailedAcquire(p, node) && + parkAndCheckInterrupt()) + throw new InterruptedException(); + } + } finally { + if (failed) + cancelAcquire(node); + } + } + + /** + * Acquires in exclusive timed mode. + * + * @param arg the acquire argument + * @param nanosTimeout max wait time + * @return {@code true} if acquired + */ + private boolean doAcquireNanos(int arg, long nanosTimeout) + throws InterruptedException { + long lastTime = System.nanoTime(); + final Node node = addWaiter(Node.EXCLUSIVE); + boolean failed = true; + try { + for (;;) { + final Node p = node.predecessor(); + if (p == head && tryAcquire(arg)) { + setHead(node); + p.next = null; // help GC + failed = false; + return true; + } + if (nanosTimeout <= 0) + return false; + if (shouldParkAfterFailedAcquire(p, node) && + nanosTimeout > spinForTimeoutThreshold) + LockSupport.parkNanos(this, nanosTimeout); + long now = System.nanoTime(); + nanosTimeout -= now - lastTime; + lastTime = now; + if (Thread.interrupted()) + throw new InterruptedException(); + } + } finally { + if (failed) + cancelAcquire(node); + } + } + + /** + * Acquires in shared uninterruptible mode. + * @param arg the acquire argument + */ + private void doAcquireShared(int arg) { + final Node node = addWaiter(Node.SHARED); + boolean failed = true; + try { + boolean interrupted = false; + for (;;) { + final Node p = node.predecessor(); + if (p == head) { + int r = tryAcquireShared(arg); + if (r >= 0) { + setHeadAndPropagate(node, r); + p.next = null; // help GC + if (interrupted) + selfInterrupt(); + failed = false; + return; + } + } + if (shouldParkAfterFailedAcquire(p, node) && + parkAndCheckInterrupt()) + interrupted = true; + } + } finally { + if (failed) + cancelAcquire(node); + } + } + + /** + * Acquires in shared interruptible mode. + * @param arg the acquire argument + */ + private void doAcquireSharedInterruptibly(int arg) + throws InterruptedException { + final Node node = addWaiter(Node.SHARED); + boolean failed = true; + try { + for (;;) { + final Node p = node.predecessor(); + if (p == head) { + int r = tryAcquireShared(arg); + if (r >= 0) { + setHeadAndPropagate(node, r); + p.next = null; // help GC + failed = false; + return; + } + } + if (shouldParkAfterFailedAcquire(p, node) && + parkAndCheckInterrupt()) + throw new InterruptedException(); + } + } finally { + if (failed) + cancelAcquire(node); + } + } + + /** + * Acquires in shared timed mode. + * + * @param arg the acquire argument + * @param nanosTimeout max wait time + * @return {@code true} if acquired + */ + private boolean doAcquireSharedNanos(int arg, long nanosTimeout) + throws InterruptedException { + + long lastTime = System.nanoTime(); + final Node node = addWaiter(Node.SHARED); + boolean failed = true; + try { + for (;;) { + final Node p = node.predecessor(); + if (p == head) { + int r = tryAcquireShared(arg); + if (r >= 0) { + setHeadAndPropagate(node, r); + p.next = null; // help GC + failed = false; + return true; + } + } + if (nanosTimeout <= 0) + return false; + if (shouldParkAfterFailedAcquire(p, node) && + nanosTimeout > spinForTimeoutThreshold) + LockSupport.parkNanos(this, nanosTimeout); + long now = System.nanoTime(); + nanosTimeout -= now - lastTime; + lastTime = now; + if (Thread.interrupted()) + throw new InterruptedException(); + } + } finally { + if (failed) + cancelAcquire(node); + } + } + + // Main exported methods + + /** + * Attempts to acquire in exclusive mode. This method should query + * if the state of the object permits it to be acquired in the + * exclusive mode, and if so to acquire it. + * + *

This method is always invoked by the thread performing + * acquire. If this method reports failure, the acquire method + * may queue the thread, if it is not already queued, until it is + * signalled by a release from some other thread. This can be used + * to implement method {@link Lock#tryLock()}. + * + *

The default + * implementation throws {@link UnsupportedOperationException}. + * + * @param arg the acquire argument. This value is always the one + * passed to an acquire method, or is the value saved on entry + * to a condition wait. The value is otherwise uninterpreted + * and can represent anything you like. + * @return {@code true} if successful. Upon success, this object has + * been acquired. + * @throws IllegalMonitorStateException if acquiring would place this + * synchronizer in an illegal state. This exception must be + * thrown in a consistent fashion for synchronization to work + * correctly. + * @throws UnsupportedOperationException if exclusive mode is not supported + */ + protected boolean tryAcquire(int arg) { + throw new UnsupportedOperationException(); + } + + /** + * Attempts to set the state to reflect a release in exclusive + * mode. + * + *

This method is always invoked by the thread performing release. + * + *

The default implementation throws + * {@link UnsupportedOperationException}. + * + * @param arg the release argument. This value is always the one + * passed to a release method, or the current state value upon + * entry to a condition wait. The value is otherwise + * uninterpreted and can represent anything you like. + * @return {@code true} if this object is now in a fully released + * state, so that any waiting threads may attempt to acquire; + * and {@code false} otherwise. + * @throws IllegalMonitorStateException if releasing would place this + * synchronizer in an illegal state. This exception must be + * thrown in a consistent fashion for synchronization to work + * correctly. + * @throws UnsupportedOperationException if exclusive mode is not supported + */ + protected boolean tryRelease(int arg) { + throw new UnsupportedOperationException(); + } + + /** + * Attempts to acquire in shared mode. This method should query if + * the state of the object permits it to be acquired in the shared + * mode, and if so to acquire it. + * + *

This method is always invoked by the thread performing + * acquire. If this method reports failure, the acquire method + * may queue the thread, if it is not already queued, until it is + * signalled by a release from some other thread. + * + *

The default implementation throws {@link + * UnsupportedOperationException}. + * + * @param arg the acquire argument. This value is always the one + * passed to an acquire method, or is the value saved on entry + * to a condition wait. The value is otherwise uninterpreted + * and can represent anything you like. + * @return a negative value on failure; zero if acquisition in shared + * mode succeeded but no subsequent shared-mode acquire can + * succeed; and a positive value if acquisition in shared + * mode succeeded and subsequent shared-mode acquires might + * also succeed, in which case a subsequent waiting thread + * must check availability. (Support for three different + * return values enables this method to be used in contexts + * where acquires only sometimes act exclusively.) Upon + * success, this object has been acquired. + * @throws IllegalMonitorStateException if acquiring would place this + * synchronizer in an illegal state. This exception must be + * thrown in a consistent fashion for synchronization to work + * correctly. + * @throws UnsupportedOperationException if shared mode is not supported + */ + protected int tryAcquireShared(int arg) { + throw new UnsupportedOperationException(); + } + + /** + * Attempts to set the state to reflect a release in shared mode. + * + *

This method is always invoked by the thread performing release. + * + *

The default implementation throws + * {@link UnsupportedOperationException}. + * + * @param arg the release argument. This value is always the one + * passed to a release method, or the current state value upon + * entry to a condition wait. The value is otherwise + * uninterpreted and can represent anything you like. + * @return {@code true} if this release of shared mode may permit a + * waiting acquire (shared or exclusive) to succeed; and + * {@code false} otherwise + * @throws IllegalMonitorStateException if releasing would place this + * synchronizer in an illegal state. This exception must be + * thrown in a consistent fashion for synchronization to work + * correctly. + * @throws UnsupportedOperationException if shared mode is not supported + */ + protected boolean tryReleaseShared(int arg) { + throw new UnsupportedOperationException(); + } + + /** + * Returns {@code true} if synchronization is held exclusively with + * respect to the current (calling) thread. This method is invoked + * upon each call to a non-waiting {@link ConditionObject} method. + * (Waiting methods instead invoke {@link #release}.) + * + *

The default implementation throws {@link + * UnsupportedOperationException}. This method is invoked + * internally only within {@link ConditionObject} methods, so need + * not be defined if conditions are not used. + * + * @return {@code true} if synchronization is held exclusively; + * {@code false} otherwise + * @throws UnsupportedOperationException if conditions are not supported + */ + protected boolean isHeldExclusively() { + throw new UnsupportedOperationException(); + } + + /** + * Acquires in exclusive mode, ignoring interrupts. Implemented + * by invoking at least once {@link #tryAcquire}, + * returning on success. Otherwise the thread is queued, possibly + * repeatedly blocking and unblocking, invoking {@link + * #tryAcquire} until success. This method can be used + * to implement method {@link Lock#lock}. + * + * @param arg the acquire argument. This value is conveyed to + * {@link #tryAcquire} but is otherwise uninterpreted and + * can represent anything you like. + */ + public final void acquire(int arg) { + if (!tryAcquire(arg) && + acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) + selfInterrupt(); + } + + /** + * Acquires in exclusive mode, aborting if interrupted. + * Implemented by first checking interrupt status, then invoking + * at least once {@link #tryAcquire}, returning on + * success. Otherwise the thread is queued, possibly repeatedly + * blocking and unblocking, invoking {@link #tryAcquire} + * until success or the thread is interrupted. This method can be + * used to implement method {@link Lock#lockInterruptibly}. + * + * @param arg the acquire argument. This value is conveyed to + * {@link #tryAcquire} but is otherwise uninterpreted and + * can represent anything you like. + * @throws InterruptedException if the current thread is interrupted + */ + public final void acquireInterruptibly(int arg) + throws InterruptedException { + if (Thread.interrupted()) + throw new InterruptedException(); + if (!tryAcquire(arg)) + doAcquireInterruptibly(arg); + } + + /** + * Attempts to acquire in exclusive mode, aborting if interrupted, + * and failing if the given timeout elapses. Implemented by first + * checking interrupt status, then invoking at least once {@link + * #tryAcquire}, returning on success. Otherwise, the thread is + * queued, possibly repeatedly blocking and unblocking, invoking + * {@link #tryAcquire} until success or the thread is interrupted + * or the timeout elapses. This method can be used to implement + * method {@link Lock#tryLock(long, TimeUnit)}. + * + * @param arg the acquire argument. This value is conveyed to + * {@link #tryAcquire} but is otherwise uninterpreted and + * can represent anything you like. + * @param nanosTimeout the maximum number of nanoseconds to wait + * @return {@code true} if acquired; {@code false} if timed out + * @throws InterruptedException if the current thread is interrupted + */ + public final boolean tryAcquireNanos(int arg, long nanosTimeout) + throws InterruptedException { + if (Thread.interrupted()) + throw new InterruptedException(); + return tryAcquire(arg) || + doAcquireNanos(arg, nanosTimeout); + } + + /** + * Releases in exclusive mode. Implemented by unblocking one or + * more threads if {@link #tryRelease} returns true. + * This method can be used to implement method {@link Lock#unlock}. + * + * @param arg the release argument. This value is conveyed to + * {@link #tryRelease} but is otherwise uninterpreted and + * can represent anything you like. + * @return the value returned from {@link #tryRelease} + */ + public final boolean release(int arg) { + if (tryRelease(arg)) { + Node h = head; + if (h != null && h.waitStatus != 0) + unparkSuccessor(h); + return true; + } + return false; + } + + /** + * Acquires in shared mode, ignoring interrupts. Implemented by + * first invoking at least once {@link #tryAcquireShared}, + * returning on success. Otherwise the thread is queued, possibly + * repeatedly blocking and unblocking, invoking {@link + * #tryAcquireShared} until success. + * + * @param arg the acquire argument. This value is conveyed to + * {@link #tryAcquireShared} but is otherwise uninterpreted + * and can represent anything you like. + */ + public final void acquireShared(int arg) { + if (tryAcquireShared(arg) < 0) + doAcquireShared(arg); + } + + /** + * Acquires in shared mode, aborting if interrupted. Implemented + * by first checking interrupt status, then invoking at least once + * {@link #tryAcquireShared}, returning on success. Otherwise the + * thread is queued, possibly repeatedly blocking and unblocking, + * invoking {@link #tryAcquireShared} until success or the thread + * is interrupted. + * @param arg the acquire argument + * This value is conveyed to {@link #tryAcquireShared} but is + * otherwise uninterpreted and can represent anything + * you like. + * @throws InterruptedException if the current thread is interrupted + */ + public final void acquireSharedInterruptibly(int arg) + throws InterruptedException { + if (Thread.interrupted()) + throw new InterruptedException(); + if (tryAcquireShared(arg) < 0) + doAcquireSharedInterruptibly(arg); + } + + /** + * Attempts to acquire in shared mode, aborting if interrupted, and + * failing if the given timeout elapses. Implemented by first + * checking interrupt status, then invoking at least once {@link + * #tryAcquireShared}, returning on success. Otherwise, the + * thread is queued, possibly repeatedly blocking and unblocking, + * invoking {@link #tryAcquireShared} until success or the thread + * is interrupted or the timeout elapses. + * + * @param arg the acquire argument. This value is conveyed to + * {@link #tryAcquireShared} but is otherwise uninterpreted + * and can represent anything you like. + * @param nanosTimeout the maximum number of nanoseconds to wait + * @return {@code true} if acquired; {@code false} if timed out + * @throws InterruptedException if the current thread is interrupted + */ + public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) + throws InterruptedException { + if (Thread.interrupted()) + throw new InterruptedException(); + return tryAcquireShared(arg) >= 0 || + doAcquireSharedNanos(arg, nanosTimeout); + } + + /** + * Releases in shared mode. Implemented by unblocking one or more + * threads if {@link #tryReleaseShared} returns true. + * + * @param arg the release argument. This value is conveyed to + * {@link #tryReleaseShared} but is otherwise uninterpreted + * and can represent anything you like. + * @return the value returned from {@link #tryReleaseShared} + */ + public final boolean releaseShared(int arg) { + if (tryReleaseShared(arg)) { + doReleaseShared(); + return true; + } + return false; + } + + // Queue inspection methods + + /** + * Queries whether any threads are waiting to acquire. Note that + * because cancellations due to interrupts and timeouts may occur + * at any time, a {@code true} return does not guarantee that any + * other thread will ever acquire. + * + *

In this implementation, this operation returns in + * constant time. + * + * @return {@code true} if there may be other threads waiting to acquire + */ + public final boolean hasQueuedThreads() { + return head != tail; + } + + /** + * Queries whether any threads have ever contended to acquire this + * synchronizer; that is if an acquire method has ever blocked. + * + *

In this implementation, this operation returns in + * constant time. + * + * @return {@code true} if there has ever been contention + */ + public final boolean hasContended() { + return head != null; + } + + /** + * Returns the first (longest-waiting) thread in the queue, or + * {@code null} if no threads are currently queued. + * + *

In this implementation, this operation normally returns in + * constant time, but may iterate upon contention if other threads are + * concurrently modifying the queue. + * + * @return the first (longest-waiting) thread in the queue, or + * {@code null} if no threads are currently queued + */ + public final Thread getFirstQueuedThread() { + // handle only fast path, else relay + return (head == tail) ? null : fullGetFirstQueuedThread(); + } + + /** + * Version of getFirstQueuedThread called when fastpath fails + */ + private Thread fullGetFirstQueuedThread() { + /* + * The first node is normally head.next. Try to get its + * thread field, ensuring consistent reads: If thread + * field is nulled out or s.prev is no longer head, then + * some other thread(s) concurrently performed setHead in + * between some of our reads. We try this twice before + * resorting to traversal. + */ + Node h, s; + Thread st; + if (((h = head) != null && (s = h.next) != null && + s.prev == head && (st = s.thread) != null) || + ((h = head) != null && (s = h.next) != null && + s.prev == head && (st = s.thread) != null)) + return st; + + /* + * Head's next field might not have been set yet, or may have + * been unset after setHead. So we must check to see if tail + * is actually first node. If not, we continue on, safely + * traversing from tail back to head to find first, + * guaranteeing termination. + */ + + Node t = tail; + Thread firstThread = null; + while (t != null && t != head) { + Thread tt = t.thread; + if (tt != null) + firstThread = tt; + t = t.prev; + } + return firstThread; + } + + /** + * Returns true if the given thread is currently queued. + * + *

This implementation traverses the queue to determine + * presence of the given thread. + * + * @param thread the thread + * @return {@code true} if the given thread is on the queue + * @throws NullPointerException if the thread is null + */ + public final boolean isQueued(Thread thread) { + if (thread == null) + throw new NullPointerException(); + for (Node p = tail; p != null; p = p.prev) + if (p.thread == thread) + return true; + return false; + } + + /** + * Returns {@code true} if the apparent first queued thread, if one + * exists, is waiting in exclusive mode. If this method returns + * {@code true}, and the current thread is attempting to acquire in + * shared mode (that is, this method is invoked from {@link + * #tryAcquireShared}) then it is guaranteed that the current thread + * is not the first queued thread. Used only as a heuristic in + * ReentrantReadWriteLock. + */ + final boolean apparentlyFirstQueuedIsExclusive() { + Node h, s; + return (h = head) != null && + (s = h.next) != null && + !s.isShared() && + s.thread != null; + } + + /** + * Queries whether any threads have been waiting to acquire longer + * than the current thread. + * + *

An invocation of this method is equivalent to (but may be + * more efficient than): + *

 {@code
+     * getFirstQueuedThread() != Thread.currentThread() &&
+     * hasQueuedThreads()}
+ * + *

Note that because cancellations due to interrupts and + * timeouts may occur at any time, a {@code true} return does not + * guarantee that some other thread will acquire before the current + * thread. Likewise, it is possible for another thread to win a + * race to enqueue after this method has returned {@code false}, + * due to the queue being empty. + * + *

This method is designed to be used by a fair synchronizer to + * avoid barging. + * Such a synchronizer's {@link #tryAcquire} method should return + * {@code false}, and its {@link #tryAcquireShared} method should + * return a negative value, if this method returns {@code true} + * (unless this is a reentrant acquire). For example, the {@code + * tryAcquire} method for a fair, reentrant, exclusive mode + * synchronizer might look like this: + * + *

 {@code
+     * protected boolean tryAcquire(int arg) {
+     *   if (isHeldExclusively()) {
+     *     // A reentrant acquire; increment hold count
+     *     return true;
+     *   } else if (hasQueuedPredecessors()) {
+     *     return false;
+     *   } else {
+     *     // try to acquire normally
+     *   }
+     * }}
+ * + * @return {@code true} if there is a queued thread preceding the + * current thread, and {@code false} if the current thread + * is at the head of the queue or the queue is empty + * @since 1.7 + */ + public final boolean hasQueuedPredecessors() { + // The correctness of this depends on head being initialized + // before tail and on head.next being accurate if the current + // thread is first in queue. + Node t = tail; // Read fields in reverse initialization order + Node h = head; + Node s; + return h != t && + ((s = h.next) == null || s.thread != Thread.currentThread()); + } + + + // Instrumentation and monitoring methods + + /** + * Returns an estimate of the number of threads waiting to + * acquire. The value is only an estimate because the number of + * threads may change dynamically while this method traverses + * internal data structures. This method is designed for use in + * monitoring system state, not for synchronization + * control. + * + * @return the estimated number of threads waiting to acquire + */ + public final int getQueueLength() { + int n = 0; + for (Node p = tail; p != null; p = p.prev) { + if (p.thread != null) + ++n; + } + return n; + } + + /** + * Returns a collection containing threads that may be waiting to + * acquire. Because the actual set of threads may change + * dynamically while constructing this result, the returned + * collection is only a best-effort estimate. The elements of the + * returned collection are in no particular order. This method is + * designed to facilitate construction of subclasses that provide + * more extensive monitoring facilities. + * + * @return the collection of threads + */ + public final Collection getQueuedThreads() { + ArrayList list = new ArrayList(); + for (Node p = tail; p != null; p = p.prev) { + Thread t = p.thread; + if (t != null) + list.add(t); + } + return list; + } + + /** + * Returns a collection containing threads that may be waiting to + * acquire in exclusive mode. This has the same properties + * as {@link #getQueuedThreads} except that it only returns + * those threads waiting due to an exclusive acquire. + * + * @return the collection of threads + */ + public final Collection getExclusiveQueuedThreads() { + ArrayList list = new ArrayList(); + for (Node p = tail; p != null; p = p.prev) { + if (!p.isShared()) { + Thread t = p.thread; + if (t != null) + list.add(t); + } + } + return list; + } + + /** + * Returns a collection containing threads that may be waiting to + * acquire in shared mode. This has the same properties + * as {@link #getQueuedThreads} except that it only returns + * those threads waiting due to a shared acquire. + * + * @return the collection of threads + */ + public final Collection getSharedQueuedThreads() { + ArrayList list = new ArrayList(); + for (Node p = tail; p != null; p = p.prev) { + if (p.isShared()) { + Thread t = p.thread; + if (t != null) + list.add(t); + } + } + return list; + } + + /** + * Returns a string identifying this synchronizer, as well as its state. + * The state, in brackets, includes the String {@code "State ="} + * followed by the current value of {@link #getState}, and either + * {@code "nonempty"} or {@code "empty"} depending on whether the + * queue is empty. + * + * @return a string identifying this synchronizer, as well as its state + */ + public String toString() { + int s = getState(); + String q = hasQueuedThreads() ? "non" : ""; + return super.toString() + + "[State = " + s + ", " + q + "empty queue]"; + } + + + // Internal support methods for Conditions + + /** + * Returns true if a node, always one that was initially placed on + * a condition queue, is now waiting to reacquire on sync queue. + * @param node the node + * @return true if is reacquiring + */ + final boolean isOnSyncQueue(Node node) { + if (node.waitStatus == Node.CONDITION || node.prev == null) + return false; + if (node.next != null) // If has successor, it must be on queue + return true; + /* + * node.prev can be non-null, but not yet on queue because + * the CAS to place it on queue can fail. So we have to + * traverse from tail to make sure it actually made it. It + * will always be near the tail in calls to this method, and + * unless the CAS failed (which is unlikely), it will be + * there, so we hardly ever traverse much. + */ + return findNodeFromTail(node); + } + + /** + * Returns true if node is on sync queue by searching backwards from tail. + * Called only when needed by isOnSyncQueue. + * @return true if present + */ + private boolean findNodeFromTail(Node node) { + Node t = tail; + for (;;) { + if (t == node) + return true; + if (t == null) + return false; + t = t.prev; + } + } + + /** + * Transfers a node from a condition queue onto sync queue. + * Returns true if successful. + * @param node the node + * @return true if successfully transferred (else the node was + * cancelled before signal). + */ + final boolean transferForSignal(Node node) { + /* + * If cannot change waitStatus, the node has been cancelled. + */ + if (!compareAndSetWaitStatus(node, Node.CONDITION, 0)) + return false; + + /* + * Splice onto queue and try to set waitStatus of predecessor to + * indicate that thread is (probably) waiting. If cancelled or + * attempt to set waitStatus fails, wake up to resync (in which + * case the waitStatus can be transiently and harmlessly wrong). + */ + Node p = enq(node); + int ws = p.waitStatus; + if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL)) + LockSupport.unpark(node.thread); + return true; + } + + /** + * Transfers node, if necessary, to sync queue after a cancelled + * wait. Returns true if thread was cancelled before being + * signalled. + * @param current the waiting thread + * @param node its node + * @return true if cancelled before the node was signalled + */ + final boolean transferAfterCancelledWait(Node node) { + if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) { + enq(node); + return true; + } + /* + * If we lost out to a signal(), then we can't proceed + * until it finishes its enq(). Cancelling during an + * incomplete transfer is both rare and transient, so just + * spin. + */ + while (!isOnSyncQueue(node)) + Thread.yield(); + return false; + } + + /** + * Invokes release with current state value; returns saved state. + * Cancels node and throws exception on failure. + * @param node the condition node for this wait + * @return previous sync state + */ + final int fullyRelease(Node node) { + boolean failed = true; + try { + int savedState = getState(); + if (release(savedState)) { + failed = false; + return savedState; + } else { + throw new IllegalMonitorStateException(); + } + } finally { + if (failed) + node.waitStatus = Node.CANCELLED; + } + } + + // Instrumentation methods for conditions + + /** + * Queries whether the given ConditionObject + * uses this synchronizer as its lock. + * + * @param condition the condition + * @return true if owned + * @throws NullPointerException if the condition is null + */ + public final boolean owns(ConditionObject condition) { + if (condition == null) + throw new NullPointerException(); + return condition.isOwnedBy(this); + } + + /** + * Queries whether any threads are waiting on the given condition + * associated with this synchronizer. Note that because timeouts + * and interrupts may occur at any time, a true return + * does not guarantee that a future signal will awaken + * any threads. This method is designed primarily for use in + * monitoring of the system state. + * + * @param condition the condition + * @return true if there are any waiting threads + * @throws IllegalMonitorStateException if exclusive synchronization + * is not held + * @throws IllegalArgumentException if the given condition is + * not associated with this synchronizer + * @throws NullPointerException if the condition is null + */ + public final boolean hasWaiters(ConditionObject condition) { + if (!owns(condition)) + throw new IllegalArgumentException("Not owner"); + return condition.hasWaiters(); + } + + /** + * Returns an estimate of the number of threads waiting on the + * given condition associated with this synchronizer. Note that + * because timeouts and interrupts may occur at any time, the + * estimate serves only as an upper bound on the actual number of + * waiters. This method is designed for use in monitoring of the + * system state, not for synchronization control. + * + * @param condition the condition + * @return the estimated number of waiting threads + * @throws IllegalMonitorStateException if exclusive synchronization + * is not held + * @throws IllegalArgumentException if the given condition is + * not associated with this synchronizer + * @throws NullPointerException if the condition is null + */ + public final int getWaitQueueLength(ConditionObject condition) { + if (!owns(condition)) + throw new IllegalArgumentException("Not owner"); + return condition.getWaitQueueLength(); + } + + /** + * Returns a collection containing those threads that may be + * waiting on the given condition associated with this + * synchronizer. Because the actual set of threads may change + * dynamically while constructing this result, the returned + * collection is only a best-effort estimate. The elements of the + * returned collection are in no particular order. + * + * @param condition the condition + * @return the collection of threads + * @throws IllegalMonitorStateException if exclusive synchronization + * is not held + * @throws IllegalArgumentException if the given condition is + * not associated with this synchronizer + * @throws NullPointerException if the condition is null + */ + public final Collection getWaitingThreads(ConditionObject condition) { + if (!owns(condition)) + throw new IllegalArgumentException("Not owner"); + return condition.getWaitingThreads(); + } + + /** + * Condition implementation for a {@link + * AbstractQueuedSynchronizer} serving as the basis of a {@link + * Lock} implementation. + * + *

Method documentation for this class describes mechanics, + * not behavioral specifications from the point of view of Lock + * and Condition users. Exported versions of this class will in + * general need to be accompanied by documentation describing + * condition semantics that rely on those of the associated + * AbstractQueuedSynchronizer. + * + *

This class is Serializable, but all fields are transient, + * so deserialized conditions have no waiters. + */ + public class ConditionObject implements Condition, java.io.Serializable { + private static final long serialVersionUID = 1173984872572414699L; + /** First node of condition queue. */ + private transient Node firstWaiter; + /** Last node of condition queue. */ + private transient Node lastWaiter; + + /** + * Creates a new ConditionObject instance. + */ + public ConditionObject() { } + + // Internal methods + + /** + * Adds a new waiter to wait queue. + * @return its new wait node + */ + private Node addConditionWaiter() { + Node t = lastWaiter; + // If lastWaiter is cancelled, clean out. + if (t != null && t.waitStatus != Node.CONDITION) { + unlinkCancelledWaiters(); + t = lastWaiter; + } + Node node = new Node(Thread.currentThread(), Node.CONDITION); + if (t == null) + firstWaiter = node; + else + t.nextWaiter = node; + lastWaiter = node; + return node; + } + + /** + * Removes and transfers nodes until hit non-cancelled one or + * null. Split out from signal in part to encourage compilers + * to inline the case of no waiters. + * @param first (non-null) the first node on condition queue + */ + private void doSignal(Node first) { + do { + if ( (firstWaiter = first.nextWaiter) == null) + lastWaiter = null; + first.nextWaiter = null; + } while (!transferForSignal(first) && + (first = firstWaiter) != null); + } + + /** + * Removes and transfers all nodes. + * @param first (non-null) the first node on condition queue + */ + private void doSignalAll(Node first) { + lastWaiter = firstWaiter = null; + do { + Node next = first.nextWaiter; + first.nextWaiter = null; + transferForSignal(first); + first = next; + } while (first != null); + } + + /** + * Unlinks cancelled waiter nodes from condition queue. + * Called only while holding lock. This is called when + * cancellation occurred during condition wait, and upon + * insertion of a new waiter when lastWaiter is seen to have + * been cancelled. This method is needed to avoid garbage + * retention in the absence of signals. So even though it may + * require a full traversal, it comes into play only when + * timeouts or cancellations occur in the absence of + * signals. It traverses all nodes rather than stopping at a + * particular target to unlink all pointers to garbage nodes + * without requiring many re-traversals during cancellation + * storms. + */ + private void unlinkCancelledWaiters() { + Node t = firstWaiter; + Node trail = null; + while (t != null) { + Node next = t.nextWaiter; + if (t.waitStatus != Node.CONDITION) { + t.nextWaiter = null; + if (trail == null) + firstWaiter = next; + else + trail.nextWaiter = next; + if (next == null) + lastWaiter = trail; + } + else + trail = t; + t = next; + } + } + + // public methods + + /** + * Moves the longest-waiting thread, if one exists, from the + * wait queue for this condition to the wait queue for the + * owning lock. + * + * @throws IllegalMonitorStateException if {@link #isHeldExclusively} + * returns {@code false} + */ + public final void signal() { + if (!isHeldExclusively()) + throw new IllegalMonitorStateException(); + Node first = firstWaiter; + if (first != null) + doSignal(first); + } + + /** + * Moves all threads from the wait queue for this condition to + * the wait queue for the owning lock. + * + * @throws IllegalMonitorStateException if {@link #isHeldExclusively} + * returns {@code false} + */ + public final void signalAll() { + if (!isHeldExclusively()) + throw new IllegalMonitorStateException(); + Node first = firstWaiter; + if (first != null) + doSignalAll(first); + } + + /** + * Implements uninterruptible condition wait. + *

    + *
  1. Save lock state returned by {@link #getState}. + *
  2. Invoke {@link #release} with + * saved state as argument, throwing + * IllegalMonitorStateException if it fails. + *
  3. Block until signalled. + *
  4. Reacquire by invoking specialized version of + * {@link #acquire} with saved state as argument. + *
+ */ + public final void awaitUninterruptibly() { + Node node = addConditionWaiter(); + int savedState = fullyRelease(node); + boolean interrupted = false; + while (!isOnSyncQueue(node)) { + LockSupport.park(this); + if (Thread.interrupted()) + interrupted = true; + } + if (acquireQueued(node, savedState) || interrupted) + selfInterrupt(); + } + + /* + * For interruptible waits, we need to track whether to throw + * InterruptedException, if interrupted while blocked on + * condition, versus reinterrupt current thread, if + * interrupted while blocked waiting to re-acquire. + */ + + /** Mode meaning to reinterrupt on exit from wait */ + private static final int REINTERRUPT = 1; + /** Mode meaning to throw InterruptedException on exit from wait */ + private static final int THROW_IE = -1; + + /** + * Checks for interrupt, returning THROW_IE if interrupted + * before signalled, REINTERRUPT if after signalled, or + * 0 if not interrupted. + */ + private int checkInterruptWhileWaiting(Node node) { + return Thread.interrupted() ? + (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) : + 0; + } + + /** + * Throws InterruptedException, reinterrupts current thread, or + * does nothing, depending on mode. + */ + private void reportInterruptAfterWait(int interruptMode) + throws InterruptedException { + if (interruptMode == THROW_IE) + throw new InterruptedException(); + else if (interruptMode == REINTERRUPT) + selfInterrupt(); + } + + /** + * Implements interruptible condition wait. + *
    + *
  1. If current thread is interrupted, throw InterruptedException. + *
  2. Save lock state returned by {@link #getState}. + *
  3. Invoke {@link #release} with + * saved state as argument, throwing + * IllegalMonitorStateException if it fails. + *
  4. Block until signalled or interrupted. + *
  5. Reacquire by invoking specialized version of + * {@link #acquire} with saved state as argument. + *
  6. If interrupted while blocked in step 4, throw InterruptedException. + *
+ */ + public final void await() throws InterruptedException { + if (Thread.interrupted()) + throw new InterruptedException(); + Node node = addConditionWaiter(); + int savedState = fullyRelease(node); + int interruptMode = 0; + while (!isOnSyncQueue(node)) { + LockSupport.park(this); + if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) + break; + } + if (acquireQueued(node, savedState) && interruptMode != THROW_IE) + interruptMode = REINTERRUPT; + if (node.nextWaiter != null) // clean up if cancelled + unlinkCancelledWaiters(); + if (interruptMode != 0) + reportInterruptAfterWait(interruptMode); + } + + /** + * Implements timed condition wait. + *
    + *
  1. If current thread is interrupted, throw InterruptedException. + *
  2. Save lock state returned by {@link #getState}. + *
  3. Invoke {@link #release} with + * saved state as argument, throwing + * IllegalMonitorStateException if it fails. + *
  4. Block until signalled, interrupted, or timed out. + *
  5. Reacquire by invoking specialized version of + * {@link #acquire} with saved state as argument. + *
  6. If interrupted while blocked in step 4, throw InterruptedException. + *
+ */ + public final long awaitNanos(long nanosTimeout) + throws InterruptedException { + if (Thread.interrupted()) + throw new InterruptedException(); + Node node = addConditionWaiter(); + int savedState = fullyRelease(node); + long lastTime = System.nanoTime(); + int interruptMode = 0; + while (!isOnSyncQueue(node)) { + if (nanosTimeout <= 0L) { + transferAfterCancelledWait(node); + break; + } + LockSupport.parkNanos(this, nanosTimeout); + if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) + break; + + long now = System.nanoTime(); + nanosTimeout -= now - lastTime; + lastTime = now; + } + if (acquireQueued(node, savedState) && interruptMode != THROW_IE) + interruptMode = REINTERRUPT; + if (node.nextWaiter != null) + unlinkCancelledWaiters(); + if (interruptMode != 0) + reportInterruptAfterWait(interruptMode); + return nanosTimeout - (System.nanoTime() - lastTime); + } + + /** + * Implements absolute timed condition wait. + *
    + *
  1. If current thread is interrupted, throw InterruptedException. + *
  2. Save lock state returned by {@link #getState}. + *
  3. Invoke {@link #release} with + * saved state as argument, throwing + * IllegalMonitorStateException if it fails. + *
  4. Block until signalled, interrupted, or timed out. + *
  5. Reacquire by invoking specialized version of + * {@link #acquire} with saved state as argument. + *
  6. If interrupted while blocked in step 4, throw InterruptedException. + *
  7. If timed out while blocked in step 4, return false, else true. + *
+ */ + public final boolean awaitUntil(Date deadline) + throws InterruptedException { + if (deadline == null) + throw new NullPointerException(); + long abstime = deadline.getTime(); + if (Thread.interrupted()) + throw new InterruptedException(); + Node node = addConditionWaiter(); + int savedState = fullyRelease(node); + boolean timedout = false; + int interruptMode = 0; + while (!isOnSyncQueue(node)) { + if (System.currentTimeMillis() > abstime) { + timedout = transferAfterCancelledWait(node); + break; + } + LockSupport.parkUntil(this, abstime); + if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) + break; + } + if (acquireQueued(node, savedState) && interruptMode != THROW_IE) + interruptMode = REINTERRUPT; + if (node.nextWaiter != null) + unlinkCancelledWaiters(); + if (interruptMode != 0) + reportInterruptAfterWait(interruptMode); + return !timedout; + } + + /** + * Implements timed condition wait. + *
    + *
  1. If current thread is interrupted, throw InterruptedException. + *
  2. Save lock state returned by {@link #getState}. + *
  3. Invoke {@link #release} with + * saved state as argument, throwing + * IllegalMonitorStateException if it fails. + *
  4. Block until signalled, interrupted, or timed out. + *
  5. Reacquire by invoking specialized version of + * {@link #acquire} with saved state as argument. + *
  6. If interrupted while blocked in step 4, throw InterruptedException. + *
  7. If timed out while blocked in step 4, return false, else true. + *
+ */ + public final boolean await(long time, TimeUnit unit) + throws InterruptedException { + if (unit == null) + throw new NullPointerException(); + long nanosTimeout = unit.toNanos(time); + if (Thread.interrupted()) + throw new InterruptedException(); + Node node = addConditionWaiter(); + int savedState = fullyRelease(node); + long lastTime = System.nanoTime(); + boolean timedout = false; + int interruptMode = 0; + while (!isOnSyncQueue(node)) { + if (nanosTimeout <= 0L) { + timedout = transferAfterCancelledWait(node); + break; + } + if (nanosTimeout >= spinForTimeoutThreshold) + LockSupport.parkNanos(this, nanosTimeout); + if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) + break; + long now = System.nanoTime(); + nanosTimeout -= now - lastTime; + lastTime = now; + } + if (acquireQueued(node, savedState) && interruptMode != THROW_IE) + interruptMode = REINTERRUPT; + if (node.nextWaiter != null) + unlinkCancelledWaiters(); + if (interruptMode != 0) + reportInterruptAfterWait(interruptMode); + return !timedout; + } + + // support for instrumentation + + /** + * Returns true if this condition was created by the given + * synchronization object. + * + * @return {@code true} if owned + */ + final boolean isOwnedBy(AbstractQueuedSynchronizer sync) { + return sync == AbstractQueuedSynchronizer.this; + } + + /** + * Queries whether any threads are waiting on this condition. + * Implements {@link AbstractQueuedSynchronizer#hasWaiters}. + * + * @return {@code true} if there are any waiting threads + * @throws IllegalMonitorStateException if {@link #isHeldExclusively} + * returns {@code false} + */ + protected final boolean hasWaiters() { + if (!isHeldExclusively()) + throw new IllegalMonitorStateException(); + for (Node w = firstWaiter; w != null; w = w.nextWaiter) { + if (w.waitStatus == Node.CONDITION) + return true; + } + return false; + } + + /** + * Returns an estimate of the number of threads waiting on + * this condition. + * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength}. + * + * @return the estimated number of waiting threads + * @throws IllegalMonitorStateException if {@link #isHeldExclusively} + * returns {@code false} + */ + protected final int getWaitQueueLength() { + if (!isHeldExclusively()) + throw new IllegalMonitorStateException(); + int n = 0; + for (Node w = firstWaiter; w != null; w = w.nextWaiter) { + if (w.waitStatus == Node.CONDITION) + ++n; + } + return n; + } + + /** + * Returns a collection containing those threads that may be + * waiting on this Condition. + * Implements {@link AbstractQueuedSynchronizer#getWaitingThreads}. + * + * @return the collection of threads + * @throws IllegalMonitorStateException if {@link #isHeldExclusively} + * returns {@code false} + */ + protected final Collection getWaitingThreads() { + if (!isHeldExclusively()) + throw new IllegalMonitorStateException(); + ArrayList list = new ArrayList(); + for (Node w = firstWaiter; w != null; w = w.nextWaiter) { + if (w.waitStatus == Node.CONDITION) { + Thread t = w.thread; + if (t != null) + list.add(t); + } + } + return list; + } + } + + /** + * Setup to support compareAndSet. We need to natively implement + * this here: For the sake of permitting future enhancements, we + * cannot explicitly subclass AtomicInteger, which would be + * efficient and useful otherwise. So, as the lesser of evils, we + * natively implement using hotspot intrinsics API. And while we + * are at it, we do the same for other CASable fields (which could + * otherwise be done with atomic field updaters). + */ + private static final Unsafe unsafe = Unsafe.getUnsafe(); + private static final long stateOffset; + private static final long headOffset; + private static final long tailOffset; + private static final long waitStatusOffset; + private static final long nextOffset; + + static { + try { + stateOffset = unsafe.objectFieldOffset + (AbstractQueuedSynchronizer.class.getDeclaredField("state")); + headOffset = unsafe.objectFieldOffset + (AbstractQueuedSynchronizer.class.getDeclaredField("head")); + tailOffset = unsafe.objectFieldOffset + (AbstractQueuedSynchronizer.class.getDeclaredField("tail")); + waitStatusOffset = unsafe.objectFieldOffset + (Node.class.getDeclaredField("waitStatus")); + nextOffset = unsafe.objectFieldOffset + (Node.class.getDeclaredField("next")); + + } catch (Exception ex) { throw new Error(ex); } + } + + /** + * CAS head field. Used only by enq. + */ + private final boolean compareAndSetHead(Node update) { + return unsafe.compareAndSwapObject(this, headOffset, null, update); + } + + /** + * CAS tail field. Used only by enq. + */ + private final boolean compareAndSetTail(Node expect, Node update) { + return unsafe.compareAndSwapObject(this, tailOffset, expect, update); + } + + /** + * CAS waitStatus field of a node. + */ + private static final boolean compareAndSetWaitStatus(Node node, + int expect, + int update) { + return unsafe.compareAndSwapInt(node, waitStatusOffset, + expect, update); + } + + /** + * CAS next field of a node. + */ + private static final boolean compareAndSetNext(Node node, + Node expect, + Node update) { + return unsafe.compareAndSwapObject(node, nextOffset, expect, update); + } +}