diff -r 000000000000 -r 212417b74b72 rt/emul/compact/src/main/java/java/util/concurrent/locks/ReadWriteLock.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/rt/emul/compact/src/main/java/java/util/concurrent/locks/ReadWriteLock.java Sat Mar 19 10:46:31 2016 +0100 @@ -0,0 +1,133 @@ +/* + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +/* + * This file is available under and governed by the GNU General Public + * License version 2 only, as published by the Free Software Foundation. + * However, the following notice accompanied the original version of this + * file: + * + * Written by Doug Lea with assistance from members of JCP JSR-166 + * Expert Group and released to the public domain, as explained at + * http://creativecommons.org/publicdomain/zero/1.0/ + */ + +package java.util.concurrent.locks; + +/** + * A ReadWriteLock maintains a pair of associated {@link + * Lock locks}, one for read-only operations and one for writing. + * The {@link #readLock read lock} may be held simultaneously by + * multiple reader threads, so long as there are no writers. The + * {@link #writeLock write lock} is exclusive. + * + *

All ReadWriteLock implementations must guarantee that + * the memory synchronization effects of writeLock operations + * (as specified in the {@link Lock} interface) also hold with respect + * to the associated readLock. That is, a thread successfully + * acquiring the read lock will see all updates made upon previous + * release of the write lock. + * + *

A read-write lock allows for a greater level of concurrency in + * accessing shared data than that permitted by a mutual exclusion lock. + * It exploits the fact that while only a single thread at a time (a + * writer thread) can modify the shared data, in many cases any + * number of threads can concurrently read the data (hence reader + * threads). + * In theory, the increase in concurrency permitted by the use of a read-write + * lock will lead to performance improvements over the use of a mutual + * exclusion lock. In practice this increase in concurrency will only be fully + * realized on a multi-processor, and then only if the access patterns for + * the shared data are suitable. + * + *

Whether or not a read-write lock will improve performance over the use + * of a mutual exclusion lock depends on the frequency that the data is + * read compared to being modified, the duration of the read and write + * operations, and the contention for the data - that is, the number of + * threads that will try to read or write the data at the same time. + * For example, a collection that is initially populated with data and + * thereafter infrequently modified, while being frequently searched + * (such as a directory of some kind) is an ideal candidate for the use of + * a read-write lock. However, if updates become frequent then the data + * spends most of its time being exclusively locked and there is little, if any + * increase in concurrency. Further, if the read operations are too short + * the overhead of the read-write lock implementation (which is inherently + * more complex than a mutual exclusion lock) can dominate the execution + * cost, particularly as many read-write lock implementations still serialize + * all threads through a small section of code. Ultimately, only profiling + * and measurement will establish whether the use of a read-write lock is + * suitable for your application. + * + * + *

Although the basic operation of a read-write lock is straight-forward, + * there are many policy decisions that an implementation must make, which + * may affect the effectiveness of the read-write lock in a given application. + * Examples of these policies include: + *

+ * You should consider all of these things when evaluating the suitability + * of a given implementation for your application. + * + * @see ReentrantReadWriteLock + * @see Lock + * @see ReentrantLock + * + * @since 1.5 + * @author Doug Lea + */ +public interface ReadWriteLock { + /** + * Returns the lock used for reading. + * + * @return the lock used for reading. + */ + Lock readLock(); + + /** + * Returns the lock used for writing. + * + * @return the lock used for writing. + */ + Lock writeLock(); +}