diff -r 000000000000 -r 724f3e1ea53e emul/compact/src/main/java/java/net/URI.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/emul/compact/src/main/java/java/net/URI.java Sat Sep 07 13:51:24 2013 +0200 @@ -0,0 +1,3524 @@ +/* + * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.net; + +import java.io.IOException; +import java.io.InvalidObjectException; +import java.io.ObjectInputStream; +import java.io.ObjectOutputStream; +import java.io.Serializable; +import java.nio.ByteBuffer; +import java.nio.CharBuffer; +import java.nio.charset.CharsetDecoder; +import java.nio.charset.CharsetEncoder; +import java.nio.charset.CoderResult; +import java.nio.charset.CodingErrorAction; +import java.nio.charset.CharacterCodingException; +import java.text.Normalizer; +import sun.nio.cs.ThreadLocalCoders; + +import java.lang.Character; // for javadoc +import java.lang.NullPointerException; // for javadoc + + +/** + * Represents a Uniform Resource Identifier (URI) reference. + * + *

Aside from some minor deviations noted below, an instance of this + * class represents a URI reference as defined by + * RFC 2396: Uniform + * Resource Identifiers (URI): Generic Syntax, amended by RFC 2732: Format for + * Literal IPv6 Addresses in URLs. The Literal IPv6 address format + * also supports scope_ids. The syntax and usage of scope_ids is described + * here. + * This class provides constructors for creating URI instances from + * their components or by parsing their string forms, methods for accessing the + * various components of an instance, and methods for normalizing, resolving, + * and relativizing URI instances. Instances of this class are immutable. + * + * + *

URI syntax and components

+ * + * At the highest level a URI reference (hereinafter simply "URI") in string + * form has the syntax + * + *
+ * [scheme:]scheme-specific-part[#fragment] + *
+ * + * where square brackets [...] delineate optional components and the characters + * : and # stand for themselves. + * + *

An absolute URI specifies a scheme; a URI that is not absolute is + * said to be relative. URIs are also classified according to whether + * they are opaque or hierarchical. + * + *

An opaque URI is an absolute URI whose scheme-specific part does + * not begin with a slash character ('/'). Opaque URIs are not + * subject to further parsing. Some examples of opaque URIs are: + * + *

+ * + * + * + *
mailto:java-net@java.sun.com
news:comp.lang.java
urn:isbn:096139210x
+ * + *

A hierarchical URI is either an absolute URI whose + * scheme-specific part begins with a slash character, or a relative URI, that + * is, a URI that does not specify a scheme. Some examples of hierarchical + * URIs are: + * + *

+ * http://java.sun.com/j2se/1.3/
+ * docs/guide/collections/designfaq.html#28
+ * ../../../demo/jfc/SwingSet2/src/SwingSet2.java
+ * file:///~/calendar + *
+ * + *

A hierarchical URI is subject to further parsing according to the syntax + * + *

+ * [scheme:][//authority][path][?query][#fragment] + *
+ * + * where the characters :, /, + * ?, and # stand for themselves. The + * scheme-specific part of a hierarchical URI consists of the characters + * between the scheme and fragment components. + * + *

The authority component of a hierarchical URI is, if specified, either + * server-based or registry-based. A server-based authority + * parses according to the familiar syntax + * + *

+ * [user-info@]host[:port] + *
+ * + * where the characters @ and : stand for + * themselves. Nearly all URI schemes currently in use are server-based. An + * authority component that does not parse in this way is considered to be + * registry-based. + * + *

The path component of a hierarchical URI is itself said to be absolute + * if it begins with a slash character ('/'); otherwise it is + * relative. The path of a hierarchical URI that is either absolute or + * specifies an authority is always absolute. + * + *

All told, then, a URI instance has the following nine components: + * + *

+ * + * + * + * + * + * + * + * + * + * + *
ComponentType
schemeString
scheme-specific-part    String
authorityString
user-infoString
hostString
portint
pathString
queryString
fragmentString
+ * + * In a given instance any particular component is either undefined or + * defined with a distinct value. Undefined string components are + * represented by null, while undefined integer components are + * represented by -1. A string component may be defined to have the + * empty string as its value; this is not equivalent to that component being + * undefined. + * + *

Whether a particular component is or is not defined in an instance + * depends upon the type of the URI being represented. An absolute URI has a + * scheme component. An opaque URI has a scheme, a scheme-specific part, and + * possibly a fragment, but has no other components. A hierarchical URI always + * has a path (though it may be empty) and a scheme-specific-part (which at + * least contains the path), and may have any of the other components. If the + * authority component is present and is server-based then the host component + * will be defined and the user-information and port components may be defined. + * + * + *

Operations on URI instances

+ * + * The key operations supported by this class are those of + * normalization, resolution, and relativization. + * + *

Normalization is the process of removing unnecessary "." + * and ".." segments from the path component of a hierarchical URI. + * Each "." segment is simply removed. A ".." segment is + * removed only if it is preceded by a non-".." segment. + * Normalization has no effect upon opaque URIs. + * + *

Resolution is the process of resolving one URI against another, + * base URI. The resulting URI is constructed from components of both + * URIs in the manner specified by RFC 2396, taking components from the + * base URI for those not specified in the original. For hierarchical URIs, + * the path of the original is resolved against the path of the base and then + * normalized. The result, for example, of resolving + * + *

+ * docs/guide/collections/designfaq.html#28          (1) + *
+ * + * against the base URI http://java.sun.com/j2se/1.3/ is the result + * URI + * + *
+ * http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28 + *
+ * + * Resolving the relative URI + * + *
+ * ../../../demo/jfc/SwingSet2/src/SwingSet2.java    (2) + *
+ * + * against this result yields, in turn, + * + *
+ * http://java.sun.com/j2se/1.3/demo/jfc/SwingSet2/src/SwingSet2.java + *
+ * + * Resolution of both absolute and relative URIs, and of both absolute and + * relative paths in the case of hierarchical URIs, is supported. Resolving + * the URI file:///~calendar against any other URI simply yields the + * original URI, since it is absolute. Resolving the relative URI (2) above + * against the relative base URI (1) yields the normalized, but still relative, + * URI + * + *
+ * demo/jfc/SwingSet2/src/SwingSet2.java + *
+ * + *

Relativization, finally, is the inverse of resolution: For any + * two normalized URIs u and v, + * + *

+ * u.relativize(u.resolve(v)).equals(v)  and
+ * u.resolve(u.relativize(v)).equals(v)  .
+ *
+ * + * This operation is often useful when constructing a document containing URIs + * that must be made relative to the base URI of the document wherever + * possible. For example, relativizing the URI + * + *
+ * http://java.sun.com/j2se/1.3/docs/guide/index.html + *
+ * + * against the base URI + * + *
+ * http://java.sun.com/j2se/1.3 + *
+ * + * yields the relative URI docs/guide/index.html. + * + * + *

Character categories

+ * + * RFC 2396 specifies precisely which characters are permitted in the + * various components of a URI reference. The following categories, most of + * which are taken from that specification, are used below to describe these + * constraints: + * + *
+ * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + *
alphaThe US-ASCII alphabetic characters, + * 'A' through 'Z' + * and 'a' through 'z'
digitThe US-ASCII decimal digit characters, + * '0' through '9'
alphanumAll alpha and digit characters
unreserved    All alphanum characters together with those in the string + * "_-!.~'()*"
punctThe characters in the string ",;:$&+="
reservedAll punct characters together with those in the string + * "?/[]@"
escapedEscaped octets, that is, triplets consisting of the percent + * character ('%') followed by two hexadecimal digits + * ('0'-'9', 'A'-'F', and + * 'a'-'f')
otherThe Unicode characters that are not in the US-ASCII character set, + * are not control characters (according to the {@link + * java.lang.Character#isISOControl(char) Character.isISOControl} + * method), and are not space characters (according to the {@link + * java.lang.Character#isSpaceChar(char) Character.isSpaceChar} + * method)  (Deviation from RFC 2396, which is + * limited to US-ASCII)
+ * + *

The set of all legal URI characters consists of + * the unreserved, reserved, escaped, and other + * characters. + * + * + *

Escaped octets, quotation, encoding, and decoding

+ * + * RFC 2396 allows escaped octets to appear in the user-info, path, query, and + * fragment components. Escaping serves two purposes in URIs: + * + * + * + * These purposes are served in this class by three related operations: + * + * + * + * These operations are exposed in the constructors and methods of this class + * as follows: + * + * + * + * + *

Identities

+ * + * For any URI u, it is always the case that + * + *
+ * new URI(u.toString()).equals(u) . + *
+ * + * For any URI u that does not contain redundant syntax such as two + * slashes before an empty authority (as in file:///tmp/ ) or a + * colon following a host name but no port (as in + * http://java.sun.com: ), and that does not encode characters + * except those that must be quoted, the following identities also hold: + * + *
+ * new URI(u.getScheme(),
+ *         
u.getSchemeSpecificPart(),
+ *         
u.getFragment())
+ * .equals(
u) + *
+ * + * in all cases, + * + *
+ * new URI(u.getScheme(),
+ *         
u.getUserInfo(), u.getAuthority(),
+ *         
u.getPath(), u.getQuery(),
+ *         
u.getFragment())
+ * .equals(
u) + *
+ * + * if u is hierarchical, and + * + *
+ * new URI(u.getScheme(),
+ *         
u.getUserInfo(), u.getHost(), u.getPort(),
+ *         
u.getPath(), u.getQuery(),
+ *         
u.getFragment())
+ * .equals(
u) + *
+ * + * if u is hierarchical and has either no authority or a server-based + * authority. + * + * + *

URIs, URLs, and URNs

+ * + * A URI is a uniform resource identifier while a URL is a uniform + * resource locator. Hence every URL is a URI, abstractly speaking, but + * not every URI is a URL. This is because there is another subcategory of + * URIs, uniform resource names (URNs), which name resources but do not + * specify how to locate them. The mailto, news, and + * isbn URIs shown above are examples of URNs. + * + *

The conceptual distinction between URIs and URLs is reflected in the + * differences between this class and the {@link URL} class. + * + *

An instance of this class represents a URI reference in the syntactic + * sense defined by RFC 2396. A URI may be either absolute or relative. + * A URI string is parsed according to the generic syntax without regard to the + * scheme, if any, that it specifies. No lookup of the host, if any, is + * performed, and no scheme-dependent stream handler is constructed. Equality, + * hashing, and comparison are defined strictly in terms of the character + * content of the instance. In other words, a URI instance is little more than + * a structured string that supports the syntactic, scheme-independent + * operations of comparison, normalization, resolution, and relativization. + * + *

An instance of the {@link URL} class, by contrast, represents the + * syntactic components of a URL together with some of the information required + * to access the resource that it describes. A URL must be absolute, that is, + * it must always specify a scheme. A URL string is parsed according to its + * scheme. A stream handler is always established for a URL, and in fact it is + * impossible to create a URL instance for a scheme for which no handler is + * available. Equality and hashing depend upon both the scheme and the + * Internet address of the host, if any; comparison is not defined. In other + * words, a URL is a structured string that supports the syntactic operation of + * resolution as well as the network I/O operations of looking up the host and + * opening a connection to the specified resource. + * + * + * @author Mark Reinhold + * @since 1.4 + * + * @see RFC 2279: UTF-8, a + * transformation format of ISO 10646,
RFC 2373: IPv6 Addressing + * Architecture,
RFC 2396: Uniform + * Resource Identifiers (URI): Generic Syntax,
RFC 2732: Format for + * Literal IPv6 Addresses in URLs,
URISyntaxException + */ + +public final class URI + implements Comparable, Serializable +{ + + // Note: Comments containing the word "ASSERT" indicate places where a + // throw of an InternalError should be replaced by an appropriate assertion + // statement once asserts are enabled in the build. + + static final long serialVersionUID = -6052424284110960213L; + + + // -- Properties and components of this instance -- + + // Components of all URIs: [:][#] + private transient String scheme; // null ==> relative URI + private transient String fragment; + + // Hierarchical URI components: [//][?] + private transient String authority; // Registry or server + + // Server-based authority: [@][:] + private transient String userInfo; + private transient String host; // null ==> registry-based + private transient int port = -1; // -1 ==> undefined + + // Remaining components of hierarchical URIs + private transient String path; // null ==> opaque + private transient String query; + + // The remaining fields may be computed on demand + + private volatile transient String schemeSpecificPart; + private volatile transient int hash; // Zero ==> undefined + + private volatile transient String decodedUserInfo = null; + private volatile transient String decodedAuthority = null; + private volatile transient String decodedPath = null; + private volatile transient String decodedQuery = null; + private volatile transient String decodedFragment = null; + private volatile transient String decodedSchemeSpecificPart = null; + + /** + * The string form of this URI. + * + * @serial + */ + private volatile String string; // The only serializable field + + + + // -- Constructors and factories -- + + private URI() { } // Used internally + + /** + * Constructs a URI by parsing the given string. + * + *

This constructor parses the given string exactly as specified by the + * grammar in RFC 2396, + * Appendix A, except for the following deviations:

+ * + * + * + * @param str The string to be parsed into a URI + * + * @throws NullPointerException + * If str is null + * + * @throws URISyntaxException + * If the given string violates RFC 2396, as augmented + * by the above deviations + */ + public URI(String str) throws URISyntaxException { + new Parser(str).parse(false); + } + + /** + * Constructs a hierarchical URI from the given components. + * + *

If a scheme is given then the path, if also given, must either be + * empty or begin with a slash character ('/'). Otherwise a + * component of the new URI may be left undefined by passing null + * for the corresponding parameter or, in the case of the port + * parameter, by passing -1. + * + *

This constructor first builds a URI string from the given components + * according to the rules specified in RFC 2396, + * section 5.2, step 7:

+ * + *
    + * + *
  1. Initially, the result string is empty.

  2. + * + *
  3. If a scheme is given then it is appended to the result, + * followed by a colon character (':').

  4. + * + *
  5. If user information, a host, or a port are given then the + * string "//" is appended.

  6. + * + *
  7. If user information is given then it is appended, followed by + * a commercial-at character ('@'). Any character not in the + * unreserved, punct, escaped, or other + * categories is quoted.

  8. + * + *
  9. If a host is given then it is appended. If the host is a + * literal IPv6 address but is not enclosed in square brackets + * ('[' and ']') then the square brackets are added. + *

  10. + * + *
  11. If a port number is given then a colon character + * (':') is appended, followed by the port number in decimal. + *

  12. + * + *
  13. If a path is given then it is appended. Any character not in + * the unreserved, punct, escaped, or other + * categories, and not equal to the slash character ('/') or the + * commercial-at character ('@'), is quoted.

  14. + * + *
  15. If a query is given then a question-mark character + * ('?') is appended, followed by the query. Any character that + * is not a legal URI character is quoted. + *

  16. + * + *
  17. Finally, if a fragment is given then a hash character + * ('#') is appended, followed by the fragment. Any character + * that is not a legal URI character is quoted.

  18. + * + *
+ * + *

The resulting URI string is then parsed as if by invoking the {@link + * #URI(String)} constructor and then invoking the {@link + * #parseServerAuthority()} method upon the result; this may cause a {@link + * URISyntaxException} to be thrown.

+ * + * @param scheme Scheme name + * @param userInfo User name and authorization information + * @param host Host name + * @param port Port number + * @param path Path + * @param query Query + * @param fragment Fragment + * + * @throws URISyntaxException + * If both a scheme and a path are given but the path is relative, + * if the URI string constructed from the given components violates + * RFC 2396, or if the authority component of the string is + * present but cannot be parsed as a server-based authority + */ + public URI(String scheme, + String userInfo, String host, int port, + String path, String query, String fragment) + throws URISyntaxException + { + String s = toString(scheme, null, + null, userInfo, host, port, + path, query, fragment); + checkPath(s, scheme, path); + new Parser(s).parse(true); + } + + /** + * Constructs a hierarchical URI from the given components. + * + *

If a scheme is given then the path, if also given, must either be + * empty or begin with a slash character ('/'). Otherwise a + * component of the new URI may be left undefined by passing null + * for the corresponding parameter. + * + *

This constructor first builds a URI string from the given components + * according to the rules specified in RFC 2396, + * section 5.2, step 7:

+ * + *
    + * + *
  1. Initially, the result string is empty.

  2. + * + *
  3. If a scheme is given then it is appended to the result, + * followed by a colon character (':').

  4. + * + *
  5. If an authority is given then the string "//" is + * appended, followed by the authority. If the authority contains a + * literal IPv6 address then the address must be enclosed in square + * brackets ('[' and ']'). Any character not in the + * unreserved, punct, escaped, or other + * categories, and not equal to the commercial-at character + * ('@'), is quoted.

  6. + * + *
  7. If a path is given then it is appended. Any character not in + * the unreserved, punct, escaped, or other + * categories, and not equal to the slash character ('/') or the + * commercial-at character ('@'), is quoted.

  8. + * + *
  9. If a query is given then a question-mark character + * ('?') is appended, followed by the query. Any character that + * is not a legal URI character is quoted. + *

  10. + * + *
  11. Finally, if a fragment is given then a hash character + * ('#') is appended, followed by the fragment. Any character + * that is not a legal URI character is quoted.

  12. + * + *
+ * + *

The resulting URI string is then parsed as if by invoking the {@link + * #URI(String)} constructor and then invoking the {@link + * #parseServerAuthority()} method upon the result; this may cause a {@link + * URISyntaxException} to be thrown.

+ * + * @param scheme Scheme name + * @param authority Authority + * @param path Path + * @param query Query + * @param fragment Fragment + * + * @throws URISyntaxException + * If both a scheme and a path are given but the path is relative, + * if the URI string constructed from the given components violates + * RFC 2396, or if the authority component of the string is + * present but cannot be parsed as a server-based authority + */ + public URI(String scheme, + String authority, + String path, String query, String fragment) + throws URISyntaxException + { + String s = toString(scheme, null, + authority, null, null, -1, + path, query, fragment); + checkPath(s, scheme, path); + new Parser(s).parse(false); + } + + /** + * Constructs a hierarchical URI from the given components. + * + *

A component may be left undefined by passing null. + * + *

This convenience constructor works as if by invoking the + * seven-argument constructor as follows: + * + *

+ * new {@link #URI(String, String, String, int, String, String, String) + * URI}(scheme, null, host, -1, path, null, fragment); + *
+ * + * @param scheme Scheme name + * @param host Host name + * @param path Path + * @param fragment Fragment + * + * @throws URISyntaxException + * If the URI string constructed from the given components + * violates RFC 2396 + */ + public URI(String scheme, String host, String path, String fragment) + throws URISyntaxException + { + this(scheme, null, host, -1, path, null, fragment); + } + + /** + * Constructs a URI from the given components. + * + *

A component may be left undefined by passing null. + * + *

This constructor first builds a URI in string form using the given + * components as follows:

+ * + *
    + * + *
  1. Initially, the result string is empty.

  2. + * + *
  3. If a scheme is given then it is appended to the result, + * followed by a colon character (':').

  4. + * + *
  5. If a scheme-specific part is given then it is appended. Any + * character that is not a legal URI character + * is quoted.

  6. + * + *
  7. Finally, if a fragment is given then a hash character + * ('#') is appended to the string, followed by the fragment. + * Any character that is not a legal URI character is quoted.

  8. + * + *
+ * + *

The resulting URI string is then parsed in order to create the new + * URI instance as if by invoking the {@link #URI(String)} constructor; + * this may cause a {@link URISyntaxException} to be thrown.

+ * + * @param scheme Scheme name + * @param ssp Scheme-specific part + * @param fragment Fragment + * + * @throws URISyntaxException + * If the URI string constructed from the given components + * violates RFC 2396 + */ + public URI(String scheme, String ssp, String fragment) + throws URISyntaxException + { + new Parser(toString(scheme, ssp, + null, null, null, -1, + null, null, fragment)) + .parse(false); + } + + /** + * Creates a URI by parsing the given string. + * + *

This convenience factory method works as if by invoking the {@link + * #URI(String)} constructor; any {@link URISyntaxException} thrown by the + * constructor is caught and wrapped in a new {@link + * IllegalArgumentException} object, which is then thrown. + * + *

This method is provided for use in situations where it is known that + * the given string is a legal URI, for example for URI constants declared + * within in a program, and so it would be considered a programming error + * for the string not to parse as such. The constructors, which throw + * {@link URISyntaxException} directly, should be used situations where a + * URI is being constructed from user input or from some other source that + * may be prone to errors.

+ * + * @param str The string to be parsed into a URI + * @return The new URI + * + * @throws NullPointerException + * If str is null + * + * @throws IllegalArgumentException + * If the given string violates RFC 2396 + */ + public static URI create(String str) { + try { + return new URI(str); + } catch (URISyntaxException x) { + throw new IllegalArgumentException(x.getMessage(), x); + } + } + + + // -- Operations -- + + /** + * Attempts to parse this URI's authority component, if defined, into + * user-information, host, and port components. + * + *

If this URI's authority component has already been recognized as + * being server-based then it will already have been parsed into + * user-information, host, and port components. In this case, or if this + * URI has no authority component, this method simply returns this URI. + * + *

Otherwise this method attempts once more to parse the authority + * component into user-information, host, and port components, and throws + * an exception describing why the authority component could not be parsed + * in that way. + * + *

This method is provided because the generic URI syntax specified in + * RFC 2396 + * cannot always distinguish a malformed server-based authority from a + * legitimate registry-based authority. It must therefore treat some + * instances of the former as instances of the latter. The authority + * component in the URI string "//foo:bar", for example, is not a + * legal server-based authority but it is legal as a registry-based + * authority. + * + *

In many common situations, for example when working URIs that are + * known to be either URNs or URLs, the hierarchical URIs being used will + * always be server-based. They therefore must either be parsed as such or + * treated as an error. In these cases a statement such as + * + *

+ * URI u = new URI(str).parseServerAuthority(); + *
+ * + *

can be used to ensure that u always refers to a URI that, if + * it has an authority component, has a server-based authority with proper + * user-information, host, and port components. Invoking this method also + * ensures that if the authority could not be parsed in that way then an + * appropriate diagnostic message can be issued based upon the exception + * that is thrown.

+ * + * @return A URI whose authority field has been parsed + * as a server-based authority + * + * @throws URISyntaxException + * If the authority component of this URI is defined + * but cannot be parsed as a server-based authority + * according to RFC 2396 + */ + public URI parseServerAuthority() + throws URISyntaxException + { + // We could be clever and cache the error message and index from the + // exception thrown during the original parse, but that would require + // either more fields or a more-obscure representation. + if ((host != null) || (authority == null)) + return this; + defineString(); + new Parser(string).parse(true); + return this; + } + + /** + * Normalizes this URI's path. + * + *

If this URI is opaque, or if its path is already in normal form, + * then this URI is returned. Otherwise a new URI is constructed that is + * identical to this URI except that its path is computed by normalizing + * this URI's path in a manner consistent with RFC 2396, + * section 5.2, step 6, sub-steps c through f; that is: + *

+ * + *
    + * + *
  1. All "." segments are removed.

  2. + * + *
  3. If a ".." segment is preceded by a non-".." + * segment then both of these segments are removed. This step is + * repeated until it is no longer applicable.

  4. + * + *
  5. If the path is relative, and if its first segment contains a + * colon character (':'), then a "." segment is + * prepended. This prevents a relative URI with a path such as + * "a:b/c/d" from later being re-parsed as an opaque URI with a + * scheme of "a" and a scheme-specific part of "b/c/d". + * (Deviation from RFC 2396)

  6. + * + *
+ * + *

A normalized path will begin with one or more ".." segments + * if there were insufficient non-".." segments preceding them to + * allow their removal. A normalized path will begin with a "." + * segment if one was inserted by step 3 above. Otherwise, a normalized + * path will not contain any "." or ".." segments.

+ * + * @return A URI equivalent to this URI, + * but whose path is in normal form + */ + public URI normalize() { + return normalize(this); + } + + /** + * Resolves the given URI against this URI. + * + *

If the given URI is already absolute, or if this URI is opaque, then + * the given URI is returned. + * + *

If the given URI's fragment component is + * defined, its path component is empty, and its scheme, authority, and + * query components are undefined, then a URI with the given fragment but + * with all other components equal to those of this URI is returned. This + * allows a URI representing a standalone fragment reference, such as + * "#foo", to be usefully resolved against a base URI. + * + *

Otherwise this method constructs a new hierarchical URI in a manner + * consistent with RFC 2396, + * section 5.2; that is:

+ * + *
    + * + *
  1. A new URI is constructed with this URI's scheme and the given + * URI's query and fragment components.

  2. + * + *
  3. If the given URI has an authority component then the new URI's + * authority and path are taken from the given URI.

  4. + * + *
  5. Otherwise the new URI's authority component is copied from + * this URI, and its path is computed as follows:

    + * + *
      + * + *
    1. If the given URI's path is absolute then the new URI's path + * is taken from the given URI.

    2. + * + *
    3. Otherwise the given URI's path is relative, and so the new + * URI's path is computed by resolving the path of the given URI + * against the path of this URI. This is done by concatenating all but + * the last segment of this URI's path, if any, with the given URI's + * path and then normalizing the result as if by invoking the {@link + * #normalize() normalize} method.

    4. + * + *
  6. + * + *
+ * + *

The result of this method is absolute if, and only if, either this + * URI is absolute or the given URI is absolute.

+ * + * @param uri The URI to be resolved against this URI + * @return The resulting URI + * + * @throws NullPointerException + * If uri is null + */ + public URI resolve(URI uri) { + return resolve(this, uri); + } + + /** + * Constructs a new URI by parsing the given string and then resolving it + * against this URI. + * + *

This convenience method works as if invoking it were equivalent to + * evaluating the expression {@link #resolve(java.net.URI) + * resolve}(URI.{@link #create(String) create}(str)).

+ * + * @param str The string to be parsed into a URI + * @return The resulting URI + * + * @throws NullPointerException + * If str is null + * + * @throws IllegalArgumentException + * If the given string violates RFC 2396 + */ + public URI resolve(String str) { + return resolve(URI.create(str)); + } + + /** + * Relativizes the given URI against this URI. + * + *

The relativization of the given URI against this URI is computed as + * follows:

+ * + *
    + * + *
  1. If either this URI or the given URI are opaque, or if the + * scheme and authority components of the two URIs are not identical, or + * if the path of this URI is not a prefix of the path of the given URI, + * then the given URI is returned.

  2. + * + *
  3. Otherwise a new relative hierarchical URI is constructed with + * query and fragment components taken from the given URI and with a path + * component computed by removing this URI's path from the beginning of + * the given URI's path.

  4. + * + *
+ * + * @param uri The URI to be relativized against this URI + * @return The resulting URI + * + * @throws NullPointerException + * If uri is null + */ + public URI relativize(URI uri) { + return relativize(this, uri); + } + + /** + * Constructs a URL from this URI. + * + *

This convenience method works as if invoking it were equivalent to + * evaluating the expression new URL(this.toString()) after + * first checking that this URI is absolute.

+ * + * @return A URL constructed from this URI + * + * @throws IllegalArgumentException + * If this URL is not absolute + * + * @throws MalformedURLException + * If a protocol handler for the URL could not be found, + * or if some other error occurred while constructing the URL + */ + public URL toURL() + throws MalformedURLException { + if (!isAbsolute()) + throw new IllegalArgumentException("URI is not absolute"); + return new URL(toString()); + } + + // -- Component access methods -- + + /** + * Returns the scheme component of this URI. + * + *

The scheme component of a URI, if defined, only contains characters + * in the alphanum category and in the string "-.+". A + * scheme always starts with an alpha character.

+ * + * The scheme component of a URI cannot contain escaped octets, hence this + * method does not perform any decoding. + * + * @return The scheme component of this URI, + * or null if the scheme is undefined + */ + public String getScheme() { + return scheme; + } + + /** + * Tells whether or not this URI is absolute. + * + *

A URI is absolute if, and only if, it has a scheme component.

+ * + * @return true if, and only if, this URI is absolute + */ + public boolean isAbsolute() { + return scheme != null; + } + + /** + * Tells whether or not this URI is opaque. + * + *

A URI is opaque if, and only if, it is absolute and its + * scheme-specific part does not begin with a slash character ('/'). + * An opaque URI has a scheme, a scheme-specific part, and possibly + * a fragment; all other components are undefined.

+ * + * @return true if, and only if, this URI is opaque + */ + public boolean isOpaque() { + return path == null; + } + + /** + * Returns the raw scheme-specific part of this URI. The scheme-specific + * part is never undefined, though it may be empty. + * + *

The scheme-specific part of a URI only contains legal URI + * characters.

+ * + * @return The raw scheme-specific part of this URI + * (never null) + */ + public String getRawSchemeSpecificPart() { + defineSchemeSpecificPart(); + return schemeSpecificPart; + } + + /** + * Returns the decoded scheme-specific part of this URI. + * + *

The string returned by this method is equal to that returned by the + * {@link #getRawSchemeSpecificPart() getRawSchemeSpecificPart} method + * except that all sequences of escaped octets are decoded.

+ * + * @return The decoded scheme-specific part of this URI + * (never null) + */ + public String getSchemeSpecificPart() { + if (decodedSchemeSpecificPart == null) + decodedSchemeSpecificPart = decode(getRawSchemeSpecificPart()); + return decodedSchemeSpecificPart; + } + + /** + * Returns the raw authority component of this URI. + * + *

The authority component of a URI, if defined, only contains the + * commercial-at character ('@') and characters in the + * unreserved, punct, escaped, and other + * categories. If the authority is server-based then it is further + * constrained to have valid user-information, host, and port + * components.

+ * + * @return The raw authority component of this URI, + * or null if the authority is undefined + */ + public String getRawAuthority() { + return authority; + } + + /** + * Returns the decoded authority component of this URI. + * + *

The string returned by this method is equal to that returned by the + * {@link #getRawAuthority() getRawAuthority} method except that all + * sequences of escaped octets are decoded.

+ * + * @return The decoded authority component of this URI, + * or null if the authority is undefined + */ + public String getAuthority() { + if (decodedAuthority == null) + decodedAuthority = decode(authority); + return decodedAuthority; + } + + /** + * Returns the raw user-information component of this URI. + * + *

The user-information component of a URI, if defined, only contains + * characters in the unreserved, punct, escaped, and + * other categories.

+ * + * @return The raw user-information component of this URI, + * or null if the user information is undefined + */ + public String getRawUserInfo() { + return userInfo; + } + + /** + * Returns the decoded user-information component of this URI. + * + *

The string returned by this method is equal to that returned by the + * {@link #getRawUserInfo() getRawUserInfo} method except that all + * sequences of escaped octets are decoded.

+ * + * @return The decoded user-information component of this URI, + * or null if the user information is undefined + */ + public String getUserInfo() { + if ((decodedUserInfo == null) && (userInfo != null)) + decodedUserInfo = decode(userInfo); + return decodedUserInfo; + } + + /** + * Returns the host component of this URI. + * + *

The host component of a URI, if defined, will have one of the + * following forms:

+ * + * + * + * The host component of a URI cannot contain escaped octets, hence this + * method does not perform any decoding. + * + * @return The host component of this URI, + * or null if the host is undefined + */ + public String getHost() { + return host; + } + + /** + * Returns the port number of this URI. + * + *

The port component of a URI, if defined, is a non-negative + * integer.

+ * + * @return The port component of this URI, + * or -1 if the port is undefined + */ + public int getPort() { + return port; + } + + /** + * Returns the raw path component of this URI. + * + *

The path component of a URI, if defined, only contains the slash + * character ('/'), the commercial-at character ('@'), + * and characters in the unreserved, punct, escaped, + * and other categories.

+ * + * @return The path component of this URI, + * or null if the path is undefined + */ + public String getRawPath() { + return path; + } + + /** + * Returns the decoded path component of this URI. + * + *

The string returned by this method is equal to that returned by the + * {@link #getRawPath() getRawPath} method except that all sequences of + * escaped octets are decoded.

+ * + * @return The decoded path component of this URI, + * or null if the path is undefined + */ + public String getPath() { + if ((decodedPath == null) && (path != null)) + decodedPath = decode(path); + return decodedPath; + } + + /** + * Returns the raw query component of this URI. + * + *

The query component of a URI, if defined, only contains legal URI + * characters.

+ * + * @return The raw query component of this URI, + * or null if the query is undefined + */ + public String getRawQuery() { + return query; + } + + /** + * Returns the decoded query component of this URI. + * + *

The string returned by this method is equal to that returned by the + * {@link #getRawQuery() getRawQuery} method except that all sequences of + * escaped octets are decoded.

+ * + * @return The decoded query component of this URI, + * or null if the query is undefined + */ + public String getQuery() { + if ((decodedQuery == null) && (query != null)) + decodedQuery = decode(query); + return decodedQuery; + } + + /** + * Returns the raw fragment component of this URI. + * + *

The fragment component of a URI, if defined, only contains legal URI + * characters.

+ * + * @return The raw fragment component of this URI, + * or null if the fragment is undefined + */ + public String getRawFragment() { + return fragment; + } + + /** + * Returns the decoded fragment component of this URI. + * + *

The string returned by this method is equal to that returned by the + * {@link #getRawFragment() getRawFragment} method except that all + * sequences of escaped octets are decoded.

+ * + * @return The decoded fragment component of this URI, + * or null if the fragment is undefined + */ + public String getFragment() { + if ((decodedFragment == null) && (fragment != null)) + decodedFragment = decode(fragment); + return decodedFragment; + } + + + // -- Equality, comparison, hash code, toString, and serialization -- + + /** + * Tests this URI for equality with another object. + * + *

If the given object is not a URI then this method immediately + * returns false. + * + *

For two URIs to be considered equal requires that either both are + * opaque or both are hierarchical. Their schemes must either both be + * undefined or else be equal without regard to case. Their fragments + * must either both be undefined or else be equal. + * + *

For two opaque URIs to be considered equal, their scheme-specific + * parts must be equal. + * + *

For two hierarchical URIs to be considered equal, their paths must + * be equal and their queries must either both be undefined or else be + * equal. Their authorities must either both be undefined, or both be + * registry-based, or both be server-based. If their authorities are + * defined and are registry-based, then they must be equal. If their + * authorities are defined and are server-based, then their hosts must be + * equal without regard to case, their port numbers must be equal, and + * their user-information components must be equal. + * + *

When testing the user-information, path, query, fragment, authority, + * or scheme-specific parts of two URIs for equality, the raw forms rather + * than the encoded forms of these components are compared and the + * hexadecimal digits of escaped octets are compared without regard to + * case. + * + *

This method satisfies the general contract of the {@link + * java.lang.Object#equals(Object) Object.equals} method.

+ * + * @param ob The object to which this object is to be compared + * + * @return true if, and only if, the given object is a URI that + * is identical to this URI + */ + public boolean equals(Object ob) { + if (ob == this) + return true; + if (!(ob instanceof URI)) + return false; + URI that = (URI)ob; + if (this.isOpaque() != that.isOpaque()) return false; + if (!equalIgnoringCase(this.scheme, that.scheme)) return false; + if (!equal(this.fragment, that.fragment)) return false; + + // Opaque + if (this.isOpaque()) + return equal(this.schemeSpecificPart, that.schemeSpecificPart); + + // Hierarchical + if (!equal(this.path, that.path)) return false; + if (!equal(this.query, that.query)) return false; + + // Authorities + if (this.authority == that.authority) return true; + if (this.host != null) { + // Server-based + if (!equal(this.userInfo, that.userInfo)) return false; + if (!equalIgnoringCase(this.host, that.host)) return false; + if (this.port != that.port) return false; + } else if (this.authority != null) { + // Registry-based + if (!equal(this.authority, that.authority)) return false; + } else if (this.authority != that.authority) { + return false; + } + + return true; + } + + /** + * Returns a hash-code value for this URI. The hash code is based upon all + * of the URI's components, and satisfies the general contract of the + * {@link java.lang.Object#hashCode() Object.hashCode} method. + * + * @return A hash-code value for this URI + */ + public int hashCode() { + if (hash != 0) + return hash; + int h = hashIgnoringCase(0, scheme); + h = hash(h, fragment); + if (isOpaque()) { + h = hash(h, schemeSpecificPart); + } else { + h = hash(h, path); + h = hash(h, query); + if (host != null) { + h = hash(h, userInfo); + h = hashIgnoringCase(h, host); + h += 1949 * port; + } else { + h = hash(h, authority); + } + } + hash = h; + return h; + } + + /** + * Compares this URI to another object, which must be a URI. + * + *

When comparing corresponding components of two URIs, if one + * component is undefined but the other is defined then the first is + * considered to be less than the second. Unless otherwise noted, string + * components are ordered according to their natural, case-sensitive + * ordering as defined by the {@link java.lang.String#compareTo(Object) + * String.compareTo} method. String components that are subject to + * encoding are compared by comparing their raw forms rather than their + * encoded forms. + * + *

The ordering of URIs is defined as follows:

+ * + * + * + *

This method satisfies the general contract of the {@link + * java.lang.Comparable#compareTo(Object) Comparable.compareTo} + * method.

+ * + * @param that + * The object to which this URI is to be compared + * + * @return A negative integer, zero, or a positive integer as this URI is + * less than, equal to, or greater than the given URI + * + * @throws ClassCastException + * If the given object is not a URI + */ + public int compareTo(URI that) { + int c; + + if ((c = compareIgnoringCase(this.scheme, that.scheme)) != 0) + return c; + + if (this.isOpaque()) { + if (that.isOpaque()) { + // Both opaque + if ((c = compare(this.schemeSpecificPart, + that.schemeSpecificPart)) != 0) + return c; + return compare(this.fragment, that.fragment); + } + return +1; // Opaque > hierarchical + } else if (that.isOpaque()) { + return -1; // Hierarchical < opaque + } + + // Hierarchical + if ((this.host != null) && (that.host != null)) { + // Both server-based + if ((c = compare(this.userInfo, that.userInfo)) != 0) + return c; + if ((c = compareIgnoringCase(this.host, that.host)) != 0) + return c; + if ((c = this.port - that.port) != 0) + return c; + } else { + // If one or both authorities are registry-based then we simply + // compare them in the usual, case-sensitive way. If one is + // registry-based and one is server-based then the strings are + // guaranteed to be unequal, hence the comparison will never return + // zero and the compareTo and equals methods will remain + // consistent. + if ((c = compare(this.authority, that.authority)) != 0) return c; + } + + if ((c = compare(this.path, that.path)) != 0) return c; + if ((c = compare(this.query, that.query)) != 0) return c; + return compare(this.fragment, that.fragment); + } + + /** + * Returns the content of this URI as a string. + * + *

If this URI was created by invoking one of the constructors in this + * class then a string equivalent to the original input string, or to the + * string computed from the originally-given components, as appropriate, is + * returned. Otherwise this URI was created by normalization, resolution, + * or relativization, and so a string is constructed from this URI's + * components according to the rules specified in RFC 2396, + * section 5.2, step 7.

+ * + * @return The string form of this URI + */ + public String toString() { + defineString(); + return string; + } + + /** + * Returns the content of this URI as a US-ASCII string. + * + *

If this URI does not contain any characters in the other + * category then an invocation of this method will return the same value as + * an invocation of the {@link #toString() toString} method. Otherwise + * this method works as if by invoking that method and then encoding the result.

+ * + * @return The string form of this URI, encoded as needed + * so that it only contains characters in the US-ASCII + * charset + */ + public String toASCIIString() { + defineString(); + return encode(string); + } + + + // -- Serialization support -- + + /** + * Saves the content of this URI to the given serial stream. + * + *

The only serializable field of a URI instance is its string + * field. That field is given a value, if it does not have one already, + * and then the {@link java.io.ObjectOutputStream#defaultWriteObject()} + * method of the given object-output stream is invoked.

+ * + * @param os The object-output stream to which this object + * is to be written + */ + private void writeObject(ObjectOutputStream os) + throws IOException + { + defineString(); + os.defaultWriteObject(); // Writes the string field only + } + + /** + * Reconstitutes a URI from the given serial stream. + * + *

The {@link java.io.ObjectInputStream#defaultReadObject()} method is + * invoked to read the value of the string field. The result is + * then parsed in the usual way. + * + * @param is The object-input stream from which this object + * is being read + */ + private void readObject(ObjectInputStream is) + throws ClassNotFoundException, IOException + { + port = -1; // Argh + is.defaultReadObject(); + try { + new Parser(string).parse(false); + } catch (URISyntaxException x) { + IOException y = new InvalidObjectException("Invalid URI"); + y.initCause(x); + throw y; + } + } + + + // -- End of public methods -- + + + // -- Utility methods for string-field comparison and hashing -- + + // These methods return appropriate values for null string arguments, + // thereby simplifying the equals, hashCode, and compareTo methods. + // + // The case-ignoring methods should only be applied to strings whose + // characters are all known to be US-ASCII. Because of this restriction, + // these methods are faster than the similar methods in the String class. + + // US-ASCII only + private static int toLower(char c) { + if ((c >= 'A') && (c <= 'Z')) + return c + ('a' - 'A'); + return c; + } + + private static boolean equal(String s, String t) { + if (s == t) return true; + if ((s != null) && (t != null)) { + if (s.length() != t.length()) + return false; + if (s.indexOf('%') < 0) + return s.equals(t); + int n = s.length(); + for (int i = 0; i < n;) { + char c = s.charAt(i); + char d = t.charAt(i); + if (c != '%') { + if (c != d) + return false; + i++; + continue; + } + i++; + if (toLower(s.charAt(i)) != toLower(t.charAt(i))) + return false; + i++; + if (toLower(s.charAt(i)) != toLower(t.charAt(i))) + return false; + i++; + } + return true; + } + return false; + } + + // US-ASCII only + private static boolean equalIgnoringCase(String s, String t) { + if (s == t) return true; + if ((s != null) && (t != null)) { + int n = s.length(); + if (t.length() != n) + return false; + for (int i = 0; i < n; i++) { + if (toLower(s.charAt(i)) != toLower(t.charAt(i))) + return false; + } + return true; + } + return false; + } + + private static int hash(int hash, String s) { + if (s == null) return hash; + return hash * 127 + s.hashCode(); + } + + // US-ASCII only + private static int hashIgnoringCase(int hash, String s) { + if (s == null) return hash; + int h = hash; + int n = s.length(); + for (int i = 0; i < n; i++) + h = 31 * h + toLower(s.charAt(i)); + return h; + } + + private static int compare(String s, String t) { + if (s == t) return 0; + if (s != null) { + if (t != null) + return s.compareTo(t); + else + return +1; + } else { + return -1; + } + } + + // US-ASCII only + private static int compareIgnoringCase(String s, String t) { + if (s == t) return 0; + if (s != null) { + if (t != null) { + int sn = s.length(); + int tn = t.length(); + int n = sn < tn ? sn : tn; + for (int i = 0; i < n; i++) { + int c = toLower(s.charAt(i)) - toLower(t.charAt(i)); + if (c != 0) + return c; + } + return sn - tn; + } + return +1; + } else { + return -1; + } + } + + + // -- String construction -- + + // If a scheme is given then the path, if given, must be absolute + // + private static void checkPath(String s, String scheme, String path) + throws URISyntaxException + { + if (scheme != null) { + if ((path != null) + && ((path.length() > 0) && (path.charAt(0) != '/'))) + throw new URISyntaxException(s, + "Relative path in absolute URI"); + } + } + + private void appendAuthority(StringBuffer sb, + String authority, + String userInfo, + String host, + int port) + { + if (host != null) { + sb.append("//"); + if (userInfo != null) { + sb.append(quote(userInfo, L_USERINFO, H_USERINFO)); + sb.append('@'); + } + boolean needBrackets = ((host.indexOf(':') >= 0) + && !host.startsWith("[") + && !host.endsWith("]")); + if (needBrackets) sb.append('['); + sb.append(host); + if (needBrackets) sb.append(']'); + if (port != -1) { + sb.append(':'); + sb.append(port); + } + } else if (authority != null) { + sb.append("//"); + if (authority.startsWith("[")) { + // authority should (but may not) contain an embedded IPv6 address + int end = authority.indexOf("]"); + String doquote = authority, dontquote = ""; + if (end != -1 && authority.indexOf(":") != -1) { + // the authority contains an IPv6 address + if (end == authority.length()) { + dontquote = authority; + doquote = ""; + } else { + dontquote = authority.substring(0 , end + 1); + doquote = authority.substring(end + 1); + } + } + sb.append(dontquote); + sb.append(quote(doquote, + L_REG_NAME | L_SERVER, + H_REG_NAME | H_SERVER)); + } else { + sb.append(quote(authority, + L_REG_NAME | L_SERVER, + H_REG_NAME | H_SERVER)); + } + } + } + + private void appendSchemeSpecificPart(StringBuffer sb, + String opaquePart, + String authority, + String userInfo, + String host, + int port, + String path, + String query) + { + if (opaquePart != null) { + /* check if SSP begins with an IPv6 address + * because we must not quote a literal IPv6 address + */ + if (opaquePart.startsWith("//[")) { + int end = opaquePart.indexOf("]"); + if (end != -1 && opaquePart.indexOf(":")!=-1) { + String doquote, dontquote; + if (end == opaquePart.length()) { + dontquote = opaquePart; + doquote = ""; + } else { + dontquote = opaquePart.substring(0,end+1); + doquote = opaquePart.substring(end+1); + } + sb.append (dontquote); + sb.append(quote(doquote, L_URIC, H_URIC)); + } + } else { + sb.append(quote(opaquePart, L_URIC, H_URIC)); + } + } else { + appendAuthority(sb, authority, userInfo, host, port); + if (path != null) + sb.append(quote(path, L_PATH, H_PATH)); + if (query != null) { + sb.append('?'); + sb.append(quote(query, L_URIC, H_URIC)); + } + } + } + + private void appendFragment(StringBuffer sb, String fragment) { + if (fragment != null) { + sb.append('#'); + sb.append(quote(fragment, L_URIC, H_URIC)); + } + } + + private String toString(String scheme, + String opaquePart, + String authority, + String userInfo, + String host, + int port, + String path, + String query, + String fragment) + { + StringBuffer sb = new StringBuffer(); + if (scheme != null) { + sb.append(scheme); + sb.append(':'); + } + appendSchemeSpecificPart(sb, opaquePart, + authority, userInfo, host, port, + path, query); + appendFragment(sb, fragment); + return sb.toString(); + } + + private void defineSchemeSpecificPart() { + if (schemeSpecificPart != null) return; + StringBuffer sb = new StringBuffer(); + appendSchemeSpecificPart(sb, null, getAuthority(), getUserInfo(), + host, port, getPath(), getQuery()); + if (sb.length() == 0) return; + schemeSpecificPart = sb.toString(); + } + + private void defineString() { + if (string != null) return; + + StringBuffer sb = new StringBuffer(); + if (scheme != null) { + sb.append(scheme); + sb.append(':'); + } + if (isOpaque()) { + sb.append(schemeSpecificPart); + } else { + if (host != null) { + sb.append("//"); + if (userInfo != null) { + sb.append(userInfo); + sb.append('@'); + } + boolean needBrackets = ((host.indexOf(':') >= 0) + && !host.startsWith("[") + && !host.endsWith("]")); + if (needBrackets) sb.append('['); + sb.append(host); + if (needBrackets) sb.append(']'); + if (port != -1) { + sb.append(':'); + sb.append(port); + } + } else if (authority != null) { + sb.append("//"); + sb.append(authority); + } + if (path != null) + sb.append(path); + if (query != null) { + sb.append('?'); + sb.append(query); + } + } + if (fragment != null) { + sb.append('#'); + sb.append(fragment); + } + string = sb.toString(); + } + + + // -- Normalization, resolution, and relativization -- + + // RFC2396 5.2 (6) + private static String resolvePath(String base, String child, + boolean absolute) + { + int i = base.lastIndexOf('/'); + int cn = child.length(); + String path = ""; + + if (cn == 0) { + // 5.2 (6a) + if (i >= 0) + path = base.substring(0, i + 1); + } else { + StringBuffer sb = new StringBuffer(base.length() + cn); + // 5.2 (6a) + if (i >= 0) + sb.append(base.substring(0, i + 1)); + // 5.2 (6b) + sb.append(child); + path = sb.toString(); + } + + // 5.2 (6c-f) + String np = normalize(path); + + // 5.2 (6g): If the result is absolute but the path begins with "../", + // then we simply leave the path as-is + + return np; + } + + // RFC2396 5.2 + private static URI resolve(URI base, URI child) { + // check if child if opaque first so that NPE is thrown + // if child is null. + if (child.isOpaque() || base.isOpaque()) + return child; + + // 5.2 (2): Reference to current document (lone fragment) + if ((child.scheme == null) && (child.authority == null) + && child.path.equals("") && (child.fragment != null) + && (child.query == null)) { + if ((base.fragment != null) + && child.fragment.equals(base.fragment)) { + return base; + } + URI ru = new URI(); + ru.scheme = base.scheme; + ru.authority = base.authority; + ru.userInfo = base.userInfo; + ru.host = base.host; + ru.port = base.port; + ru.path = base.path; + ru.fragment = child.fragment; + ru.query = base.query; + return ru; + } + + // 5.2 (3): Child is absolute + if (child.scheme != null) + return child; + + URI ru = new URI(); // Resolved URI + ru.scheme = base.scheme; + ru.query = child.query; + ru.fragment = child.fragment; + + // 5.2 (4): Authority + if (child.authority == null) { + ru.authority = base.authority; + ru.host = base.host; + ru.userInfo = base.userInfo; + ru.port = base.port; + + String cp = (child.path == null) ? "" : child.path; + if ((cp.length() > 0) && (cp.charAt(0) == '/')) { + // 5.2 (5): Child path is absolute + ru.path = child.path; + } else { + // 5.2 (6): Resolve relative path + ru.path = resolvePath(base.path, cp, base.isAbsolute()); + } + } else { + ru.authority = child.authority; + ru.host = child.host; + ru.userInfo = child.userInfo; + ru.host = child.host; + ru.port = child.port; + ru.path = child.path; + } + + // 5.2 (7): Recombine (nothing to do here) + return ru; + } + + // If the given URI's path is normal then return the URI; + // o.w., return a new URI containing the normalized path. + // + private static URI normalize(URI u) { + if (u.isOpaque() || (u.path == null) || (u.path.length() == 0)) + return u; + + String np = normalize(u.path); + if (np == u.path) + return u; + + URI v = new URI(); + v.scheme = u.scheme; + v.fragment = u.fragment; + v.authority = u.authority; + v.userInfo = u.userInfo; + v.host = u.host; + v.port = u.port; + v.path = np; + v.query = u.query; + return v; + } + + // If both URIs are hierarchical, their scheme and authority components are + // identical, and the base path is a prefix of the child's path, then + // return a relative URI that, when resolved against the base, yields the + // child; otherwise, return the child. + // + private static URI relativize(URI base, URI child) { + // check if child if opaque first so that NPE is thrown + // if child is null. + if (child.isOpaque() || base.isOpaque()) + return child; + if (!equalIgnoringCase(base.scheme, child.scheme) + || !equal(base.authority, child.authority)) + return child; + + String bp = normalize(base.path); + String cp = normalize(child.path); + if (!bp.equals(cp)) { + if (!bp.endsWith("/")) + bp = bp + "/"; + if (!cp.startsWith(bp)) + return child; + } + + URI v = new URI(); + v.path = cp.substring(bp.length()); + v.query = child.query; + v.fragment = child.fragment; + return v; + } + + + + // -- Path normalization -- + + // The following algorithm for path normalization avoids the creation of a + // string object for each segment, as well as the use of a string buffer to + // compute the final result, by using a single char array and editing it in + // place. The array is first split into segments, replacing each slash + // with '\0' and creating a segment-index array, each element of which is + // the index of the first char in the corresponding segment. We then walk + // through both arrays, removing ".", "..", and other segments as necessary + // by setting their entries in the index array to -1. Finally, the two + // arrays are used to rejoin the segments and compute the final result. + // + // This code is based upon src/solaris/native/java/io/canonicalize_md.c + + + // Check the given path to see if it might need normalization. A path + // might need normalization if it contains duplicate slashes, a "." + // segment, or a ".." segment. Return -1 if no further normalization is + // possible, otherwise return the number of segments found. + // + // This method takes a string argument rather than a char array so that + // this test can be performed without invoking path.toCharArray(). + // + static private int needsNormalization(String path) { + boolean normal = true; + int ns = 0; // Number of segments + int end = path.length() - 1; // Index of last char in path + int p = 0; // Index of next char in path + + // Skip initial slashes + while (p <= end) { + if (path.charAt(p) != '/') break; + p++; + } + if (p > 1) normal = false; + + // Scan segments + while (p <= end) { + + // Looking at "." or ".." ? + if ((path.charAt(p) == '.') + && ((p == end) + || ((path.charAt(p + 1) == '/') + || ((path.charAt(p + 1) == '.') + && ((p + 1 == end) + || (path.charAt(p + 2) == '/')))))) { + normal = false; + } + ns++; + + // Find beginning of next segment + while (p <= end) { + if (path.charAt(p++) != '/') + continue; + + // Skip redundant slashes + while (p <= end) { + if (path.charAt(p) != '/') break; + normal = false; + p++; + } + + break; + } + } + + return normal ? -1 : ns; + } + + + // Split the given path into segments, replacing slashes with nulls and + // filling in the given segment-index array. + // + // Preconditions: + // segs.length == Number of segments in path + // + // Postconditions: + // All slashes in path replaced by '\0' + // segs[i] == Index of first char in segment i (0 <= i < segs.length) + // + static private void split(char[] path, int[] segs) { + int end = path.length - 1; // Index of last char in path + int p = 0; // Index of next char in path + int i = 0; // Index of current segment + + // Skip initial slashes + while (p <= end) { + if (path[p] != '/') break; + path[p] = '\0'; + p++; + } + + while (p <= end) { + + // Note start of segment + segs[i++] = p++; + + // Find beginning of next segment + while (p <= end) { + if (path[p++] != '/') + continue; + path[p - 1] = '\0'; + + // Skip redundant slashes + while (p <= end) { + if (path[p] != '/') break; + path[p++] = '\0'; + } + break; + } + } + + if (i != segs.length) + throw new InternalError(); // ASSERT + } + + + // Join the segments in the given path according to the given segment-index + // array, ignoring those segments whose index entries have been set to -1, + // and inserting slashes as needed. Return the length of the resulting + // path. + // + // Preconditions: + // segs[i] == -1 implies segment i is to be ignored + // path computed by split, as above, with '\0' having replaced '/' + // + // Postconditions: + // path[0] .. path[return value] == Resulting path + // + static private int join(char[] path, int[] segs) { + int ns = segs.length; // Number of segments + int end = path.length - 1; // Index of last char in path + int p = 0; // Index of next path char to write + + if (path[p] == '\0') { + // Restore initial slash for absolute paths + path[p++] = '/'; + } + + for (int i = 0; i < ns; i++) { + int q = segs[i]; // Current segment + if (q == -1) + // Ignore this segment + continue; + + if (p == q) { + // We're already at this segment, so just skip to its end + while ((p <= end) && (path[p] != '\0')) + p++; + if (p <= end) { + // Preserve trailing slash + path[p++] = '/'; + } + } else if (p < q) { + // Copy q down to p + while ((q <= end) && (path[q] != '\0')) + path[p++] = path[q++]; + if (q <= end) { + // Preserve trailing slash + path[p++] = '/'; + } + } else + throw new InternalError(); // ASSERT false + } + + return p; + } + + + // Remove "." segments from the given path, and remove segment pairs + // consisting of a non-".." segment followed by a ".." segment. + // + private static void removeDots(char[] path, int[] segs) { + int ns = segs.length; + int end = path.length - 1; + + for (int i = 0; i < ns; i++) { + int dots = 0; // Number of dots found (0, 1, or 2) + + // Find next occurrence of "." or ".." + do { + int p = segs[i]; + if (path[p] == '.') { + if (p == end) { + dots = 1; + break; + } else if (path[p + 1] == '\0') { + dots = 1; + break; + } else if ((path[p + 1] == '.') + && ((p + 1 == end) + || (path[p + 2] == '\0'))) { + dots = 2; + break; + } + } + i++; + } while (i < ns); + if ((i > ns) || (dots == 0)) + break; + + if (dots == 1) { + // Remove this occurrence of "." + segs[i] = -1; + } else { + // If there is a preceding non-".." segment, remove both that + // segment and this occurrence of ".."; otherwise, leave this + // ".." segment as-is. + int j; + for (j = i - 1; j >= 0; j--) { + if (segs[j] != -1) break; + } + if (j >= 0) { + int q = segs[j]; + if (!((path[q] == '.') + && (path[q + 1] == '.') + && (path[q + 2] == '\0'))) { + segs[i] = -1; + segs[j] = -1; + } + } + } + } + } + + + // DEVIATION: If the normalized path is relative, and if the first + // segment could be parsed as a scheme name, then prepend a "." segment + // + private static void maybeAddLeadingDot(char[] path, int[] segs) { + + if (path[0] == '\0') + // The path is absolute + return; + + int ns = segs.length; + int f = 0; // Index of first segment + while (f < ns) { + if (segs[f] >= 0) + break; + f++; + } + if ((f >= ns) || (f == 0)) + // The path is empty, or else the original first segment survived, + // in which case we already know that no leading "." is needed + return; + + int p = segs[f]; + while ((p < path.length) && (path[p] != ':') && (path[p] != '\0')) p++; + if (p >= path.length || path[p] == '\0') + // No colon in first segment, so no "." needed + return; + + // At this point we know that the first segment is unused, + // hence we can insert a "." segment at that position + path[0] = '.'; + path[1] = '\0'; + segs[0] = 0; + } + + + // Normalize the given path string. A normal path string has no empty + // segments (i.e., occurrences of "//"), no segments equal to ".", and no + // segments equal to ".." that are preceded by a segment not equal to "..". + // In contrast to Unix-style pathname normalization, for URI paths we + // always retain trailing slashes. + // + private static String normalize(String ps) { + + // Does this path need normalization? + int ns = needsNormalization(ps); // Number of segments + if (ns < 0) + // Nope -- just return it + return ps; + + char[] path = ps.toCharArray(); // Path in char-array form + + // Split path into segments + int[] segs = new int[ns]; // Segment-index array + split(path, segs); + + // Remove dots + removeDots(path, segs); + + // Prevent scheme-name confusion + maybeAddLeadingDot(path, segs); + + // Join the remaining segments and return the result + String s = new String(path, 0, join(path, segs)); + if (s.equals(ps)) { + // string was already normalized + return ps; + } + return s; + } + + + + // -- Character classes for parsing -- + + // RFC2396 precisely specifies which characters in the US-ASCII charset are + // permissible in the various components of a URI reference. We here + // define a set of mask pairs to aid in enforcing these restrictions. Each + // mask pair consists of two longs, a low mask and a high mask. Taken + // together they represent a 128-bit mask, where bit i is set iff the + // character with value i is permitted. + // + // This approach is more efficient than sequentially searching arrays of + // permitted characters. It could be made still more efficient by + // precompiling the mask information so that a character's presence in a + // given mask could be determined by a single table lookup. + + // Compute the low-order mask for the characters in the given string + private static long lowMask(String chars) { + int n = chars.length(); + long m = 0; + for (int i = 0; i < n; i++) { + char c = chars.charAt(i); + if (c < 64) + m |= (1L << c); + } + return m; + } + + // Compute the high-order mask for the characters in the given string + private static long highMask(String chars) { + int n = chars.length(); + long m = 0; + for (int i = 0; i < n; i++) { + char c = chars.charAt(i); + if ((c >= 64) && (c < 128)) + m |= (1L << (c - 64)); + } + return m; + } + + // Compute a low-order mask for the characters + // between first and last, inclusive + private static long lowMask(char first, char last) { + long m = 0; + int f = Math.max(Math.min(first, 63), 0); + int l = Math.max(Math.min(last, 63), 0); + for (int i = f; i <= l; i++) + m |= 1L << i; + return m; + } + + // Compute a high-order mask for the characters + // between first and last, inclusive + private static long highMask(char first, char last) { + long m = 0; + int f = Math.max(Math.min(first, 127), 64) - 64; + int l = Math.max(Math.min(last, 127), 64) - 64; + for (int i = f; i <= l; i++) + m |= 1L << i; + return m; + } + + // Tell whether the given character is permitted by the given mask pair + private static boolean match(char c, long lowMask, long highMask) { + if (c == 0) // 0 doesn't have a slot in the mask. So, it never matches. + return false; + if (c < 64) + return ((1L << c) & lowMask) != 0; + if (c < 128) + return ((1L << (c - 64)) & highMask) != 0; + return false; + } + + // Character-class masks, in reverse order from RFC2396 because + // initializers for static fields cannot make forward references. + + // digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | + // "8" | "9" + private static final long L_DIGIT = lowMask('0', '9'); + private static final long H_DIGIT = 0L; + + // upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | + // "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | + // "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" + private static final long L_UPALPHA = 0L; + private static final long H_UPALPHA = highMask('A', 'Z'); + + // lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | + // "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | + // "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" + private static final long L_LOWALPHA = 0L; + private static final long H_LOWALPHA = highMask('a', 'z'); + + // alpha = lowalpha | upalpha + private static final long L_ALPHA = L_LOWALPHA | L_UPALPHA; + private static final long H_ALPHA = H_LOWALPHA | H_UPALPHA; + + // alphanum = alpha | digit + private static final long L_ALPHANUM = L_DIGIT | L_ALPHA; + private static final long H_ALPHANUM = H_DIGIT | H_ALPHA; + + // hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | + // "a" | "b" | "c" | "d" | "e" | "f" + private static final long L_HEX = L_DIGIT; + private static final long H_HEX = highMask('A', 'F') | highMask('a', 'f'); + + // mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | + // "(" | ")" + private static final long L_MARK = lowMask("-_.!~*'()"); + private static final long H_MARK = highMask("-_.!~*'()"); + + // unreserved = alphanum | mark + private static final long L_UNRESERVED = L_ALPHANUM | L_MARK; + private static final long H_UNRESERVED = H_ALPHANUM | H_MARK; + + // reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | + // "$" | "," | "[" | "]" + // Added per RFC2732: "[", "]" + private static final long L_RESERVED = lowMask(";/?:@&=+$,[]"); + private static final long H_RESERVED = highMask(";/?:@&=+$,[]"); + + // The zero'th bit is used to indicate that escape pairs and non-US-ASCII + // characters are allowed; this is handled by the scanEscape method below. + private static final long L_ESCAPED = 1L; + private static final long H_ESCAPED = 0L; + + // uric = reserved | unreserved | escaped + private static final long L_URIC = L_RESERVED | L_UNRESERVED | L_ESCAPED; + private static final long H_URIC = H_RESERVED | H_UNRESERVED | H_ESCAPED; + + // pchar = unreserved | escaped | + // ":" | "@" | "&" | "=" | "+" | "$" | "," + private static final long L_PCHAR + = L_UNRESERVED | L_ESCAPED | lowMask(":@&=+$,"); + private static final long H_PCHAR + = H_UNRESERVED | H_ESCAPED | highMask(":@&=+$,"); + + // All valid path characters + private static final long L_PATH = L_PCHAR | lowMask(";/"); + private static final long H_PATH = H_PCHAR | highMask(";/"); + + // Dash, for use in domainlabel and toplabel + private static final long L_DASH = lowMask("-"); + private static final long H_DASH = highMask("-"); + + // Dot, for use in hostnames + private static final long L_DOT = lowMask("."); + private static final long H_DOT = highMask("."); + + // userinfo = *( unreserved | escaped | + // ";" | ":" | "&" | "=" | "+" | "$" | "," ) + private static final long L_USERINFO + = L_UNRESERVED | L_ESCAPED | lowMask(";:&=+$,"); + private static final long H_USERINFO + = H_UNRESERVED | H_ESCAPED | highMask(";:&=+$,"); + + // reg_name = 1*( unreserved | escaped | "$" | "," | + // ";" | ":" | "@" | "&" | "=" | "+" ) + private static final long L_REG_NAME + = L_UNRESERVED | L_ESCAPED | lowMask("$,;:@&=+"); + private static final long H_REG_NAME + = H_UNRESERVED | H_ESCAPED | highMask("$,;:@&=+"); + + // All valid characters for server-based authorities + private static final long L_SERVER + = L_USERINFO | L_ALPHANUM | L_DASH | lowMask(".:@[]"); + private static final long H_SERVER + = H_USERINFO | H_ALPHANUM | H_DASH | highMask(".:@[]"); + + // Special case of server authority that represents an IPv6 address + // In this case, a % does not signify an escape sequence + private static final long L_SERVER_PERCENT + = L_SERVER | lowMask("%"); + private static final long H_SERVER_PERCENT + = H_SERVER | highMask("%"); + private static final long L_LEFT_BRACKET = lowMask("["); + private static final long H_LEFT_BRACKET = highMask("["); + + // scheme = alpha *( alpha | digit | "+" | "-" | "." ) + private static final long L_SCHEME = L_ALPHA | L_DIGIT | lowMask("+-."); + private static final long H_SCHEME = H_ALPHA | H_DIGIT | highMask("+-."); + + // uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" | + // "&" | "=" | "+" | "$" | "," + private static final long L_URIC_NO_SLASH + = L_UNRESERVED | L_ESCAPED | lowMask(";?:@&=+$,"); + private static final long H_URIC_NO_SLASH + = H_UNRESERVED | H_ESCAPED | highMask(";?:@&=+$,"); + + + // -- Escaping and encoding -- + + private final static char[] hexDigits = { + '0', '1', '2', '3', '4', '5', '6', '7', + '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' + }; + + private static void appendEscape(StringBuffer sb, byte b) { + sb.append('%'); + sb.append(hexDigits[(b >> 4) & 0x0f]); + sb.append(hexDigits[(b >> 0) & 0x0f]); + } + + private static void appendEncoded(StringBuffer sb, char c) { + ByteBuffer bb = null; + try { + bb = ThreadLocalCoders.encoderFor("UTF-8") + .encode(CharBuffer.wrap("" + c)); + } catch (CharacterCodingException x) { + assert false; + } + while (bb.hasRemaining()) { + int b = bb.get() & 0xff; + if (b >= 0x80) + appendEscape(sb, (byte)b); + else + sb.append((char)b); + } + } + + // Quote any characters in s that are not permitted + // by the given mask pair + // + private static String quote(String s, long lowMask, long highMask) { + int n = s.length(); + StringBuffer sb = null; + boolean allowNonASCII = ((lowMask & L_ESCAPED) != 0); + for (int i = 0; i < s.length(); i++) { + char c = s.charAt(i); + if (c < '\u0080') { + if (!match(c, lowMask, highMask)) { + if (sb == null) { + sb = new StringBuffer(); + sb.append(s.substring(0, i)); + } + appendEscape(sb, (byte)c); + } else { + if (sb != null) + sb.append(c); + } + } else if (allowNonASCII + && (Character.isSpaceChar(c) + || Character.isISOControl(c))) { + if (sb == null) { + sb = new StringBuffer(); + sb.append(s.substring(0, i)); + } + appendEncoded(sb, c); + } else { + if (sb != null) + sb.append(c); + } + } + return (sb == null) ? s : sb.toString(); + } + + // Encodes all characters >= \u0080 into escaped, normalized UTF-8 octets, + // assuming that s is otherwise legal + // + private static String encode(String s) { + int n = s.length(); + if (n == 0) + return s; + + // First check whether we actually need to encode + for (int i = 0;;) { + if (s.charAt(i) >= '\u0080') + break; + if (++i >= n) + return s; + } + + String ns = Normalizer.normalize(s, Normalizer.Form.NFC); + ByteBuffer bb = null; + try { + bb = ThreadLocalCoders.encoderFor("UTF-8") + .encode(CharBuffer.wrap(ns)); + } catch (CharacterCodingException x) { + assert false; + } + + StringBuffer sb = new StringBuffer(); + while (bb.hasRemaining()) { + int b = bb.get() & 0xff; + if (b >= 0x80) + appendEscape(sb, (byte)b); + else + sb.append((char)b); + } + return sb.toString(); + } + + private static int decode(char c) { + if ((c >= '0') && (c <= '9')) + return c - '0'; + if ((c >= 'a') && (c <= 'f')) + return c - 'a' + 10; + if ((c >= 'A') && (c <= 'F')) + return c - 'A' + 10; + assert false; + return -1; + } + + private static byte decode(char c1, char c2) { + return (byte)( ((decode(c1) & 0xf) << 4) + | ((decode(c2) & 0xf) << 0)); + } + + // Evaluates all escapes in s, applying UTF-8 decoding if needed. Assumes + // that escapes are well-formed syntactically, i.e., of the form %XX. If a + // sequence of escaped octets is not valid UTF-8 then the erroneous octets + // are replaced with '\uFFFD'. + // Exception: any "%" found between "[]" is left alone. It is an IPv6 literal + // with a scope_id + // + private static String decode(String s) { + if (s == null) + return s; + int n = s.length(); + if (n == 0) + return s; + if (s.indexOf('%') < 0) + return s; + + StringBuffer sb = new StringBuffer(n); + ByteBuffer bb = ByteBuffer.allocate(n); + CharBuffer cb = CharBuffer.allocate(n); + CharsetDecoder dec = ThreadLocalCoders.decoderFor("UTF-8") + .onMalformedInput(CodingErrorAction.REPLACE) + .onUnmappableCharacter(CodingErrorAction.REPLACE); + + // This is not horribly efficient, but it will do for now + char c = s.charAt(0); + boolean betweenBrackets = false; + + for (int i = 0; i < n;) { + assert c == s.charAt(i); // Loop invariant + if (c == '[') { + betweenBrackets = true; + } else if (betweenBrackets && c == ']') { + betweenBrackets = false; + } + if (c != '%' || betweenBrackets) { + sb.append(c); + if (++i >= n) + break; + c = s.charAt(i); + continue; + } + bb.clear(); + int ui = i; + for (;;) { + assert (n - i >= 2); + bb.put(decode(s.charAt(++i), s.charAt(++i))); + if (++i >= n) + break; + c = s.charAt(i); + if (c != '%') + break; + } + bb.flip(); + cb.clear(); + dec.reset(); + CoderResult cr = dec.decode(bb, cb, true); + assert cr.isUnderflow(); + cr = dec.flush(cb); + assert cr.isUnderflow(); + sb.append(cb.flip().toString()); + } + + return sb.toString(); + } + + + // -- Parsing -- + + // For convenience we wrap the input URI string in a new instance of the + // following internal class. This saves always having to pass the input + // string as an argument to each internal scan/parse method. + + private class Parser { + + private String input; // URI input string + private boolean requireServerAuthority = false; + + Parser(String s) { + input = s; + string = s; + } + + // -- Methods for throwing URISyntaxException in various ways -- + + private void fail(String reason) throws URISyntaxException { + throw new URISyntaxException(input, reason); + } + + private void fail(String reason, int p) throws URISyntaxException { + throw new URISyntaxException(input, reason, p); + } + + private void failExpecting(String expected, int p) + throws URISyntaxException + { + fail("Expected " + expected, p); + } + + private void failExpecting(String expected, String prior, int p) + throws URISyntaxException + { + fail("Expected " + expected + " following " + prior, p); + } + + + // -- Simple access to the input string -- + + // Return a substring of the input string + // + private String substring(int start, int end) { + return input.substring(start, end); + } + + // Return the char at position p, + // assuming that p < input.length() + // + private char charAt(int p) { + return input.charAt(p); + } + + // Tells whether start < end and, if so, whether charAt(start) == c + // + private boolean at(int start, int end, char c) { + return (start < end) && (charAt(start) == c); + } + + // Tells whether start + s.length() < end and, if so, + // whether the chars at the start position match s exactly + // + private boolean at(int start, int end, String s) { + int p = start; + int sn = s.length(); + if (sn > end - p) + return false; + int i = 0; + while (i < sn) { + if (charAt(p++) != s.charAt(i)) { + break; + } + i++; + } + return (i == sn); + } + + + // -- Scanning -- + + // The various scan and parse methods that follow use a uniform + // convention of taking the current start position and end index as + // their first two arguments. The start is inclusive while the end is + // exclusive, just as in the String class, i.e., a start/end pair + // denotes the left-open interval [start, end) of the input string. + // + // These methods never proceed past the end position. They may return + // -1 to indicate outright failure, but more often they simply return + // the position of the first char after the last char scanned. Thus + // a typical idiom is + // + // int p = start; + // int q = scan(p, end, ...); + // if (q > p) + // // We scanned something + // ...; + // else if (q == p) + // // We scanned nothing + // ...; + // else if (q == -1) + // // Something went wrong + // ...; + + + // Scan a specific char: If the char at the given start position is + // equal to c, return the index of the next char; otherwise, return the + // start position. + // + private int scan(int start, int end, char c) { + if ((start < end) && (charAt(start) == c)) + return start + 1; + return start; + } + + // Scan forward from the given start position. Stop at the first char + // in the err string (in which case -1 is returned), or the first char + // in the stop string (in which case the index of the preceding char is + // returned), or the end of the input string (in which case the length + // of the input string is returned). May return the start position if + // nothing matches. + // + private int scan(int start, int end, String err, String stop) { + int p = start; + while (p < end) { + char c = charAt(p); + if (err.indexOf(c) >= 0) + return -1; + if (stop.indexOf(c) >= 0) + break; + p++; + } + return p; + } + + // Scan a potential escape sequence, starting at the given position, + // with the given first char (i.e., charAt(start) == c). + // + // This method assumes that if escapes are allowed then visible + // non-US-ASCII chars are also allowed. + // + private int scanEscape(int start, int n, char first) + throws URISyntaxException + { + int p = start; + char c = first; + if (c == '%') { + // Process escape pair + if ((p + 3 <= n) + && match(charAt(p + 1), L_HEX, H_HEX) + && match(charAt(p + 2), L_HEX, H_HEX)) { + return p + 3; + } + fail("Malformed escape pair", p); + } else if ((c > 128) + && !Character.isSpaceChar(c) + && !Character.isISOControl(c)) { + // Allow unescaped but visible non-US-ASCII chars + return p + 1; + } + return p; + } + + // Scan chars that match the given mask pair + // + private int scan(int start, int n, long lowMask, long highMask) + throws URISyntaxException + { + int p = start; + while (p < n) { + char c = charAt(p); + if (match(c, lowMask, highMask)) { + p++; + continue; + } + if ((lowMask & L_ESCAPED) != 0) { + int q = scanEscape(p, n, c); + if (q > p) { + p = q; + continue; + } + } + break; + } + return p; + } + + // Check that each of the chars in [start, end) matches the given mask + // + private void checkChars(int start, int end, + long lowMask, long highMask, + String what) + throws URISyntaxException + { + int p = scan(start, end, lowMask, highMask); + if (p < end) + fail("Illegal character in " + what, p); + } + + // Check that the char at position p matches the given mask + // + private void checkChar(int p, + long lowMask, long highMask, + String what) + throws URISyntaxException + { + checkChars(p, p + 1, lowMask, highMask, what); + } + + + // -- Parsing -- + + // [:][#] + // + void parse(boolean rsa) throws URISyntaxException { + requireServerAuthority = rsa; + int ssp; // Start of scheme-specific part + int n = input.length(); + int p = scan(0, n, "/?#", ":"); + if ((p >= 0) && at(p, n, ':')) { + if (p == 0) + failExpecting("scheme name", 0); + checkChar(0, L_ALPHA, H_ALPHA, "scheme name"); + checkChars(1, p, L_SCHEME, H_SCHEME, "scheme name"); + scheme = substring(0, p); + p++; // Skip ':' + ssp = p; + if (at(p, n, '/')) { + p = parseHierarchical(p, n); + } else { + int q = scan(p, n, "", "#"); + if (q <= p) + failExpecting("scheme-specific part", p); + checkChars(p, q, L_URIC, H_URIC, "opaque part"); + p = q; + } + } else { + ssp = 0; + p = parseHierarchical(0, n); + } + schemeSpecificPart = substring(ssp, p); + if (at(p, n, '#')) { + checkChars(p + 1, n, L_URIC, H_URIC, "fragment"); + fragment = substring(p + 1, n); + p = n; + } + if (p < n) + fail("end of URI", p); + } + + // [//authority][?] + // + // DEVIATION from RFC2396: We allow an empty authority component as + // long as it's followed by a non-empty path, query component, or + // fragment component. This is so that URIs such as "file:///foo/bar" + // will parse. This seems to be the intent of RFC2396, though the + // grammar does not permit it. If the authority is empty then the + // userInfo, host, and port components are undefined. + // + // DEVIATION from RFC2396: We allow empty relative paths. This seems + // to be the intent of RFC2396, but the grammar does not permit it. + // The primary consequence of this deviation is that "#f" parses as a + // relative URI with an empty path. + // + private int parseHierarchical(int start, int n) + throws URISyntaxException + { + int p = start; + if (at(p, n, '/') && at(p + 1, n, '/')) { + p += 2; + int q = scan(p, n, "", "/?#"); + if (q > p) { + p = parseAuthority(p, q); + } else if (q < n) { + // DEVIATION: Allow empty authority prior to non-empty + // path, query component or fragment identifier + } else + failExpecting("authority", p); + } + int q = scan(p, n, "", "?#"); // DEVIATION: May be empty + checkChars(p, q, L_PATH, H_PATH, "path"); + path = substring(p, q); + p = q; + if (at(p, n, '?')) { + p++; + q = scan(p, n, "", "#"); + checkChars(p, q, L_URIC, H_URIC, "query"); + query = substring(p, q); + p = q; + } + return p; + } + + // authority = server | reg_name + // + // Ambiguity: An authority that is a registry name rather than a server + // might have a prefix that parses as a server. We use the fact that + // the authority component is always followed by '/' or the end of the + // input string to resolve this: If the complete authority did not + // parse as a server then we try to parse it as a registry name. + // + private int parseAuthority(int start, int n) + throws URISyntaxException + { + int p = start; + int q = p; + URISyntaxException ex = null; + + boolean serverChars; + boolean regChars; + + if (scan(p, n, "", "]") > p) { + // contains a literal IPv6 address, therefore % is allowed + serverChars = (scan(p, n, L_SERVER_PERCENT, H_SERVER_PERCENT) == n); + } else { + serverChars = (scan(p, n, L_SERVER, H_SERVER) == n); + } + regChars = (scan(p, n, L_REG_NAME, H_REG_NAME) == n); + + if (regChars && !serverChars) { + // Must be a registry-based authority + authority = substring(p, n); + return n; + } + + if (serverChars) { + // Might be (probably is) a server-based authority, so attempt + // to parse it as such. If the attempt fails, try to treat it + // as a registry-based authority. + try { + q = parseServer(p, n); + if (q < n) + failExpecting("end of authority", q); + authority = substring(p, n); + } catch (URISyntaxException x) { + // Undo results of failed parse + userInfo = null; + host = null; + port = -1; + if (requireServerAuthority) { + // If we're insisting upon a server-based authority, + // then just re-throw the exception + throw x; + } else { + // Save the exception in case it doesn't parse as a + // registry either + ex = x; + q = p; + } + } + } + + if (q < n) { + if (regChars) { + // Registry-based authority + authority = substring(p, n); + } else if (ex != null) { + // Re-throw exception; it was probably due to + // a malformed IPv6 address + throw ex; + } else { + fail("Illegal character in authority", q); + } + } + + return n; + } + + + // [@][:] + // + private int parseServer(int start, int n) + throws URISyntaxException + { + int p = start; + int q; + + // userinfo + q = scan(p, n, "/?#", "@"); + if ((q >= p) && at(q, n, '@')) { + checkChars(p, q, L_USERINFO, H_USERINFO, "user info"); + userInfo = substring(p, q); + p = q + 1; // Skip '@' + } + + // hostname, IPv4 address, or IPv6 address + if (at(p, n, '[')) { + // DEVIATION from RFC2396: Support IPv6 addresses, per RFC2732 + p++; + q = scan(p, n, "/?#", "]"); + if ((q > p) && at(q, n, ']')) { + // look for a "%" scope id + int r = scan (p, q, "", "%"); + if (r > p) { + parseIPv6Reference(p, r); + if (r+1 == q) { + fail ("scope id expected"); + } + checkChars (r+1, q, L_ALPHANUM, H_ALPHANUM, + "scope id"); + } else { + parseIPv6Reference(p, q); + } + host = substring(p-1, q+1); + p = q + 1; + } else { + failExpecting("closing bracket for IPv6 address", q); + } + } else { + q = parseIPv4Address(p, n); + if (q <= p) + q = parseHostname(p, n); + p = q; + } + + // port + if (at(p, n, ':')) { + p++; + q = scan(p, n, "", "/"); + if (q > p) { + checkChars(p, q, L_DIGIT, H_DIGIT, "port number"); + try { + port = Integer.parseInt(substring(p, q)); + } catch (NumberFormatException x) { + fail("Malformed port number", p); + } + p = q; + } + } + if (p < n) + failExpecting("port number", p); + + return p; + } + + // Scan a string of decimal digits whose value fits in a byte + // + private int scanByte(int start, int n) + throws URISyntaxException + { + int p = start; + int q = scan(p, n, L_DIGIT, H_DIGIT); + if (q <= p) return q; + if (Integer.parseInt(substring(p, q)) > 255) return p; + return q; + } + + // Scan an IPv4 address. + // + // If the strict argument is true then we require that the given + // interval contain nothing besides an IPv4 address; if it is false + // then we only require that it start with an IPv4 address. + // + // If the interval does not contain or start with (depending upon the + // strict argument) a legal IPv4 address characters then we return -1 + // immediately; otherwise we insist that these characters parse as a + // legal IPv4 address and throw an exception on failure. + // + // We assume that any string of decimal digits and dots must be an IPv4 + // address. It won't parse as a hostname anyway, so making that + // assumption here allows more meaningful exceptions to be thrown. + // + private int scanIPv4Address(int start, int n, boolean strict) + throws URISyntaxException + { + int p = start; + int q; + int m = scan(p, n, L_DIGIT | L_DOT, H_DIGIT | H_DOT); + if ((m <= p) || (strict && (m != n))) + return -1; + for (;;) { + // Per RFC2732: At most three digits per byte + // Further constraint: Each element fits in a byte + if ((q = scanByte(p, m)) <= p) break; p = q; + if ((q = scan(p, m, '.')) <= p) break; p = q; + if ((q = scanByte(p, m)) <= p) break; p = q; + if ((q = scan(p, m, '.')) <= p) break; p = q; + if ((q = scanByte(p, m)) <= p) break; p = q; + if ((q = scan(p, m, '.')) <= p) break; p = q; + if ((q = scanByte(p, m)) <= p) break; p = q; + if (q < m) break; + return q; + } + fail("Malformed IPv4 address", q); + return -1; + } + + // Take an IPv4 address: Throw an exception if the given interval + // contains anything except an IPv4 address + // + private int takeIPv4Address(int start, int n, String expected) + throws URISyntaxException + { + int p = scanIPv4Address(start, n, true); + if (p <= start) + failExpecting(expected, start); + return p; + } + + // Attempt to parse an IPv4 address, returning -1 on failure but + // allowing the given interval to contain [:] after + // the IPv4 address. + // + private int parseIPv4Address(int start, int n) { + int p; + + try { + p = scanIPv4Address(start, n, false); + } catch (URISyntaxException x) { + return -1; + } catch (NumberFormatException nfe) { + return -1; + } + + if (p > start && p < n) { + // IPv4 address is followed by something - check that + // it's a ":" as this is the only valid character to + // follow an address. + if (charAt(p) != ':') { + p = -1; + } + } + + if (p > start) + host = substring(start, p); + + return p; + } + + // hostname = domainlabel [ "." ] | 1*( domainlabel "." ) toplabel [ "." ] + // domainlabel = alphanum | alphanum *( alphanum | "-" ) alphanum + // toplabel = alpha | alpha *( alphanum | "-" ) alphanum + // + private int parseHostname(int start, int n) + throws URISyntaxException + { + int p = start; + int q; + int l = -1; // Start of last parsed label + + do { + // domainlabel = alphanum [ *( alphanum | "-" ) alphanum ] + q = scan(p, n, L_ALPHANUM, H_ALPHANUM); + if (q <= p) + break; + l = p; + if (q > p) { + p = q; + q = scan(p, n, L_ALPHANUM | L_DASH, H_ALPHANUM | H_DASH); + if (q > p) { + if (charAt(q - 1) == '-') + fail("Illegal character in hostname", q - 1); + p = q; + } + } + q = scan(p, n, '.'); + if (q <= p) + break; + p = q; + } while (p < n); + + if ((p < n) && !at(p, n, ':')) + fail("Illegal character in hostname", p); + + if (l < 0) + failExpecting("hostname", start); + + // for a fully qualified hostname check that the rightmost + // label starts with an alpha character. + if (l > start && !match(charAt(l), L_ALPHA, H_ALPHA)) { + fail("Illegal character in hostname", l); + } + + host = substring(start, p); + return p; + } + + + // IPv6 address parsing, from RFC2373: IPv6 Addressing Architecture + // + // Bug: The grammar in RFC2373 Appendix B does not allow addresses of + // the form ::12.34.56.78, which are clearly shown in the examples + // earlier in the document. Here is the original grammar: + // + // IPv6address = hexpart [ ":" IPv4address ] + // hexpart = hexseq | hexseq "::" [ hexseq ] | "::" [ hexseq ] + // hexseq = hex4 *( ":" hex4) + // hex4 = 1*4HEXDIG + // + // We therefore use the following revised grammar: + // + // IPv6address = hexseq [ ":" IPv4address ] + // | hexseq [ "::" [ hexpost ] ] + // | "::" [ hexpost ] + // hexpost = hexseq | hexseq ":" IPv4address | IPv4address + // hexseq = hex4 *( ":" hex4) + // hex4 = 1*4HEXDIG + // + // This covers all and only the following cases: + // + // hexseq + // hexseq : IPv4address + // hexseq :: + // hexseq :: hexseq + // hexseq :: hexseq : IPv4address + // hexseq :: IPv4address + // :: hexseq + // :: hexseq : IPv4address + // :: IPv4address + // :: + // + // Additionally we constrain the IPv6 address as follows :- + // + // i. IPv6 addresses without compressed zeros should contain + // exactly 16 bytes. + // + // ii. IPv6 addresses with compressed zeros should contain + // less than 16 bytes. + + private int ipv6byteCount = 0; + + private int parseIPv6Reference(int start, int n) + throws URISyntaxException + { + int p = start; + int q; + boolean compressedZeros = false; + + q = scanHexSeq(p, n); + + if (q > p) { + p = q; + if (at(p, n, "::")) { + compressedZeros = true; + p = scanHexPost(p + 2, n); + } else if (at(p, n, ':')) { + p = takeIPv4Address(p + 1, n, "IPv4 address"); + ipv6byteCount += 4; + } + } else if (at(p, n, "::")) { + compressedZeros = true; + p = scanHexPost(p + 2, n); + } + if (p < n) + fail("Malformed IPv6 address", start); + if (ipv6byteCount > 16) + fail("IPv6 address too long", start); + if (!compressedZeros && ipv6byteCount < 16) + fail("IPv6 address too short", start); + if (compressedZeros && ipv6byteCount == 16) + fail("Malformed IPv6 address", start); + + return p; + } + + private int scanHexPost(int start, int n) + throws URISyntaxException + { + int p = start; + int q; + + if (p == n) + return p; + + q = scanHexSeq(p, n); + if (q > p) { + p = q; + if (at(p, n, ':')) { + p++; + p = takeIPv4Address(p, n, "hex digits or IPv4 address"); + ipv6byteCount += 4; + } + } else { + p = takeIPv4Address(p, n, "hex digits or IPv4 address"); + ipv6byteCount += 4; + } + return p; + } + + // Scan a hex sequence; return -1 if one could not be scanned + // + private int scanHexSeq(int start, int n) + throws URISyntaxException + { + int p = start; + int q; + + q = scan(p, n, L_HEX, H_HEX); + if (q <= p) + return -1; + if (at(q, n, '.')) // Beginning of IPv4 address + return -1; + if (q > p + 4) + fail("IPv6 hexadecimal digit sequence too long", p); + ipv6byteCount += 2; + p = q; + while (p < n) { + if (!at(p, n, ':')) + break; + if (at(p + 1, n, ':')) + break; // "::" + p++; + q = scan(p, n, L_HEX, H_HEX); + if (q <= p) + failExpecting("digits for an IPv6 address", p); + if (at(q, n, '.')) { // Beginning of IPv4 address + p--; + break; + } + if (q > p + 4) + fail("IPv6 hexadecimal digit sequence too long", p); + ipv6byteCount += 2; + p = q; + } + + return p; + } + + } + +}