diff -r 000000000000 -r c880a8a8803b rt/emul/compact/src/main/java/java/lang/invoke/MethodHandles.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/rt/emul/compact/src/main/java/java/lang/invoke/MethodHandles.java Sat Aug 09 11:11:13 2014 +0200 @@ -0,0 +1,2848 @@ +/* + * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang.invoke; + +import java.lang.reflect.*; +import java.util.List; +import java.util.ArrayList; +import java.util.Arrays; + +import sun.invoke.util.ValueConversions; +import sun.invoke.util.VerifyAccess; +import sun.invoke.util.Wrapper; +import sun.reflect.CallerSensitive; +import sun.reflect.Reflection; +import sun.reflect.misc.ReflectUtil; +import sun.security.util.SecurityConstants; +import static java.lang.invoke.MethodHandleStatics.*; +import static java.lang.invoke.MethodHandleNatives.Constants.*; +import java.util.concurrent.ConcurrentHashMap; +import sun.security.util.SecurityConstants; + +/** + * This class consists exclusively of static methods that operate on or return + * method handles. They fall into several categories: + * + *

+ * @author John Rose, JSR 292 EG + * @since 1.7 + */ +public class MethodHandles { + + private MethodHandles() { } // do not instantiate + + private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); + static { MethodHandleImpl.initStatics(); } + // See IMPL_LOOKUP below. + + //// Method handle creation from ordinary methods. + + /** + * Returns a {@link Lookup lookup object} with + * full capabilities to emulate all supported bytecode behaviors of the caller. + * These capabilities include private access to the caller. + * Factory methods on the lookup object can create + * direct method handles + * for any member that the caller has access to via bytecodes, + * including protected and private fields and methods. + * This lookup object is a capability which may be delegated to trusted agents. + * Do not store it in place where untrusted code can access it. + *

+ * This method is caller sensitive, which means that it may return different + * values to different callers. + *

+ * For any given caller class {@code C}, the lookup object returned by this call + * has equivalent capabilities to any lookup object + * supplied by the JVM to the bootstrap method of an + * invokedynamic instruction + * executing in the same caller class {@code C}. + * @return a lookup object for the caller of this method, with private access + */ + @CallerSensitive + public static Lookup lookup() { + return new Lookup(Reflection.getCallerClass()); + } + + /** + * Returns a {@link Lookup lookup object} which is trusted minimally. + * It can only be used to create method handles to + * publicly accessible fields and methods. + *

+ * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class} + * of this lookup object will be {@link java.lang.Object}. + * + *

+ * Discussion: + * The lookup class can be changed to any other class {@code C} using an expression of the form + * {@link Lookup#in publicLookup().in(C.class)}. + * Since all classes have equal access to public names, + * such a change would confer no new access rights. + * A public lookup object is always subject to + * security manager checks. + * Also, it cannot access + * caller sensitive methods. + * @return a lookup object which is trusted minimally + */ + public static Lookup publicLookup() { + return Lookup.PUBLIC_LOOKUP; + } + + /** + * Performs an unchecked "crack" of a + * direct method handle. + * The result is as if the user had obtained a lookup object capable enough + * to crack the target method handle, called + * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect} + * on the target to obtain its symbolic reference, and then called + * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs} + * to resolve the symbolic reference to a member. + *

+ * If there is a security manager, its {@code checkPermission} method + * is called with a {@code ReflectPermission("suppressAccessChecks")} permission. + * @param the desired type of the result, either {@link Member} or a subtype + * @param target a direct method handle to crack into symbolic reference components + * @param expected a class object representing the desired result type {@code T} + * @return a reference to the method, constructor, or field object + * @exception SecurityException if the caller is not privileged to call {@code setAccessible} + * @exception NullPointerException if either argument is {@code null} + * @exception IllegalArgumentException if the target is not a direct method handle + * @exception ClassCastException if the member is not of the expected type + * @since 1.8 + */ + public static T + reflectAs(Class expected, MethodHandle target) { + SecurityManager smgr = System.getSecurityManager(); + if (smgr != null) smgr.checkPermission(ACCESS_PERMISSION); + Lookup lookup = Lookup.IMPL_LOOKUP; // use maximally privileged lookup + return lookup.revealDirect(target).reflectAs(expected, lookup); + } + // Copied from AccessibleObject, as used by Method.setAccessible, etc.: + static final private java.security.Permission ACCESS_PERMISSION = + new ReflectPermission("suppressAccessChecks"); + + /** + * A lookup object is a factory for creating method handles, + * when the creation requires access checking. + * Method handles do not perform + * access checks when they are called, but rather when they are created. + * Therefore, method handle access + * restrictions must be enforced when a method handle is created. + * The caller class against which those restrictions are enforced + * is known as the {@linkplain #lookupClass lookup class}. + *

+ * A lookup class which needs to create method handles will call + * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself. + * When the {@code Lookup} factory object is created, the identity of the lookup class is + * determined, and securely stored in the {@code Lookup} object. + * The lookup class (or its delegates) may then use factory methods + * on the {@code Lookup} object to create method handles for access-checked members. + * This includes all methods, constructors, and fields which are allowed to the lookup class, + * even private ones. + * + *

Lookup Factory Methods

+ * The factory methods on a {@code Lookup} object correspond to all major + * use cases for methods, constructors, and fields. + * Each method handle created by a factory method is the functional + * equivalent of a particular bytecode behavior. + * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.) + * Here is a summary of the correspondence between these factory methods and + * the behavior the resulting method handles: + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + *
lookup expressionmemberbytecode behavior
{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}{@code FT f;}{@code (T) this.f;}
{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}{@code static}
{@code FT f;}
{@code (T) C.f;}
{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}{@code FT f;}{@code this.f = x;}
{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}{@code static}
{@code FT f;}
{@code C.f = arg;}
{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}{@code T m(A*);}{@code (T) this.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}{@code static}
{@code T m(A*);}
{@code (T) C.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}{@code T m(A*);}{@code (T) super.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}{@code C(A*);}{@code new C(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}({@code static})?
{@code FT f;}
{@code (FT) aField.get(thisOrNull);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}({@code static})?
{@code FT f;}
{@code aField.set(thisOrNull, arg);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}({@code static})?
{@code T m(A*);}
{@code (T) aMethod.invoke(thisOrNull, arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}{@code C(A*);}{@code (C) aConstructor.newInstance(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}({@code static})?
{@code T m(A*);}
{@code (T) aMethod.invoke(thisOrNull, arg*);}
+ * + * Here, the type {@code C} is the class or interface being searched for a member, + * documented as a parameter named {@code refc} in the lookup methods. + * The method type {@code MT} is composed from the return type {@code T} + * and the sequence of argument types {@code A*}. + * The constructor also has a sequence of argument types {@code A*} and + * is deemed to return the newly-created object of type {@code C}. + * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}. + * The formal parameter {@code this} stands for the self-reference of type {@code C}; + * if it is present, it is always the leading argument to the method handle invocation. + * (In the case of some {@code protected} members, {@code this} may be + * restricted in type to the lookup class; see below.) + * The name {@code arg} stands for all the other method handle arguments. + * In the code examples for the Core Reflection API, the name {@code thisOrNull} + * stands for a null reference if the accessed method or field is static, + * and {@code this} otherwise. + * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand + * for reflective objects corresponding to the given members. + *

+ * In cases where the given member is of variable arity (i.e., a method or constructor) + * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}. + * In all other cases, the returned method handle will be of fixed arity. + *

+ * Discussion: + * The equivalence between looked-up method handles and underlying + * class members and bytecode behaviors + * can break down in a few ways: + *

+ * + *

Access checking

+ * Access checks are applied in the factory methods of {@code Lookup}, + * when a method handle is created. + * This is a key difference from the Core Reflection API, since + * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} + * performs access checking against every caller, on every call. + *

+ * All access checks start from a {@code Lookup} object, which + * compares its recorded lookup class against all requests to + * create method handles. + * A single {@code Lookup} object can be used to create any number + * of access-checked method handles, all checked against a single + * lookup class. + *

+ * A {@code Lookup} object can be shared with other trusted code, + * such as a metaobject protocol. + * A shared {@code Lookup} object delegates the capability + * to create method handles on private members of the lookup class. + * Even if privileged code uses the {@code Lookup} object, + * the access checking is confined to the privileges of the + * original lookup class. + *

+ * A lookup can fail, because + * the containing class is not accessible to the lookup class, or + * because the desired class member is missing, or because the + * desired class member is not accessible to the lookup class, or + * because the lookup object is not trusted enough to access the member. + * In any of these cases, a {@code ReflectiveOperationException} will be + * thrown from the attempted lookup. The exact class will be one of + * the following: + *

+ *

+ * In general, the conditions under which a method handle may be + * looked up for a method {@code M} are no more restrictive than the conditions + * under which the lookup class could have compiled, verified, and resolved a call to {@code M}. + * Where the JVM would raise exceptions like {@code NoSuchMethodError}, + * a method handle lookup will generally raise a corresponding + * checked exception, such as {@code NoSuchMethodException}. + * And the effect of invoking the method handle resulting from the lookup + * is exactly equivalent + * to executing the compiled, verified, and resolved call to {@code M}. + * The same point is true of fields and constructors. + *

+ * Discussion: + * Access checks only apply to named and reflected methods, + * constructors, and fields. + * Other method handle creation methods, such as + * {@link MethodHandle#asType MethodHandle.asType}, + * do not require any access checks, and are used + * independently of any {@code Lookup} object. + *

+ * If the desired member is {@code protected}, the usual JVM rules apply, + * including the requirement that the lookup class must be either be in the + * same package as the desired member, or must inherit that member. + * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.) + * In addition, if the desired member is a non-static field or method + * in a different package, the resulting method handle may only be applied + * to objects of the lookup class or one of its subclasses. + * This requirement is enforced by narrowing the type of the leading + * {@code this} parameter from {@code C} + * (which will necessarily be a superclass of the lookup class) + * to the lookup class itself. + *

+ * The JVM imposes a similar requirement on {@code invokespecial} instruction, + * that the receiver argument must match both the resolved method and + * the current class. Again, this requirement is enforced by narrowing the + * type of the leading parameter to the resulting method handle. + * (See the Java Virtual Machine Specification, section 4.10.1.9.) + *

+ * The JVM represents constructors and static initializer blocks as internal methods + * with special names ({@code ""} and {@code ""}). + * The internal syntax of invocation instructions allows them to refer to such internal + * methods as if they were normal methods, but the JVM bytecode verifier rejects them. + * A lookup of such an internal method will produce a {@code NoSuchMethodException}. + *

+ * In some cases, access between nested classes is obtained by the Java compiler by creating + * an wrapper method to access a private method of another class + * in the same top-level declaration. + * For example, a nested class {@code C.D} + * can access private members within other related classes such as + * {@code C}, {@code C.D.E}, or {@code C.B}, + * but the Java compiler may need to generate wrapper methods in + * those related classes. In such cases, a {@code Lookup} object on + * {@code C.E} would be unable to those private members. + * A workaround for this limitation is the {@link Lookup#in Lookup.in} method, + * which can transform a lookup on {@code C.E} into one on any of those other + * classes, without special elevation of privilege. + *

+ * The accesses permitted to a given lookup object may be limited, + * according to its set of {@link #lookupModes lookupModes}, + * to a subset of members normally accessible to the lookup class. + * For example, the {@link MethodHandles#publicLookup publicLookup} + * method produces a lookup object which is only allowed to access + * public members in public classes. + * The caller sensitive method {@link MethodHandles#lookup lookup} + * produces a lookup object with full capabilities relative to + * its caller class, to emulate all supported bytecode behaviors. + * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object + * with fewer access modes than the original lookup object. + * + *

+ * + * Discussion of private access: + * We say that a lookup has private access + * if its {@linkplain #lookupModes lookup modes} + * include the possibility of accessing {@code private} members. + * As documented in the relevant methods elsewhere, + * only lookups with private access possess the following capabilities: + *

+ *

+ * Each of these permissions is a consequence of the fact that a lookup object + * with private access can be securely traced back to an originating class, + * whose bytecode behaviors and Java language access permissions + * can be reliably determined and emulated by method handles. + * + *

Security manager interactions

+ * Although bytecode instructions can only refer to classes in + * a related class loader, this API can search for methods in any + * class, as long as a reference to its {@code Class} object is + * available. Such cross-loader references are also possible with the + * Core Reflection API, and are impossible to bytecode instructions + * such as {@code invokestatic} or {@code getfield}. + * There is a {@linkplain java.lang.SecurityManager security manager API} + * to allow applications to check such cross-loader references. + * These checks apply to both the {@code MethodHandles.Lookup} API + * and the Core Reflection API + * (as found on {@link java.lang.Class Class}). + *

+ * If a security manager is present, member lookups are subject to + * additional checks. + * From one to three calls are made to the security manager. + * Any of these calls can refuse access by throwing a + * {@link java.lang.SecurityException SecurityException}. + * Define {@code smgr} as the security manager, + * {@code lookc} as the lookup class of the current lookup object, + * {@code refc} as the containing class in which the member + * is being sought, and {@code defc} as the class in which the + * member is actually defined. + * The value {@code lookc} is defined as not present + * if the current lookup object does not have + * private access. + * The calls are made according to the following rules: + *

+ * Security checks are performed after other access checks have passed. + * Therefore, the above rules presuppose a member that is public, + * or else that is being accessed from a lookup class that has + * rights to access the member. + * + *

Caller sensitive methods

+ * A small number of Java methods have a special property called caller sensitivity. + * A caller-sensitive method can behave differently depending on the + * identity of its immediate caller. + *

+ * If a method handle for a caller-sensitive method is requested, + * the general rules for bytecode behaviors apply, + * but they take account of the lookup class in a special way. + * The resulting method handle behaves as if it were called + * from an instruction contained in the lookup class, + * so that the caller-sensitive method detects the lookup class. + * (By contrast, the invoker of the method handle is disregarded.) + * Thus, in the case of caller-sensitive methods, + * different lookup classes may give rise to + * differently behaving method handles. + *

+ * In cases where the lookup object is + * {@link MethodHandles#publicLookup() publicLookup()}, + * or some other lookup object without + * private access, + * the lookup class is disregarded. + * In such cases, no caller-sensitive method handle can be created, + * access is forbidden, and the lookup fails with an + * {@code IllegalAccessException}. + *

+ * Discussion: + * For example, the caller-sensitive method + * {@link java.lang.Class#forName(String) Class.forName(x)} + * can return varying classes or throw varying exceptions, + * depending on the class loader of the class that calls it. + * A public lookup of {@code Class.forName} will fail, because + * there is no reasonable way to determine its bytecode behavior. + *

+ * If an application caches method handles for broad sharing, + * it should use {@code publicLookup()} to create them. + * If there is a lookup of {@code Class.forName}, it will fail, + * and the application must take appropriate action in that case. + * It may be that a later lookup, perhaps during the invocation of a + * bootstrap method, can incorporate the specific identity + * of the caller, making the method accessible. + *

+ * The function {@code MethodHandles.lookup} is caller sensitive + * so that there can be a secure foundation for lookups. + * Nearly all other methods in the JSR 292 API rely on lookup + * objects to check access requests. + */ + public static final + class Lookup { + /** The class on behalf of whom the lookup is being performed. */ + private final Class lookupClass; + + /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */ + private final int allowedModes; + + /** A single-bit mask representing {@code public} access, + * which may contribute to the result of {@link #lookupModes lookupModes}. + * The value, {@code 0x01}, happens to be the same as the value of the + * {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}. + */ + public static final int PUBLIC = Modifier.PUBLIC; + + /** A single-bit mask representing {@code private} access, + * which may contribute to the result of {@link #lookupModes lookupModes}. + * The value, {@code 0x02}, happens to be the same as the value of the + * {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}. + */ + public static final int PRIVATE = Modifier.PRIVATE; + + /** A single-bit mask representing {@code protected} access, + * which may contribute to the result of {@link #lookupModes lookupModes}. + * The value, {@code 0x04}, happens to be the same as the value of the + * {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}. + */ + public static final int PROTECTED = Modifier.PROTECTED; + + /** A single-bit mask representing {@code package} access (default access), + * which may contribute to the result of {@link #lookupModes lookupModes}. + * The value is {@code 0x08}, which does not correspond meaningfully to + * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. + */ + public static final int PACKAGE = Modifier.STATIC; + + private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE); + private static final int TRUSTED = -1; + + private static int fixmods(int mods) { + mods &= (ALL_MODES - PACKAGE); + return (mods != 0) ? mods : PACKAGE; + } + + /** Tells which class is performing the lookup. It is this class against + * which checks are performed for visibility and access permissions. + *

+ * The class implies a maximum level of access permission, + * but the permissions may be additionally limited by the bitmask + * {@link #lookupModes lookupModes}, which controls whether non-public members + * can be accessed. + * @return the lookup class, on behalf of which this lookup object finds members + */ + public Class lookupClass() { + return lookupClass; + } + + // This is just for calling out to MethodHandleImpl. + private Class lookupClassOrNull() { + return (allowedModes == TRUSTED) ? null : lookupClass; + } + + /** Tells which access-protection classes of members this lookup object can produce. + * The result is a bit-mask of the bits + * {@linkplain #PUBLIC PUBLIC (0x01)}, + * {@linkplain #PRIVATE PRIVATE (0x02)}, + * {@linkplain #PROTECTED PROTECTED (0x04)}, + * and {@linkplain #PACKAGE PACKAGE (0x08)}. + *

+ * A freshly-created lookup object + * on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} + * has all possible bits set, since the caller class can access all its own members. + * A lookup object on a new lookup class + * {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object} + * may have some mode bits set to zero. + * The purpose of this is to restrict access via the new lookup object, + * so that it can access only names which can be reached by the original + * lookup object, and also by the new lookup class. + * @return the lookup modes, which limit the kinds of access performed by this lookup object + */ + public int lookupModes() { + return allowedModes & ALL_MODES; + } + + /** Embody the current class (the lookupClass) as a lookup class + * for method handle creation. + * Must be called by from a method in this package, + * which in turn is called by a method not in this package. + */ + Lookup(Class lookupClass) { + this(lookupClass, ALL_MODES); + // make sure we haven't accidentally picked up a privileged class: + checkUnprivilegedlookupClass(lookupClass, ALL_MODES); + } + + private Lookup(Class lookupClass, int allowedModes) { + this.lookupClass = lookupClass; + this.allowedModes = allowedModes; + } + + /** + * Creates a lookup on the specified new lookup class. + * The resulting object will report the specified + * class as its own {@link #lookupClass lookupClass}. + *

+ * However, the resulting {@code Lookup} object is guaranteed + * to have no more access capabilities than the original. + * In particular, access capabilities can be lost as follows:

+ * + * @param requestedLookupClass the desired lookup class for the new lookup object + * @return a lookup object which reports the desired lookup class + * @throws NullPointerException if the argument is null + */ + public Lookup in(Class requestedLookupClass) { + requestedLookupClass.getClass(); // null check + if (allowedModes == TRUSTED) // IMPL_LOOKUP can make any lookup at all + return new Lookup(requestedLookupClass, ALL_MODES); + if (requestedLookupClass == this.lookupClass) + return this; // keep same capabilities + int newModes = (allowedModes & (ALL_MODES & ~PROTECTED)); + if ((newModes & PACKAGE) != 0 + && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) { + newModes &= ~(PACKAGE|PRIVATE); + } + // Allow nestmate lookups to be created without special privilege: + if ((newModes & PRIVATE) != 0 + && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) { + newModes &= ~PRIVATE; + } + if ((newModes & PUBLIC) != 0 + && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) { + // The requested class it not accessible from the lookup class. + // No permissions. + newModes = 0; + } + checkUnprivilegedlookupClass(requestedLookupClass, newModes); + return new Lookup(requestedLookupClass, newModes); + } + + // Make sure outer class is initialized first. + static { IMPL_NAMES.getClass(); } + + /** Version of lookup which is trusted minimally. + * It can only be used to create method handles to + * publicly accessible members. + */ + static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC); + + /** Package-private version of lookup which is trusted. */ + static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED); + + private static void checkUnprivilegedlookupClass(Class lookupClass, int allowedModes) { + String name = lookupClass.getName(); + if (name.startsWith("java.lang.invoke.")) + throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); + + // For caller-sensitive MethodHandles.lookup() + // disallow lookup more restricted packages + if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) { + if (name.startsWith("java.") || + (name.startsWith("sun.") && !name.startsWith("sun.invoke."))) { + throw newIllegalArgumentException("illegal lookupClass: " + lookupClass); + } + } + } + + /** + * Displays the name of the class from which lookups are to be made. + * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.) + * If there are restrictions on the access permitted to this lookup, + * this is indicated by adding a suffix to the class name, consisting + * of a slash and a keyword. The keyword represents the strongest + * allowed access, and is chosen as follows: + * + * If none of the above cases apply, it is the case that full + * access (public, package, private, and protected) is allowed. + * In this case, no suffix is added. + * This is true only of an object obtained originally from + * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}. + * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in} + * always have restricted access, and will display a suffix. + *

+ * (It may seem strange that protected access should be + * stronger than private access. Viewed independently from + * package access, protected access is the first to be lost, + * because it requires a direct subclass relationship between + * caller and callee.) + * @see #in + */ + @Override + public String toString() { + String cname = lookupClass.getName(); + switch (allowedModes) { + case 0: // no privileges + return cname + "/noaccess"; + case PUBLIC: + return cname + "/public"; + case PUBLIC|PACKAGE: + return cname + "/package"; + case ALL_MODES & ~PROTECTED: + return cname + "/private"; + case ALL_MODES: + return cname; + case TRUSTED: + return "/trusted"; // internal only; not exported + default: // Should not happen, but it's a bitfield... + cname = cname + "/" + Integer.toHexString(allowedModes); + assert(false) : cname; + return cname; + } + } + + /** + * Produces a method handle for a static method. + * The type of the method handle will be that of the method. + * (Since static methods do not take receivers, there is no + * additional receiver argument inserted into the method handle type, + * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.) + * The method and all its argument types must be accessible to the lookup object. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * If the returned method handle is invoked, the method's class will + * be initialized, if it has not already been initialized. + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
+  "asList", methodType(List.class, Object[].class));
+assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
+         * }
+ * @param refc the class from which the method is accessed + * @param name the name of the method + * @param type the type of the method + * @return the desired method handle + * @throws NoSuchMethodException if the method does not exist + * @throws IllegalAccessException if access checking fails, + * or if the method is not {@code static}, + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public + MethodHandle findStatic(Class refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { + MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type); + return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method)); + } + + /** + * Produces a method handle for a virtual method. + * The type of the method handle will be that of the method, + * with the receiver type (usually {@code refc}) prepended. + * The method and all its argument types must be accessible to the lookup object. + *

+ * When called, the handle will treat the first argument as a receiver + * and dispatch on the receiver's type to determine which method + * implementation to enter. + * (The dispatching action is identical with that performed by an + * {@code invokevirtual} or {@code invokeinterface} instruction.) + *

+ * The first argument will be of type {@code refc} if the lookup + * class has full privileges to access the member. Otherwise + * the member must be {@code protected} and the first argument + * will be restricted in type to the lookup class. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * Because of the general equivalence between {@code invokevirtual} + * instructions and method handles produced by {@code findVirtual}, + * if the class is {@code MethodHandle} and the name string is + * {@code invokeExact} or {@code invoke}, the resulting + * method handle is equivalent to one produced by + * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or + * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker} + * with the same {@code type} argument. + * + * Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle MH_concat = publicLookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
+  "hashCode", methodType(int.class));
+MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
+  "hashCode", methodType(int.class));
+assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
+assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
+assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
+// interface method:
+MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
+  "subSequence", methodType(CharSequence.class, int.class, int.class));
+assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
+// constructor "internal method" must be accessed differently:
+MethodType MT_newString = methodType(void.class); //()V for new String()
+try { assertEquals("impossible", lookup()
+        .findVirtual(String.class, "", MT_newString));
+ } catch (NoSuchMethodException ex) { } // OK
+MethodHandle MH_newString = publicLookup()
+  .findConstructor(String.class, MT_newString);
+assertEquals("", (String) MH_newString.invokeExact());
+         * }
+ * + * @param refc the class or interface from which the method is accessed + * @param name the name of the method + * @param type the type of the method, with the receiver argument omitted + * @return the desired method handle + * @throws NoSuchMethodException if the method does not exist + * @throws IllegalAccessException if access checking fails, + * or if the method is {@code static} + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findVirtual(Class refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { + if (refc == MethodHandle.class) { + MethodHandle mh = findVirtualForMH(name, type); + if (mh != null) return mh; + } + byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual); + MemberName method = resolveOrFail(refKind, refc, name, type); + return getDirectMethod(refKind, refc, method, findBoundCallerClass(method)); + } + private MethodHandle findVirtualForMH(String name, MethodType type) { + // these names require special lookups because of the implicit MethodType argument + if ("invoke".equals(name)) + return invoker(type); + if ("invokeExact".equals(name)) + return exactInvoker(type); + assert(!MemberName.isMethodHandleInvokeName(name)); + return null; + } + + /** + * Produces a method handle which creates an object and initializes it, using + * the constructor of the specified type. + * The parameter types of the method handle will be those of the constructor, + * while the return type will be a reference to the constructor's class. + * The constructor and all its argument types must be accessible to the lookup object. + *

+ * The requested type must have a return type of {@code void}. + * (This is consistent with the JVM's treatment of constructor type descriptors.) + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the constructor's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * If the returned method handle is invoked, the constructor's class will + * be initialized, if it has not already been initialized. + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle MH_newArrayList = publicLookup().findConstructor(
+  ArrayList.class, methodType(void.class, Collection.class));
+Collection orig = Arrays.asList("x", "y");
+Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
+assert(orig != copy);
+assertEquals(orig, copy);
+// a variable-arity constructor:
+MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
+  ProcessBuilder.class, methodType(void.class, String[].class));
+ProcessBuilder pb = (ProcessBuilder)
+  MH_newProcessBuilder.invoke("x", "y", "z");
+assertEquals("[x, y, z]", pb.command().toString());
+         * }
+ * @param refc the class or interface from which the method is accessed + * @param type the type of the method, with the receiver argument omitted, and a void return type + * @return the desired method handle + * @throws NoSuchMethodException if the constructor does not exist + * @throws IllegalAccessException if access checking fails + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findConstructor(Class refc, MethodType type) throws NoSuchMethodException, IllegalAccessException { + String name = ""; + MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type); + return getDirectConstructor(refc, ctor); + } + + /** + * Produces an early-bound method handle for a virtual method. + * It will bypass checks for overriding methods on the receiver, + * as if called from an {@code invokespecial} + * instruction from within the explicitly specified {@code specialCaller}. + * The type of the method handle will be that of the method, + * with a suitably restricted receiver type prepended. + * (The receiver type will be {@code specialCaller} or a subtype.) + * The method and all its argument types must be accessible + * to the lookup object. + *

+ * Before method resolution, + * if the explicitly specified caller class is not identical with the + * lookup class, or if this lookup object does not have + * private access + * privileges, the access fails. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * (Note: JVM internal methods named {@code ""} are not visible to this API, + * even though the {@code invokespecial} instruction can refer to them + * in special circumstances. Use {@link #findConstructor findConstructor} + * to access instance initialization methods in a safe manner.) + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+static class Listie extends ArrayList {
+  public String toString() { return "[wee Listie]"; }
+  static Lookup lookup() { return MethodHandles.lookup(); }
+}
+...
+// no access to constructor via invokeSpecial:
+MethodHandle MH_newListie = Listie.lookup()
+  .findConstructor(Listie.class, methodType(void.class));
+Listie l = (Listie) MH_newListie.invokeExact();
+try { assertEquals("impossible", Listie.lookup().findSpecial(
+        Listie.class, "", methodType(void.class), Listie.class));
+ } catch (NoSuchMethodException ex) { } // OK
+// access to super and self methods via invokeSpecial:
+MethodHandle MH_super = Listie.lookup().findSpecial(
+  ArrayList.class, "toString" , methodType(String.class), Listie.class);
+MethodHandle MH_this = Listie.lookup().findSpecial(
+  Listie.class, "toString" , methodType(String.class), Listie.class);
+MethodHandle MH_duper = Listie.lookup().findSpecial(
+  Object.class, "toString" , methodType(String.class), Listie.class);
+assertEquals("[]", (String) MH_super.invokeExact(l));
+assertEquals(""+l, (String) MH_this.invokeExact(l));
+assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
+try { assertEquals("inaccessible", Listie.lookup().findSpecial(
+        String.class, "toString", methodType(String.class), Listie.class));
+ } catch (IllegalAccessException ex) { } // OK
+Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
+assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
+         * }
+ * + * @param refc the class or interface from which the method is accessed + * @param name the name of the method (which must not be "<init>") + * @param type the type of the method, with the receiver argument omitted + * @param specialCaller the proposed calling class to perform the {@code invokespecial} + * @return the desired method handle + * @throws NoSuchMethodException if the method does not exist + * @throws IllegalAccessException if access checking fails + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findSpecial(Class refc, String name, MethodType type, + Class specialCaller) throws NoSuchMethodException, IllegalAccessException { + checkSpecialCaller(specialCaller); + Lookup specialLookup = this.in(specialCaller); + MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type); + return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method)); + } + + /** + * Produces a method handle giving read access to a non-static field. + * The type of the method handle will have a return type of the field's + * value type. + * The method handle's single argument will be the instance containing + * the field. + * Access checking is performed immediately on behalf of the lookup class. + * @param refc the class or interface from which the method is accessed + * @param name the field's name + * @param type the field's type + * @return a method handle which can load values from the field + * @throws NoSuchFieldException if the field does not exist + * @throws IllegalAccessException if access checking fails, or if the field is {@code static} + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findGetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + MemberName field = resolveOrFail(REF_getField, refc, name, type); + return getDirectField(REF_getField, refc, field); + } + + /** + * Produces a method handle giving write access to a non-static field. + * The type of the method handle will have a void return type. + * The method handle will take two arguments, the instance containing + * the field, and the value to be stored. + * The second argument will be of the field's value type. + * Access checking is performed immediately on behalf of the lookup class. + * @param refc the class or interface from which the method is accessed + * @param name the field's name + * @param type the field's type + * @return a method handle which can store values into the field + * @throws NoSuchFieldException if the field does not exist + * @throws IllegalAccessException if access checking fails, or if the field is {@code static} + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findSetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + MemberName field = resolveOrFail(REF_putField, refc, name, type); + return getDirectField(REF_putField, refc, field); + } + + /** + * Produces a method handle giving read access to a static field. + * The type of the method handle will have a return type of the field's + * value type. + * The method handle will take no arguments. + * Access checking is performed immediately on behalf of the lookup class. + *

+ * If the returned method handle is invoked, the field's class will + * be initialized, if it has not already been initialized. + * @param refc the class or interface from which the method is accessed + * @param name the field's name + * @param type the field's type + * @return a method handle which can load values from the field + * @throws NoSuchFieldException if the field does not exist + * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findStaticGetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + MemberName field = resolveOrFail(REF_getStatic, refc, name, type); + return getDirectField(REF_getStatic, refc, field); + } + + /** + * Produces a method handle giving write access to a static field. + * The type of the method handle will have a void return type. + * The method handle will take a single + * argument, of the field's value type, the value to be stored. + * Access checking is performed immediately on behalf of the lookup class. + *

+ * If the returned method handle is invoked, the field's class will + * be initialized, if it has not already been initialized. + * @param refc the class or interface from which the method is accessed + * @param name the field's name + * @param type the field's type + * @return a method handle which can store values into the field + * @throws NoSuchFieldException if the field does not exist + * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findStaticSetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + MemberName field = resolveOrFail(REF_putStatic, refc, name, type); + return getDirectField(REF_putStatic, refc, field); + } + + /** + * Produces an early-bound method handle for a non-static method. + * The receiver must have a supertype {@code defc} in which a method + * of the given name and type is accessible to the lookup class. + * The method and all its argument types must be accessible to the lookup object. + * The type of the method handle will be that of the method, + * without any insertion of an additional receiver parameter. + * The given receiver will be bound into the method handle, + * so that every call to the method handle will invoke the + * requested method on the given receiver. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set + * and the trailing array argument is not the only argument. + * (If the trailing array argument is the only argument, + * the given receiver value will be bound to it.) + *

+ * This is equivalent to the following code: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle mh0 = lookup().findVirtual(defc, name, type);
+MethodHandle mh1 = mh0.bindTo(receiver);
+MethodType mt1 = mh1.type();
+if (mh0.isVarargsCollector())
+  mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
+return mh1;
+         * }
+ * where {@code defc} is either {@code receiver.getClass()} or a super + * type of that class, in which the requested method is accessible + * to the lookup class. + * (Note that {@code bindTo} does not preserve variable arity.) + * @param receiver the object from which the method is accessed + * @param name the name of the method + * @param type the type of the method, with the receiver argument omitted + * @return the desired method handle + * @throws NoSuchMethodException if the method does not exist + * @throws IllegalAccessException if access checking fails + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + * @see MethodHandle#bindTo + * @see #findVirtual + */ + public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { + Class refc = receiver.getClass(); // may get NPE + MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type); + MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method)); + return mh.bindReceiver(receiver).setVarargs(method); + } + + /** + * Makes a direct method handle + * to m, if the lookup class has permission. + * If m is non-static, the receiver argument is treated as an initial argument. + * If m is virtual, overriding is respected on every call. + * Unlike the Core Reflection API, exceptions are not wrapped. + * The type of the method handle will be that of the method, + * with the receiver type prepended (but only if it is non-static). + * If the method's {@code accessible} flag is not set, + * access checking is performed immediately on behalf of the lookup class. + * If m is not public, do not share the resulting handle with untrusted parties. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * If m is static, and + * if the returned method handle is invoked, the method's class will + * be initialized, if it has not already been initialized. + * @param m the reflected method + * @return a method handle which can invoke the reflected method + * @throws IllegalAccessException if access checking fails + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @throws NullPointerException if the argument is null + */ + public MethodHandle unreflect(Method m) throws IllegalAccessException { + if (m.getDeclaringClass() == MethodHandle.class) { + MethodHandle mh = unreflectForMH(m); + if (mh != null) return mh; + } + MemberName method = new MemberName(m); + byte refKind = method.getReferenceKind(); + if (refKind == REF_invokeSpecial) + refKind = REF_invokeVirtual; + assert(method.isMethod()); + Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this; + return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method)); + } + private MethodHandle unreflectForMH(Method m) { + // these names require special lookups because they throw UnsupportedOperationException + if (MemberName.isMethodHandleInvokeName(m.getName())) + return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m)); + return null; + } + + /** + * Produces a method handle for a reflected method. + * It will bypass checks for overriding methods on the receiver, + * as if called from an {@code invokespecial} + * instruction from within the explicitly specified {@code specialCaller}. + * The type of the method handle will be that of the method, + * with a suitably restricted receiver type prepended. + * (The receiver type will be {@code specialCaller} or a subtype.) + * If the method's {@code accessible} flag is not set, + * access checking is performed immediately on behalf of the lookup class, + * as if {@code invokespecial} instruction were being linked. + *

+ * Before method resolution, + * if the explicitly specified caller class is not identical with the + * lookup class, or if this lookup object does not have + * private access + * privileges, the access fails. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set. + * @param m the reflected method + * @param specialCaller the class nominally calling the method + * @return a method handle which can invoke the reflected method + * @throws IllegalAccessException if access checking fails + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @throws NullPointerException if any argument is null + */ + public MethodHandle unreflectSpecial(Method m, Class specialCaller) throws IllegalAccessException { + checkSpecialCaller(specialCaller); + Lookup specialLookup = this.in(specialCaller); + MemberName method = new MemberName(m, true); + assert(method.isMethod()); + // ignore m.isAccessible: this is a new kind of access + return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method)); + } + + /** + * Produces a method handle for a reflected constructor. + * The type of the method handle will be that of the constructor, + * with the return type changed to the declaring class. + * The method handle will perform a {@code newInstance} operation, + * creating a new instance of the constructor's class on the + * arguments passed to the method handle. + *

+ * If the constructor's {@code accessible} flag is not set, + * access checking is performed immediately on behalf of the lookup class. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the constructor's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * If the returned method handle is invoked, the constructor's class will + * be initialized, if it has not already been initialized. + * @param c the reflected constructor + * @return a method handle which can invoke the reflected constructor + * @throws IllegalAccessException if access checking fails + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @throws NullPointerException if the argument is null + */ + public MethodHandle unreflectConstructor(Constructor c) throws IllegalAccessException { + MemberName ctor = new MemberName(c); + assert(ctor.isConstructor()); + Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this; + return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor); + } + + /** + * Produces a method handle giving read access to a reflected field. + * The type of the method handle will have a return type of the field's + * value type. + * If the field is static, the method handle will take no arguments. + * Otherwise, its single argument will be the instance containing + * the field. + * If the field's {@code accessible} flag is not set, + * access checking is performed immediately on behalf of the lookup class. + *

+ * If the field is static, and + * if the returned method handle is invoked, the field's class will + * be initialized, if it has not already been initialized. + * @param f the reflected field + * @return a method handle which can load values from the reflected field + * @throws IllegalAccessException if access checking fails + * @throws NullPointerException if the argument is null + */ + public MethodHandle unreflectGetter(Field f) throws IllegalAccessException { + return unreflectField(f, false); + } + private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException { + MemberName field = new MemberName(f, isSetter); + assert(isSetter + ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind()) + : MethodHandleNatives.refKindIsGetter(field.getReferenceKind())); + Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this; + return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field); + } + + /** + * Produces a method handle giving write access to a reflected field. + * The type of the method handle will have a void return type. + * If the field is static, the method handle will take a single + * argument, of the field's value type, the value to be stored. + * Otherwise, the two arguments will be the instance containing + * the field, and the value to be stored. + * If the field's {@code accessible} flag is not set, + * access checking is performed immediately on behalf of the lookup class. + *

+ * If the field is static, and + * if the returned method handle is invoked, the field's class will + * be initialized, if it has not already been initialized. + * @param f the reflected field + * @return a method handle which can store values into the reflected field + * @throws IllegalAccessException if access checking fails + * @throws NullPointerException if the argument is null + */ + public MethodHandle unreflectSetter(Field f) throws IllegalAccessException { + return unreflectField(f, true); + } + + /** + * Cracks a direct method handle + * created by this lookup object or a similar one. + * Security and access checks are performed to ensure that this lookup object + * is capable of reproducing the target method handle. + * This means that the cracking may fail if target is a direct method handle + * but was created by an unrelated lookup object. + * This can happen if the method handle is caller sensitive + * and was created by a lookup object for a different class. + * @param target a direct method handle to crack into symbolic reference components + * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails + * @exception NullPointerException if the target is {@code null} + * @see MethodHandleInfo + * @since 1.8 + */ + public MethodHandleInfo revealDirect(MethodHandle target) { + MemberName member = target.internalMemberName(); + if (member == null || (!member.isResolved() && !member.isMethodHandleInvoke())) + throw newIllegalArgumentException("not a direct method handle"); + Class defc = member.getDeclaringClass(); + byte refKind = member.getReferenceKind(); + assert(MethodHandleNatives.refKindIsValid(refKind)); + if (refKind == REF_invokeSpecial && !target.isInvokeSpecial()) + // Devirtualized method invocation is usually formally virtual. + // To avoid creating extra MemberName objects for this common case, + // we encode this extra degree of freedom using MH.isInvokeSpecial. + refKind = REF_invokeVirtual; + if (refKind == REF_invokeVirtual && defc.isInterface()) + // Symbolic reference is through interface but resolves to Object method (toString, etc.) + refKind = REF_invokeInterface; + // Check SM permissions and member access before cracking. + try { + checkAccess(refKind, defc, member); + checkSecurityManager(defc, member); + } catch (IllegalAccessException ex) { + throw new IllegalArgumentException(ex); + } + if (allowedModes != TRUSTED && member.isCallerSensitive()) { + Class callerClass = target.internalCallerClass(); + if (!hasPrivateAccess() || callerClass != lookupClass()) + throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass); + } + // Produce the handle to the results. + return new InfoFromMemberName(this, member, refKind); + } + + /// Helper methods, all package-private. + + MemberName resolveOrFail(byte refKind, Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + checkSymbolicClass(refc); // do this before attempting to resolve + name.getClass(); // NPE + type.getClass(); // NPE + return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), + NoSuchFieldException.class); + } + + MemberName resolveOrFail(byte refKind, Class refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { + checkSymbolicClass(refc); // do this before attempting to resolve + name.getClass(); // NPE + type.getClass(); // NPE + checkMethodName(refKind, name); // NPE check on name + return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), + NoSuchMethodException.class); + } + + MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException { + checkSymbolicClass(member.getDeclaringClass()); // do this before attempting to resolve + member.getName().getClass(); // NPE + member.getType().getClass(); // NPE + return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(), + ReflectiveOperationException.class); + } + + void checkSymbolicClass(Class refc) throws IllegalAccessException { + refc.getClass(); // NPE + Class caller = lookupClassOrNull(); + if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes)) + throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this); + } + + /** Check name for an illegal leading "<" character. */ + void checkMethodName(byte refKind, String name) throws NoSuchMethodException { + if (name.startsWith("<") && refKind != REF_newInvokeSpecial) + throw new NoSuchMethodException("illegal method name: "+name); + } + + + /** + * Find my trustable caller class if m is a caller sensitive method. + * If this lookup object has private access, then the caller class is the lookupClass. + * Otherwise, if m is caller-sensitive, throw IllegalAccessException. + */ + Class findBoundCallerClass(MemberName m) throws IllegalAccessException { + Class callerClass = null; + if (MethodHandleNatives.isCallerSensitive(m)) { + // Only lookups with private access are allowed to resolve caller-sensitive methods + if (hasPrivateAccess()) { + callerClass = lookupClass; + } else { + throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object"); + } + } + return callerClass; + } + + private boolean hasPrivateAccess() { + return (allowedModes & PRIVATE) != 0; + } + + /** + * Perform necessary access checks. + * Determines a trustable caller class to compare with refc, the symbolic reference class. + * If this lookup object has private access, then the caller class is the lookupClass. + */ + void checkSecurityManager(Class refc, MemberName m) { + SecurityManager smgr = System.getSecurityManager(); + if (smgr == null) return; + if (allowedModes == TRUSTED) return; + + // Step 1: + boolean fullPowerLookup = hasPrivateAccess(); + if (!fullPowerLookup || + !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) { + ReflectUtil.checkPackageAccess(refc); + } + + // Step 2: + if (m.isPublic()) return; + if (!fullPowerLookup) { + smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION); + } + + // Step 3: + Class defc = m.getDeclaringClass(); + if (!fullPowerLookup && defc != refc) { + ReflectUtil.checkPackageAccess(defc); + } + } + + void checkMethod(byte refKind, Class refc, MemberName m) throws IllegalAccessException { + boolean wantStatic = (refKind == REF_invokeStatic); + String message; + if (m.isConstructor()) + message = "expected a method, not a constructor"; + else if (!m.isMethod()) + message = "expected a method"; + else if (wantStatic != m.isStatic()) + message = wantStatic ? "expected a static method" : "expected a non-static method"; + else + { checkAccess(refKind, refc, m); return; } + throw m.makeAccessException(message, this); + } + + void checkField(byte refKind, Class refc, MemberName m) throws IllegalAccessException { + boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind); + String message; + if (wantStatic != m.isStatic()) + message = wantStatic ? "expected a static field" : "expected a non-static field"; + else + { checkAccess(refKind, refc, m); return; } + throw m.makeAccessException(message, this); + } + + /** Check public/protected/private bits on the symbolic reference class and its member. */ + void checkAccess(byte refKind, Class refc, MemberName m) throws IllegalAccessException { + assert(m.referenceKindIsConsistentWith(refKind) && + MethodHandleNatives.refKindIsValid(refKind) && + (MethodHandleNatives.refKindIsField(refKind) == m.isField())); + int allowedModes = this.allowedModes; + if (allowedModes == TRUSTED) return; + int mods = m.getModifiers(); + if (Modifier.isProtected(mods) && + refKind == REF_invokeVirtual && + m.getDeclaringClass() == Object.class && + m.getName().equals("clone") && + refc.isArray()) { + // The JVM does this hack also. + // (See ClassVerifier::verify_invoke_instructions + // and LinkResolver::check_method_accessability.) + // Because the JVM does not allow separate methods on array types, + // there is no separate method for int[].clone. + // All arrays simply inherit Object.clone. + // But for access checking logic, we make Object.clone + // (normally protected) appear to be public. + // Later on, when the DirectMethodHandle is created, + // its leading argument will be restricted to the + // requested array type. + // N.B. The return type is not adjusted, because + // that is *not* the bytecode behavior. + mods ^= Modifier.PROTECTED | Modifier.PUBLIC; + } + if (Modifier.isFinal(mods) && + MethodHandleNatives.refKindIsSetter(refKind)) + throw m.makeAccessException("unexpected set of a final field", this); + if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0) + return; // common case + int requestedModes = fixmods(mods); // adjust 0 => PACKAGE + if ((requestedModes & allowedModes) != 0) { + if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(), + mods, lookupClass(), allowedModes)) + return; + } else { + // Protected members can also be checked as if they were package-private. + if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0 + && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass())) + return; + } + throw m.makeAccessException(accessFailedMessage(refc, m), this); + } + + String accessFailedMessage(Class refc, MemberName m) { + Class defc = m.getDeclaringClass(); + int mods = m.getModifiers(); + // check the class first: + boolean classOK = (Modifier.isPublic(defc.getModifiers()) && + (defc == refc || + Modifier.isPublic(refc.getModifiers()))); + if (!classOK && (allowedModes & PACKAGE) != 0) { + classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) && + (defc == refc || + VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES))); + } + if (!classOK) + return "class is not public"; + if (Modifier.isPublic(mods)) + return "access to public member failed"; // (how?) + if (Modifier.isPrivate(mods)) + return "member is private"; + if (Modifier.isProtected(mods)) + return "member is protected"; + return "member is private to package"; + } + + private static final boolean ALLOW_NESTMATE_ACCESS = false; + + private void checkSpecialCaller(Class specialCaller) throws IllegalAccessException { + int allowedModes = this.allowedModes; + if (allowedModes == TRUSTED) return; + if (!hasPrivateAccess() + || (specialCaller != lookupClass() + && !(ALLOW_NESTMATE_ACCESS && + VerifyAccess.isSamePackageMember(specialCaller, lookupClass())))) + throw new MemberName(specialCaller). + makeAccessException("no private access for invokespecial", this); + } + + private boolean restrictProtectedReceiver(MemberName method) { + // The accessing class only has the right to use a protected member + // on itself or a subclass. Enforce that restriction, from JVMS 5.4.4, etc. + if (!method.isProtected() || method.isStatic() + || allowedModes == TRUSTED + || method.getDeclaringClass() == lookupClass() + || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()) + || (ALLOW_NESTMATE_ACCESS && + VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass()))) + return false; + return true; + } + private MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class caller) throws IllegalAccessException { + assert(!method.isStatic()); + // receiver type of mh is too wide; narrow to caller + if (!method.getDeclaringClass().isAssignableFrom(caller)) { + throw method.makeAccessException("caller class must be a subclass below the method", caller); + } + MethodType rawType = mh.type(); + if (rawType.parameterType(0) == caller) return mh; + MethodType narrowType = rawType.changeParameterType(0, caller); + return mh.viewAsType(narrowType); + } + + /** Check access and get the requested method. */ + private MethodHandle getDirectMethod(byte refKind, Class refc, MemberName method, Class callerClass) throws IllegalAccessException { + final boolean doRestrict = true; + final boolean checkSecurity = true; + return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass); + } + /** Check access and get the requested method, eliding receiver narrowing rules. */ + private MethodHandle getDirectMethodNoRestrict(byte refKind, Class refc, MemberName method, Class callerClass) throws IllegalAccessException { + final boolean doRestrict = false; + final boolean checkSecurity = true; + return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass); + } + /** Check access and get the requested method, eliding security manager checks. */ + private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class refc, MemberName method, Class callerClass) throws IllegalAccessException { + final boolean doRestrict = true; + final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants + return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass); + } + /** Common code for all methods; do not call directly except from immediately above. */ + private MethodHandle getDirectMethodCommon(byte refKind, Class refc, MemberName method, + boolean checkSecurity, + boolean doRestrict, Class callerClass) throws IllegalAccessException { + checkMethod(refKind, refc, method); + // Optionally check with the security manager; this isn't needed for unreflect* calls. + if (checkSecurity) + checkSecurityManager(refc, method); + assert(!method.isMethodHandleInvoke()); + + Class refcAsSuper; + if (refKind == REF_invokeSpecial && + refc != lookupClass() && + !refc.isInterface() && + refc != (refcAsSuper = lookupClass().getSuperclass()) && + refc.isAssignableFrom(lookupClass())) { + assert(!method.getName().equals("")); // not this code path + // Per JVMS 6.5, desc. of invokespecial instruction: + // If the method is in a superclass of the LC, + // and if our original search was above LC.super, + // repeat the search (symbolic lookup) from LC.super. + // FIXME: MemberName.resolve should handle this instead. + MemberName m2 = new MemberName(refcAsSuper, + method.getName(), + method.getMethodType(), + REF_invokeSpecial); + m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull()); + if (m2 == null) throw new InternalError(method.toString()); + method = m2; + refc = refcAsSuper; + // redo basic checks + checkMethod(refKind, refc, method); + } + + MethodHandle mh = DirectMethodHandle.make(refKind, refc, method); + mh = maybeBindCaller(method, mh, callerClass); + mh = mh.setVarargs(method); + // Optionally narrow the receiver argument to refc using restrictReceiver. + if (doRestrict && + (refKind == REF_invokeSpecial || + (MethodHandleNatives.refKindHasReceiver(refKind) && + restrictProtectedReceiver(method)))) + mh = restrictReceiver(method, mh, lookupClass()); + return mh; + } + private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, + Class callerClass) + throws IllegalAccessException { + if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method)) + return mh; + Class hostClass = lookupClass; + if (!hasPrivateAccess()) // caller must have private access + hostClass = callerClass; // callerClass came from a security manager style stack walk + MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass); + // Note: caller will apply varargs after this step happens. + return cbmh; + } + /** Check access and get the requested field. */ + private MethodHandle getDirectField(byte refKind, Class refc, MemberName field) throws IllegalAccessException { + final boolean checkSecurity = true; + return getDirectFieldCommon(refKind, refc, field, checkSecurity); + } + /** Check access and get the requested field, eliding security manager checks. */ + private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class refc, MemberName field) throws IllegalAccessException { + final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants + return getDirectFieldCommon(refKind, refc, field, checkSecurity); + } + /** Common code for all fields; do not call directly except from immediately above. */ + private MethodHandle getDirectFieldCommon(byte refKind, Class refc, MemberName field, + boolean checkSecurity) throws IllegalAccessException { + checkField(refKind, refc, field); + // Optionally check with the security manager; this isn't needed for unreflect* calls. + if (checkSecurity) + checkSecurityManager(refc, field); + MethodHandle mh = DirectMethodHandle.make(refc, field); + boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) && + restrictProtectedReceiver(field)); + if (doRestrict) + mh = restrictReceiver(field, mh, lookupClass()); + return mh; + } + /** Check access and get the requested constructor. */ + private MethodHandle getDirectConstructor(Class refc, MemberName ctor) throws IllegalAccessException { + final boolean checkSecurity = true; + return getDirectConstructorCommon(refc, ctor, checkSecurity); + } + /** Check access and get the requested constructor, eliding security manager checks. */ + private MethodHandle getDirectConstructorNoSecurityManager(Class refc, MemberName ctor) throws IllegalAccessException { + final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants + return getDirectConstructorCommon(refc, ctor, checkSecurity); + } + /** Common code for all constructors; do not call directly except from immediately above. */ + private MethodHandle getDirectConstructorCommon(Class refc, MemberName ctor, + boolean checkSecurity) throws IllegalAccessException { + assert(ctor.isConstructor()); + checkAccess(REF_newInvokeSpecial, refc, ctor); + // Optionally check with the security manager; this isn't needed for unreflect* calls. + if (checkSecurity) + checkSecurityManager(refc, ctor); + assert(!MethodHandleNatives.isCallerSensitive(ctor)); // maybeBindCaller not relevant here + return DirectMethodHandle.make(ctor).setVarargs(ctor); + } + + /** Hook called from the JVM (via MethodHandleNatives) to link MH constants: + */ + /*non-public*/ + MethodHandle linkMethodHandleConstant(byte refKind, Class defc, String name, Object type) throws ReflectiveOperationException { + if (!(type instanceof Class || type instanceof MethodType)) + throw new InternalError("unresolved MemberName"); + MemberName member = new MemberName(refKind, defc, name, type); + MethodHandle mh = LOOKASIDE_TABLE.get(member); + if (mh != null) { + checkSymbolicClass(defc); + return mh; + } + // Treat MethodHandle.invoke and invokeExact specially. + if (defc == MethodHandle.class && refKind == REF_invokeVirtual) { + mh = findVirtualForMH(member.getName(), member.getMethodType()); + if (mh != null) { + return mh; + } + } + MemberName resolved = resolveOrFail(refKind, member); + mh = getDirectMethodForConstant(refKind, defc, resolved); + if (mh instanceof DirectMethodHandle + && canBeCached(refKind, defc, resolved)) { + MemberName key = mh.internalMemberName(); + if (key != null) { + key = key.asNormalOriginal(); + } + if (member.equals(key)) { // better safe than sorry + LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh); + } + } + return mh; + } + private + boolean canBeCached(byte refKind, Class defc, MemberName member) { + if (refKind == REF_invokeSpecial) { + return false; + } + if (!Modifier.isPublic(defc.getModifiers()) || + !Modifier.isPublic(member.getDeclaringClass().getModifiers()) || + !member.isPublic() || + member.isCallerSensitive()) { + return false; + } + ClassLoader loader = defc.getClassLoader(); + if (!sun.misc.VM.isSystemDomainLoader(loader)) { + ClassLoader sysl = ClassLoader.getSystemClassLoader(); + boolean found = false; + while (sysl != null) { + if (loader == sysl) { found = true; break; } + sysl = sysl.getParent(); + } + if (!found) { + return false; + } + } + try { + MemberName resolved2 = publicLookup().resolveOrFail(refKind, + new MemberName(refKind, defc, member.getName(), member.getType())); + checkSecurityManager(defc, resolved2); + } catch (ReflectiveOperationException | SecurityException ex) { + return false; + } + return true; + } + private + MethodHandle getDirectMethodForConstant(byte refKind, Class defc, MemberName member) + throws ReflectiveOperationException { + if (MethodHandleNatives.refKindIsField(refKind)) { + return getDirectFieldNoSecurityManager(refKind, defc, member); + } else if (MethodHandleNatives.refKindIsMethod(refKind)) { + return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass); + } else if (refKind == REF_newInvokeSpecial) { + return getDirectConstructorNoSecurityManager(defc, member); + } + // oops + throw newIllegalArgumentException("bad MethodHandle constant #"+member); + } + + static ConcurrentHashMap LOOKASIDE_TABLE = new ConcurrentHashMap<>(); + } + + /** + * Produces a method handle giving read access to elements of an array. + * The type of the method handle will have a return type of the array's + * element type. Its first argument will be the array type, + * and the second will be {@code int}. + * @param arrayClass an array type + * @return a method handle which can load values from the given array type + * @throws NullPointerException if the argument is null + * @throws IllegalArgumentException if arrayClass is not an array type + */ + public static + MethodHandle arrayElementGetter(Class arrayClass) throws IllegalArgumentException { + return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false); + } + + /** + * Produces a method handle giving write access to elements of an array. + * The type of the method handle will have a void return type. + * Its last argument will be the array's element type. + * The first and second arguments will be the array type and int. + * @param arrayClass the class of an array + * @return a method handle which can store values into the array type + * @throws NullPointerException if the argument is null + * @throws IllegalArgumentException if arrayClass is not an array type + */ + public static + MethodHandle arrayElementSetter(Class arrayClass) throws IllegalArgumentException { + return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true); + } + + /// method handle invocation (reflective style) + + /** + * Produces a method handle which will invoke any method handle of the + * given {@code type}, with a given number of trailing arguments replaced by + * a single trailing {@code Object[]} array. + * The resulting invoker will be a method handle with the following + * arguments: + *

+ *

+ * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with + * the indicated {@code type}. + * That is, if the target is exactly of the given {@code type}, it will behave + * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType} + * is used to convert the target to the required {@code type}. + *

+ * The type of the returned invoker will not be the given {@code type}, but rather + * will have all parameters except the first {@code leadingArgCount} + * replaced by a single array of type {@code Object[]}, which will be + * the final parameter. + *

+ * Before invoking its target, the invoker will spread the final array, apply + * reference casts as necessary, and unbox and widen primitive arguments. + * If, when the invoker is called, the supplied array argument does + * not have the correct number of elements, the invoker will throw + * an {@link IllegalArgumentException} instead of invoking the target. + *

+ * This method is equivalent to the following code (though it may be more efficient): + *

{@code
+MethodHandle invoker = MethodHandles.invoker(type);
+int spreadArgCount = type.parameterCount() - leadingArgCount;
+invoker = invoker.asSpreader(Object[].class, spreadArgCount);
+return invoker;
+     * }
+ * This method throws no reflective or security exceptions. + * @param type the desired target type + * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target + * @return a method handle suitable for invoking any method handle of the given type + * @throws NullPointerException if {@code type} is null + * @throws IllegalArgumentException if {@code leadingArgCount} is not in + * the range from 0 to {@code type.parameterCount()} inclusive, + * or if the resulting method handle's type would have + * too many parameters + */ + static public + MethodHandle spreadInvoker(MethodType type, int leadingArgCount) { + if (leadingArgCount < 0 || leadingArgCount > type.parameterCount()) + throw new IllegalArgumentException("bad argument count "+leadingArgCount); + return type.invokers().spreadInvoker(leadingArgCount); + } + + /** + * Produces a special invoker method handle which can be used to + * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}. + * The resulting invoker will have a type which is + * exactly equal to the desired type, except that it will accept + * an additional leading argument of type {@code MethodHandle}. + *

+ * This method is equivalent to the following code (though it may be more efficient): + * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)} + * + *

+ * Discussion: + * Invoker method handles can be useful when working with variable method handles + * of unknown types. + * For example, to emulate an {@code invokeExact} call to a variable method + * handle {@code M}, extract its type {@code T}, + * look up the invoker method {@code X} for {@code T}, + * and call the invoker method, as {@code X.invoke(T, A...)}. + * (It would not work to call {@code X.invokeExact}, since the type {@code T} + * is unknown.) + * If spreading, collecting, or other argument transformations are required, + * they can be applied once to the invoker {@code X} and reused on many {@code M} + * method handle values, as long as they are compatible with the type of {@code X}. + *

+ * (Note: The invoker method is not available via the Core Reflection API. + * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} + * on the declared {@code invokeExact} or {@code invoke} method will raise an + * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.) + *

+ * This method throws no reflective or security exceptions. + * @param type the desired target type + * @return a method handle suitable for invoking any method handle of the given type + * @throws IllegalArgumentException if the resulting method handle's type would have + * too many parameters + */ + static public + MethodHandle exactInvoker(MethodType type) { + return type.invokers().exactInvoker(); + } + + /** + * Produces a special invoker method handle which can be used to + * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}. + * The resulting invoker will have a type which is + * exactly equal to the desired type, except that it will accept + * an additional leading argument of type {@code MethodHandle}. + *

+ * Before invoking its target, if the target differs from the expected type, + * the invoker will apply reference casts as + * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}. + * Similarly, the return value will be converted as necessary. + * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle}, + * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}. + *

+ * This method is equivalent to the following code (though it may be more efficient): + * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)} + *

+ * Discussion: + * A {@linkplain MethodType#genericMethodType general method type} is one which + * mentions only {@code Object} arguments and return values. + * An invoker for such a type is capable of calling any method handle + * of the same arity as the general type. + *

+ * (Note: The invoker method is not available via the Core Reflection API. + * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} + * on the declared {@code invokeExact} or {@code invoke} method will raise an + * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.) + *

+ * This method throws no reflective or security exceptions. + * @param type the desired target type + * @return a method handle suitable for invoking any method handle convertible to the given type + * @throws IllegalArgumentException if the resulting method handle's type would have + * too many parameters + */ + static public + MethodHandle invoker(MethodType type) { + return type.invokers().generalInvoker(); + } + + static /*non-public*/ + MethodHandle basicInvoker(MethodType type) { + return type.form().basicInvoker(); + } + + /// method handle modification (creation from other method handles) + + /** + * Produces a method handle which adapts the type of the + * given method handle to a new type by pairwise argument and return type conversion. + * The original type and new type must have the same number of arguments. + * The resulting method handle is guaranteed to report a type + * which is equal to the desired new type. + *

+ * If the original type and new type are equal, returns target. + *

+ * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType}, + * and some additional conversions are also applied if those conversions fail. + * Given types T0, T1, one of the following conversions is applied + * if possible, before or instead of any conversions done by {@code asType}: + *

+ * @param target the method handle to invoke after arguments are retyped + * @param newType the expected type of the new method handle + * @return a method handle which delegates to the target after performing + * any necessary argument conversions, and arranges for any + * necessary return value conversions + * @throws NullPointerException if either argument is null + * @throws WrongMethodTypeException if the conversion cannot be made + * @see MethodHandle#asType + */ + public static + MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) { + if (!target.type().isCastableTo(newType)) { + throw new WrongMethodTypeException("cannot explicitly cast "+target+" to "+newType); + } + return MethodHandleImpl.makePairwiseConvert(target, newType, 2); + } + + /** + * Produces a method handle which adapts the calling sequence of the + * given method handle to a new type, by reordering the arguments. + * The resulting method handle is guaranteed to report a type + * which is equal to the desired new type. + *

+ * The given array controls the reordering. + * Call {@code #I} the number of incoming parameters (the value + * {@code newType.parameterCount()}, and call {@code #O} the number + * of outgoing parameters (the value {@code target.type().parameterCount()}). + * Then the length of the reordering array must be {@code #O}, + * and each element must be a non-negative number less than {@code #I}. + * For every {@code N} less than {@code #O}, the {@code N}-th + * outgoing argument will be taken from the {@code I}-th incoming + * argument, where {@code I} is {@code reorder[N]}. + *

+ * No argument or return value conversions are applied. + * The type of each incoming argument, as determined by {@code newType}, + * must be identical to the type of the corresponding outgoing parameter + * or parameters in the target method handle. + * The return type of {@code newType} must be identical to the return + * type of the original target. + *

+ * The reordering array need not specify an actual permutation. + * An incoming argument will be duplicated if its index appears + * more than once in the array, and an incoming argument will be dropped + * if its index does not appear in the array. + * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments}, + * incoming arguments which are not mentioned in the reordering array + * are may be any type, as determined only by {@code newType}. + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodType intfn1 = methodType(int.class, int.class);
+MethodType intfn2 = methodType(int.class, int.class, int.class);
+MethodHandle sub = ... (int x, int y) -> (x-y) ...;
+assert(sub.type().equals(intfn2));
+MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
+MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
+assert((int)rsub.invokeExact(1, 100) == 99);
+MethodHandle add = ... (int x, int y) -> (x+y) ...;
+assert(add.type().equals(intfn2));
+MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
+assert(twice.type().equals(intfn1));
+assert((int)twice.invokeExact(21) == 42);
+     * }
+ * @param target the method handle to invoke after arguments are reordered + * @param newType the expected type of the new method handle + * @param reorder an index array which controls the reordering + * @return a method handle which delegates to the target after it + * drops unused arguments and moves and/or duplicates the other arguments + * @throws NullPointerException if any argument is null + * @throws IllegalArgumentException if the index array length is not equal to + * the arity of the target, or if any index array element + * not a valid index for a parameter of {@code newType}, + * or if two corresponding parameter types in + * {@code target.type()} and {@code newType} are not identical, + */ + public static + MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) { + checkReorder(reorder, newType, target.type()); + return target.permuteArguments(newType, reorder); + } + + private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) { + if (newType.returnType() != oldType.returnType()) + throw newIllegalArgumentException("return types do not match", + oldType, newType); + if (reorder.length == oldType.parameterCount()) { + int limit = newType.parameterCount(); + boolean bad = false; + for (int j = 0; j < reorder.length; j++) { + int i = reorder[j]; + if (i < 0 || i >= limit) { + bad = true; break; + } + Class src = newType.parameterType(i); + Class dst = oldType.parameterType(j); + if (src != dst) + throw newIllegalArgumentException("parameter types do not match after reorder", + oldType, newType); + } + if (!bad) return; + } + throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder)); + } + + /** + * Produces a method handle of the requested return type which returns the given + * constant value every time it is invoked. + *

+ * Before the method handle is returned, the passed-in value is converted to the requested type. + * If the requested type is primitive, widening primitive conversions are attempted, + * else reference conversions are attempted. + *

The returned method handle is equivalent to {@code identity(type).bindTo(value)}. + * @param type the return type of the desired method handle + * @param value the value to return + * @return a method handle of the given return type and no arguments, which always returns the given value + * @throws NullPointerException if the {@code type} argument is null + * @throws ClassCastException if the value cannot be converted to the required return type + * @throws IllegalArgumentException if the given type is {@code void.class} + */ + public static + MethodHandle constant(Class type, Object value) { + if (type.isPrimitive()) { + if (type == void.class) + throw newIllegalArgumentException("void type"); + Wrapper w = Wrapper.forPrimitiveType(type); + return insertArguments(identity(type), 0, w.convert(value, type)); + } else { + return identity(type).bindTo(type.cast(value)); + } + } + + /** + * Produces a method handle which returns its sole argument when invoked. + * @param type the type of the sole parameter and return value of the desired method handle + * @return a unary method handle which accepts and returns the given type + * @throws NullPointerException if the argument is null + * @throws IllegalArgumentException if the given type is {@code void.class} + */ + public static + MethodHandle identity(Class type) { + if (type == void.class) + throw newIllegalArgumentException("void type"); + else if (type == Object.class) + return ValueConversions.identity(); + else if (type.isPrimitive()) + return ValueConversions.identity(Wrapper.forPrimitiveType(type)); + else + return MethodHandleImpl.makeReferenceIdentity(type); + } + + /** + * Provides a target method handle with one or more bound arguments + * in advance of the method handle's invocation. + * The formal parameters to the target corresponding to the bound + * arguments are called bound parameters. + * Returns a new method handle which saves away the bound arguments. + * When it is invoked, it receives arguments for any non-bound parameters, + * binds the saved arguments to their corresponding parameters, + * and calls the original target. + *

+ * The type of the new method handle will drop the types for the bound + * parameters from the original target type, since the new method handle + * will no longer require those arguments to be supplied by its callers. + *

+ * Each given argument object must match the corresponding bound parameter type. + * If a bound parameter type is a primitive, the argument object + * must be a wrapper, and will be unboxed to produce the primitive value. + *

+ * The {@code pos} argument selects which parameters are to be bound. + * It may range between zero and N-L (inclusively), + * where N is the arity of the target method handle + * and L is the length of the values array. + * @param target the method handle to invoke after the argument is inserted + * @param pos where to insert the argument (zero for the first) + * @param values the series of arguments to insert + * @return a method handle which inserts an additional argument, + * before calling the original method handle + * @throws NullPointerException if the target or the {@code values} array is null + * @see MethodHandle#bindTo + */ + public static + MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { + int insCount = values.length; + MethodType oldType = target.type(); + int outargs = oldType.parameterCount(); + int inargs = outargs - insCount; + if (inargs < 0) + throw newIllegalArgumentException("too many values to insert"); + if (pos < 0 || pos > inargs) + throw newIllegalArgumentException("no argument type to append"); + MethodHandle result = target; + for (int i = 0; i < insCount; i++) { + Object value = values[i]; + Class ptype = oldType.parameterType(pos+i); + if (ptype.isPrimitive()) { + char btype = 'I'; + Wrapper w = Wrapper.forPrimitiveType(ptype); + switch (w) { + case LONG: btype = 'J'; break; + case FLOAT: btype = 'F'; break; + case DOUBLE: btype = 'D'; break; + } + // perform unboxing and/or primitive conversion + value = w.convert(value, ptype); + result = result.bindArgument(pos, btype, value); + continue; + } + value = ptype.cast(value); // throw CCE if needed + if (pos == 0) { + result = result.bindReceiver(value); + } else { + result = result.bindArgument(pos, 'L', value); + } + } + return result; + } + + /** + * Produces a method handle which will discard some dummy arguments + * before calling some other specified target method handle. + * The type of the new method handle will be the same as the target's type, + * except it will also include the dummy argument types, + * at some given position. + *

+ * The {@code pos} argument may range between zero and N, + * where N is the arity of the target. + * If {@code pos} is zero, the dummy arguments will precede + * the target's real arguments; if {@code pos} is N + * they will come after. + *

+ * Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
+MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
+assertEquals(bigType, d0.type());
+assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
+     * }
+ *

+ * This method is also equivalent to the following code: + *

+     * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
+     * 
+ * @param target the method handle to invoke after the arguments are dropped + * @param valueTypes the type(s) of the argument(s) to drop + * @param pos position of first argument to drop (zero for the leftmost) + * @return a method handle which drops arguments of the given types, + * before calling the original method handle + * @throws NullPointerException if the target is null, + * or if the {@code valueTypes} list or any of its elements is null + * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, + * or if {@code pos} is negative or greater than the arity of the target, + * or if the new method handle's type would have too many parameters + */ + public static + MethodHandle dropArguments(MethodHandle target, int pos, List> valueTypes) { + MethodType oldType = target.type(); // get NPE + int dropped = valueTypes.size(); + MethodType.checkSlotCount(dropped); + if (dropped == 0) return target; + int outargs = oldType.parameterCount(); + int inargs = outargs + dropped; + if (pos < 0 || pos >= inargs) + throw newIllegalArgumentException("no argument type to remove"); + ArrayList> ptypes = new ArrayList<>(oldType.parameterList()); + ptypes.addAll(pos, valueTypes); + MethodType newType = MethodType.methodType(oldType.returnType(), ptypes); + return target.dropArguments(newType, pos, dropped); + } + + /** + * Produces a method handle which will discard some dummy arguments + * before calling some other specified target method handle. + * The type of the new method handle will be the same as the target's type, + * except it will also include the dummy argument types, + * at some given position. + *

+ * The {@code pos} argument may range between zero and N, + * where N is the arity of the target. + * If {@code pos} is zero, the dummy arguments will precede + * the target's real arguments; if {@code pos} is N + * they will come after. + *

+ * Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodHandle d0 = dropArguments(cat, 0, String.class);
+assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
+MethodHandle d1 = dropArguments(cat, 1, String.class);
+assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
+MethodHandle d2 = dropArguments(cat, 2, String.class);
+assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
+MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
+assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
+     * }
+ *

+ * This method is also equivalent to the following code: + *

+     * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
+     * 
+ * @param target the method handle to invoke after the arguments are dropped + * @param valueTypes the type(s) of the argument(s) to drop + * @param pos position of first argument to drop (zero for the leftmost) + * @return a method handle which drops arguments of the given types, + * before calling the original method handle + * @throws NullPointerException if the target is null, + * or if the {@code valueTypes} array or any of its elements is null + * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, + * or if {@code pos} is negative or greater than the arity of the target, + * or if the new method handle's type would have + * too many parameters + */ + public static + MethodHandle dropArguments(MethodHandle target, int pos, Class... valueTypes) { + return dropArguments(target, pos, Arrays.asList(valueTypes)); + } + + /** + * Adapts a target method handle by pre-processing + * one or more of its arguments, each with its own unary filter function, + * and then calling the target with each pre-processed argument + * replaced by the result of its corresponding filter function. + *

+ * The pre-processing is performed by one or more method handles, + * specified in the elements of the {@code filters} array. + * The first element of the filter array corresponds to the {@code pos} + * argument of the target, and so on in sequence. + *

+ * Null arguments in the array are treated as identity functions, + * and the corresponding arguments left unchanged. + * (If there are no non-null elements in the array, the original target is returned.) + * Each filter is applied to the corresponding argument of the adapter. + *

+ * If a filter {@code F} applies to the {@code N}th argument of + * the target, then {@code F} must be a method handle which + * takes exactly one argument. The type of {@code F}'s sole argument + * replaces the corresponding argument type of the target + * in the resulting adapted method handle. + * The return type of {@code F} must be identical to the corresponding + * parameter type of the target. + *

+ * It is an error if there are elements of {@code filters} + * (null or not) + * which do not correspond to argument positions in the target. + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle upcase = lookup().findVirtual(String.class,
+  "toUpperCase", methodType(String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodHandle f0 = filterArguments(cat, 0, upcase);
+assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
+MethodHandle f1 = filterArguments(cat, 1, upcase);
+assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
+MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
+assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
+     * }
+ *

Here is pseudocode for the resulting adapter: + *

{@code
+     * V target(P... p, A[i]... a[i], B... b);
+     * A[i] filter[i](V[i]);
+     * T adapter(P... p, V[i]... v[i], B... b) {
+     *   return target(p..., f[i](v[i])..., b...);
+     * }
+     * }
+ * + * @param target the method handle to invoke after arguments are filtered + * @param pos the position of the first argument to filter + * @param filters method handles to call initially on filtered arguments + * @return method handle which incorporates the specified argument filtering logic + * @throws NullPointerException if the target is null + * or if the {@code filters} array is null + * @throws IllegalArgumentException if a non-null element of {@code filters} + * does not match a corresponding argument type of target as described above, + * or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}, + * or if the resulting method handle's type would have + * too many parameters + */ + public static + MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) { + MethodType targetType = target.type(); + MethodHandle adapter = target; + MethodType adapterType = null; + assert((adapterType = targetType) != null); + int maxPos = targetType.parameterCount(); + if (pos + filters.length > maxPos) + throw newIllegalArgumentException("too many filters"); + int curPos = pos-1; // pre-incremented + for (MethodHandle filter : filters) { + curPos += 1; + if (filter == null) continue; // ignore null elements of filters + adapter = filterArgument(adapter, curPos, filter); + assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null); + } + assert(adapterType.equals(adapter.type())); + return adapter; + } + + /*non-public*/ static + MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) { + MethodType targetType = target.type(); + MethodType filterType = filter.type(); + if (filterType.parameterCount() != 1 + || filterType.returnType() != targetType.parameterType(pos)) + throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); + return MethodHandleImpl.makeCollectArguments(target, filter, pos, false); + } + + /** + * Adapts a target method handle by pre-processing + * a sub-sequence of its arguments with a filter (another method handle). + * The pre-processed arguments are replaced by the result (if any) of the + * filter function. + * The target is then called on the modified (usually shortened) argument list. + *

+ * If the filter returns a value, the target must accept that value as + * its argument in position {@code pos}, preceded and/or followed by + * any arguments not passed to the filter. + * If the filter returns void, the target must accept all arguments + * not passed to the filter. + * No arguments are reordered, and a result returned from the filter + * replaces (in order) the whole subsequence of arguments originally + * passed to the adapter. + *

+ * The argument types (if any) of the filter + * replace zero or one argument types of the target, at position {@code pos}, + * in the resulting adapted method handle. + * The return type of the filter (if any) must be identical to the + * argument type of the target at position {@code pos}, and that target argument + * is supplied by the return value of the filter. + *

+ * In all cases, {@code pos} must be greater than or equal to zero, and + * {@code pos} must also be less than or equal to the target's arity. + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle deepToString = publicLookup()
+  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
+
+MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
+assertEquals("[strange]", (String) ts1.invokeExact("strange"));
+
+MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
+assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
+
+MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
+MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
+assertEquals("[top, [up, down], strange]",
+             (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
+
+MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
+assertEquals("[top, [up, down], [strange]]",
+             (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
+
+MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
+assertEquals("[top, [[up, down, strange], charm], bottom]",
+             (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
+     * }
+ *

Here is pseudocode for the resulting adapter: + *

{@code
+     * T target(A...,V,C...);
+     * V filter(B...);
+     * T adapter(A... a,B... b,C... c) {
+     *   V v = filter(b...);
+     *   return target(a...,v,c...);
+     * }
+     * // and if the filter has no arguments:
+     * T target2(A...,V,C...);
+     * V filter2();
+     * T adapter2(A... a,C... c) {
+     *   V v = filter2();
+     *   return target2(a...,v,c...);
+     * }
+     * // and if the filter has a void return:
+     * T target3(A...,C...);
+     * void filter3(B...);
+     * void adapter3(A... a,B... b,C... c) {
+     *   filter3(b...);
+     *   return target3(a...,c...);
+     * }
+     * }
+ *

+ * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to + * one which first "folds" the affected arguments, and then drops them, in separate + * steps as follows: + *

{@code
+     * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
+     * mh = MethodHandles.foldArguments(mh, coll); //step 1
+     * }
+ * If the target method handle consumes no arguments besides than the result + * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)} + * is equivalent to {@code filterReturnValue(coll, mh)}. + * If the filter method handle {@code coll} consumes one argument and produces + * a non-void result, then {@code collectArguments(mh, N, coll)} + * is equivalent to {@code filterArguments(mh, N, coll)}. + * Other equivalences are possible but would require argument permutation. + * + * @param target the method handle to invoke after filtering the subsequence of arguments + * @param pos the position of the first adapter argument to pass to the filter, + * and/or the target argument which receives the result of the filter + * @param filter method handle to call on the subsequence of arguments + * @return method handle which incorporates the specified argument subsequence filtering logic + * @throws NullPointerException if either argument is null + * @throws IllegalArgumentException if the return type of {@code filter} + * is non-void and is not the same as the {@code pos} argument of the target, + * or if {@code pos} is not between 0 and the target's arity, inclusive, + * or if the resulting method handle's type would have + * too many parameters + * @see MethodHandles#foldArguments + * @see MethodHandles#filterArguments + * @see MethodHandles#filterReturnValue + */ + public static + MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) { + MethodType targetType = target.type(); + MethodType filterType = filter.type(); + if (filterType.returnType() != void.class && + filterType.returnType() != targetType.parameterType(pos)) + throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); + return MethodHandleImpl.makeCollectArguments(target, filter, pos, false); + } + + /** + * Adapts a target method handle by post-processing + * its return value (if any) with a filter (another method handle). + * The result of the filter is returned from the adapter. + *

+ * If the target returns a value, the filter must accept that value as + * its only argument. + * If the target returns void, the filter must accept no arguments. + *

+ * The return type of the filter + * replaces the return type of the target + * in the resulting adapted method handle. + * The argument type of the filter (if any) must be identical to the + * return type of the target. + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle length = lookup().findVirtual(String.class,
+  "length", methodType(int.class));
+System.out.println((String) cat.invokeExact("x", "y")); // xy
+MethodHandle f0 = filterReturnValue(cat, length);
+System.out.println((int) f0.invokeExact("x", "y")); // 2
+     * }
+ *

Here is pseudocode for the resulting adapter: + *

{@code
+     * V target(A...);
+     * T filter(V);
+     * T adapter(A... a) {
+     *   V v = target(a...);
+     *   return filter(v);
+     * }
+     * // and if the target has a void return:
+     * void target2(A...);
+     * T filter2();
+     * T adapter2(A... a) {
+     *   target2(a...);
+     *   return filter2();
+     * }
+     * // and if the filter has a void return:
+     * V target3(A...);
+     * void filter3(V);
+     * void adapter3(A... a) {
+     *   V v = target3(a...);
+     *   filter3(v);
+     * }
+     * }
+ * @param target the method handle to invoke before filtering the return value + * @param filter method handle to call on the return value + * @return method handle which incorporates the specified return value filtering logic + * @throws NullPointerException if either argument is null + * @throws IllegalArgumentException if the argument list of {@code filter} + * does not match the return type of target as described above + */ + public static + MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) { + MethodType targetType = target.type(); + MethodType filterType = filter.type(); + Class rtype = targetType.returnType(); + int filterValues = filterType.parameterCount(); + if (filterValues == 0 + ? (rtype != void.class) + : (rtype != filterType.parameterType(0))) + throw newIllegalArgumentException("target and filter types do not match", target, filter); + // result = fold( lambda(retval, arg...) { filter(retval) }, + // lambda( arg...) { target(arg...) } ) + return MethodHandleImpl.makeCollectArguments(filter, target, 0, false); + } + + /** + * Adapts a target method handle by pre-processing + * some of its arguments, and then calling the target with + * the result of the pre-processing, inserted into the original + * sequence of arguments. + *

+ * The pre-processing is performed by {@code combiner}, a second method handle. + * Of the arguments passed to the adapter, the first {@code N} arguments + * are copied to the combiner, which is then called. + * (Here, {@code N} is defined as the parameter count of the combiner.) + * After this, control passes to the target, with any result + * from the combiner inserted before the original {@code N} incoming + * arguments. + *

+ * If the combiner returns a value, the first parameter type of the target + * must be identical with the return type of the combiner, and the next + * {@code N} parameter types of the target must exactly match the parameters + * of the combiner. + *

+ * If the combiner has a void return, no result will be inserted, + * and the first {@code N} parameter types of the target + * must exactly match the parameters of the combiner. + *

+ * The resulting adapter is the same type as the target, except that the + * first parameter type is dropped, + * if it corresponds to the result of the combiner. + *

+ * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments + * that either the combiner or the target does not wish to receive. + * If some of the incoming arguments are destined only for the combiner, + * consider using {@link MethodHandle#asCollector asCollector} instead, since those + * arguments will not need to be live on the stack on entry to the + * target.) + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
+  "println", methodType(void.class, String.class))
+    .bindTo(System.out);
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
+MethodHandle catTrace = foldArguments(cat, trace);
+// also prints "boo":
+assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
+     * }
+ *

Here is pseudocode for the resulting adapter: + *

{@code
+     * // there are N arguments in A...
+     * T target(V, A[N]..., B...);
+     * V combiner(A...);
+     * T adapter(A... a, B... b) {
+     *   V v = combiner(a...);
+     *   return target(v, a..., b...);
+     * }
+     * // and if the combiner has a void return:
+     * T target2(A[N]..., B...);
+     * void combiner2(A...);
+     * T adapter2(A... a, B... b) {
+     *   combiner2(a...);
+     *   return target2(a..., b...);
+     * }
+     * }
+ * @param target the method handle to invoke after arguments are combined + * @param combiner method handle to call initially on the incoming arguments + * @return method handle which incorporates the specified argument folding logic + * @throws NullPointerException if either argument is null + * @throws IllegalArgumentException if {@code combiner}'s return type + * is non-void and not the same as the first argument type of + * the target, or if the initial {@code N} argument types + * of the target + * (skipping one matching the {@code combiner}'s return type) + * are not identical with the argument types of {@code combiner} + */ + public static + MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { + int pos = 0; + MethodType targetType = target.type(); + MethodType combinerType = combiner.type(); + int foldPos = pos; + int foldArgs = combinerType.parameterCount(); + int foldVals = combinerType.returnType() == void.class ? 0 : 1; + int afterInsertPos = foldPos + foldVals; + boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs); + if (ok && !(combinerType.parameterList() + .equals(targetType.parameterList().subList(afterInsertPos, + afterInsertPos + foldArgs)))) + ok = false; + if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0))) + ok = false; + if (!ok) + throw misMatchedTypes("target and combiner types", targetType, combinerType); + MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos); + return MethodHandleImpl.makeCollectArguments(target, combiner, foldPos, true); + } + + /** + * Makes a method handle which adapts a target method handle, + * by guarding it with a test, a boolean-valued method handle. + * If the guard fails, a fallback handle is called instead. + * All three method handles must have the same corresponding + * argument and return types, except that the return type + * of the test must be boolean, and the test is allowed + * to have fewer arguments than the other two method handles. + *

Here is pseudocode for the resulting adapter: + *

{@code
+     * boolean test(A...);
+     * T target(A...,B...);
+     * T fallback(A...,B...);
+     * T adapter(A... a,B... b) {
+     *   if (test(a...))
+     *     return target(a..., b...);
+     *   else
+     *     return fallback(a..., b...);
+     * }
+     * }
+ * Note that the test arguments ({@code a...} in the pseudocode) cannot + * be modified by execution of the test, and so are passed unchanged + * from the caller to the target or fallback as appropriate. + * @param test method handle used for test, must return boolean + * @param target method handle to call if test passes + * @param fallback method handle to call if test fails + * @return method handle which incorporates the specified if/then/else logic + * @throws NullPointerException if any argument is null + * @throws IllegalArgumentException if {@code test} does not return boolean, + * or if all three method types do not match (with the return + * type of {@code test} changed to match that of the target). + */ + public static + MethodHandle guardWithTest(MethodHandle test, + MethodHandle target, + MethodHandle fallback) { + MethodType gtype = test.type(); + MethodType ttype = target.type(); + MethodType ftype = fallback.type(); + if (!ttype.equals(ftype)) + throw misMatchedTypes("target and fallback types", ttype, ftype); + if (gtype.returnType() != boolean.class) + throw newIllegalArgumentException("guard type is not a predicate "+gtype); + List> targs = ttype.parameterList(); + List> gargs = gtype.parameterList(); + if (!targs.equals(gargs)) { + int gpc = gargs.size(), tpc = targs.size(); + if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs)) + throw misMatchedTypes("target and test types", ttype, gtype); + test = dropArguments(test, gpc, targs.subList(gpc, tpc)); + gtype = test.type(); + } + return MethodHandleImpl.makeGuardWithTest(test, target, fallback); + } + + static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) { + return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); + } + + /** + * Makes a method handle which adapts a target method handle, + * by running it inside an exception handler. + * If the target returns normally, the adapter returns that value. + * If an exception matching the specified type is thrown, the fallback + * handle is called instead on the exception, plus the original arguments. + *

+ * The target and handler must have the same corresponding + * argument and return types, except that handler may omit trailing arguments + * (similarly to the predicate in {@link #guardWithTest guardWithTest}). + * Also, the handler must have an extra leading parameter of {@code exType} or a supertype. + *

Here is pseudocode for the resulting adapter: + *

{@code
+     * T target(A..., B...);
+     * T handler(ExType, A...);
+     * T adapter(A... a, B... b) {
+     *   try {
+     *     return target(a..., b...);
+     *   } catch (ExType ex) {
+     *     return handler(ex, a...);
+     *   }
+     * }
+     * }
+ * Note that the saved arguments ({@code a...} in the pseudocode) cannot + * be modified by execution of the target, and so are passed unchanged + * from the caller to the handler, if the handler is invoked. + *

+ * The target and handler must return the same type, even if the handler + * always throws. (This might happen, for instance, because the handler + * is simulating a {@code finally} clause). + * To create such a throwing handler, compose the handler creation logic + * with {@link #throwException throwException}, + * in order to create a method handle of the correct return type. + * @param target method handle to call + * @param exType the type of exception which the handler will catch + * @param handler method handle to call if a matching exception is thrown + * @return method handle which incorporates the specified try/catch logic + * @throws NullPointerException if any argument is null + * @throws IllegalArgumentException if {@code handler} does not accept + * the given exception type, or if the method handle types do + * not match in their return types and their + * corresponding parameters + */ + public static + MethodHandle catchException(MethodHandle target, + Class exType, + MethodHandle handler) { + MethodType ttype = target.type(); + MethodType htype = handler.type(); + if (htype.parameterCount() < 1 || + !htype.parameterType(0).isAssignableFrom(exType)) + throw newIllegalArgumentException("handler does not accept exception type "+exType); + if (htype.returnType() != ttype.returnType()) + throw misMatchedTypes("target and handler return types", ttype, htype); + List> targs = ttype.parameterList(); + List> hargs = htype.parameterList(); + hargs = hargs.subList(1, hargs.size()); // omit leading parameter from handler + if (!targs.equals(hargs)) { + int hpc = hargs.size(), tpc = targs.size(); + if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs)) + throw misMatchedTypes("target and handler types", ttype, htype); + handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc)); + htype = handler.type(); + } + return MethodHandleImpl.makeGuardWithCatch(target, exType, handler); + } + + /** + * Produces a method handle which will throw exceptions of the given {@code exType}. + * The method handle will accept a single argument of {@code exType}, + * and immediately throw it as an exception. + * The method type will nominally specify a return of {@code returnType}. + * The return type may be anything convenient: It doesn't matter to the + * method handle's behavior, since it will never return normally. + * @param returnType the return type of the desired method handle + * @param exType the parameter type of the desired method handle + * @return method handle which can throw the given exceptions + * @throws NullPointerException if either argument is null + */ + public static + MethodHandle throwException(Class returnType, Class exType) { + if (!Throwable.class.isAssignableFrom(exType)) + throw new ClassCastException(exType.getName()); + return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType)); + } +}