diff -r 4252bfc396fc -r d382dacfd73f emul/mini/src/main/java/java/lang/Math.java --- a/emul/mini/src/main/java/java/lang/Math.java Tue Feb 26 14:55:55 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1311 +0,0 @@ -/* - * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved. - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. - * - * This code is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 only, as - * published by the Free Software Foundation. Oracle designates this - * particular file as subject to the "Classpath" exception as provided - * by Oracle in the LICENSE file that accompanied this code. - * - * This code is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * version 2 for more details (a copy is included in the LICENSE file that - * accompanied this code). - * - * You should have received a copy of the GNU General Public License version - * 2 along with this work; if not, write to the Free Software Foundation, - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. - * - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA - * or visit www.oracle.com if you need additional information or have any - * questions. - */ - -package java.lang; - -import org.apidesign.bck2brwsr.core.JavaScriptBody; - - -/** - * The class {@code Math} contains methods for performing basic - * numeric operations such as the elementary exponential, logarithm, - * square root, and trigonometric functions. - * - *

Unlike some of the numeric methods of class - * {@code StrictMath}, all implementations of the equivalent - * functions of class {@code Math} are not defined to return the - * bit-for-bit same results. This relaxation permits - * better-performing implementations where strict reproducibility is - * not required. - * - *

By default many of the {@code Math} methods simply call - * the equivalent method in {@code StrictMath} for their - * implementation. Code generators are encouraged to use - * platform-specific native libraries or microprocessor instructions, - * where available, to provide higher-performance implementations of - * {@code Math} methods. Such higher-performance - * implementations still must conform to the specification for - * {@code Math}. - * - *

The quality of implementation specifications concern two - * properties, accuracy of the returned result and monotonicity of the - * method. Accuracy of the floating-point {@code Math} methods - * is measured in terms of ulps, units in the last place. For - * a given floating-point format, an ulp of a specific real number - * value is the distance between the two floating-point values - * bracketing that numerical value. When discussing the accuracy of a - * method as a whole rather than at a specific argument, the number of - * ulps cited is for the worst-case error at any argument. If a - * method always has an error less than 0.5 ulps, the method always - * returns the floating-point number nearest the exact result; such a - * method is correctly rounded. A correctly rounded method is - * generally the best a floating-point approximation can be; however, - * it is impractical for many floating-point methods to be correctly - * rounded. Instead, for the {@code Math} class, a larger error - * bound of 1 or 2 ulps is allowed for certain methods. Informally, - * with a 1 ulp error bound, when the exact result is a representable - * number, the exact result should be returned as the computed result; - * otherwise, either of the two floating-point values which bracket - * the exact result may be returned. For exact results large in - * magnitude, one of the endpoints of the bracket may be infinite. - * Besides accuracy at individual arguments, maintaining proper - * relations between the method at different arguments is also - * important. Therefore, most methods with more than 0.5 ulp errors - * are required to be semi-monotonic: whenever the mathematical - * function is non-decreasing, so is the floating-point approximation, - * likewise, whenever the mathematical function is non-increasing, so - * is the floating-point approximation. Not all approximations that - * have 1 ulp accuracy will automatically meet the monotonicity - * requirements. - * - * @author unascribed - * @author Joseph D. Darcy - * @since JDK1.0 - */ - -public final class Math { - - /** - * Don't let anyone instantiate this class. - */ - private Math() {} - - /** - * The {@code double} value that is closer than any other to - * e, the base of the natural logarithms. - */ - public static final double E = 2.7182818284590452354; - - /** - * The {@code double} value that is closer than any other to - * pi, the ratio of the circumference of a circle to its - * diameter. - */ - public static final double PI = 3.14159265358979323846; - - /** - * Returns the trigonometric sine of an angle. Special cases: - *

- * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. - * - * @param a an angle, in radians. - * @return the sine of the argument. - */ - @JavaScriptBody(args="a", body="return Math.sin(a);") - public static double sin(double a) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the trigonometric cosine of an angle. Special cases: - *

- * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. - * - * @param a an angle, in radians. - * @return the cosine of the argument. - */ - @JavaScriptBody(args="a", body="return Math.cos(a);") - public static double cos(double a) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the trigonometric tangent of an angle. Special cases: - *

- * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. - * - * @param a an angle, in radians. - * @return the tangent of the argument. - */ - @JavaScriptBody(args="a", body="return Math.tan(a);") - public static double tan(double a) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the arc sine of a value; the returned angle is in the - * range -pi/2 through pi/2. Special cases: - *

- * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. - * - * @param a the value whose arc sine is to be returned. - * @return the arc sine of the argument. - */ - @JavaScriptBody(args="a", body="return Math.asin(a);") - public static double asin(double a) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the arc cosine of a value; the returned angle is in the - * range 0.0 through pi. Special case: - *

- * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. - * - * @param a the value whose arc cosine is to be returned. - * @return the arc cosine of the argument. - */ - @JavaScriptBody(args="a", body="return Math.acos(a);") - public static double acos(double a) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the arc tangent of a value; the returned angle is in the - * range -pi/2 through pi/2. Special cases: - *

- * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. - * - * @param a the value whose arc tangent is to be returned. - * @return the arc tangent of the argument. - */ - @JavaScriptBody(args="a", body="return Math.atan(a);") - public static double atan(double a) { - throw new UnsupportedOperationException(); - } - - /** - * Converts an angle measured in degrees to an approximately - * equivalent angle measured in radians. The conversion from - * degrees to radians is generally inexact. - * - * @param angdeg an angle, in degrees - * @return the measurement of the angle {@code angdeg} - * in radians. - * @since 1.2 - */ - public static double toRadians(double angdeg) { - return angdeg / 180.0 * PI; - } - - /** - * Converts an angle measured in radians to an approximately - * equivalent angle measured in degrees. The conversion from - * radians to degrees is generally inexact; users should - * not expect {@code cos(toRadians(90.0))} to exactly - * equal {@code 0.0}. - * - * @param angrad an angle, in radians - * @return the measurement of the angle {@code angrad} - * in degrees. - * @since 1.2 - */ - public static double toDegrees(double angrad) { - return angrad * 180.0 / PI; - } - - /** - * Returns Euler's number e raised to the power of a - * {@code double} value. Special cases: - *

- * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. - * - * @param a the exponent to raise e to. - * @return the value e{@code a}, - * where e is the base of the natural logarithms. - */ - @JavaScriptBody(args="a", body="return Math.exp(a);") - public static double exp(double a) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the natural logarithm (base e) of a {@code double} - * value. Special cases: - *

- * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. - * - * @param a a value - * @return the value ln {@code a}, the natural logarithm of - * {@code a}. - */ - @JavaScriptBody(args="a", body="return Math.log(a);") - public static double log(double a) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the base 10 logarithm of a {@code double} value. - * Special cases: - * - *

- * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. - * - * @param a a value - * @return the base 10 logarithm of {@code a}. - * @since 1.5 - */ - @JavaScriptBody(args="a", body="return Math.log(a) / Math.LN10;") - public static double log10(double a) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the correctly rounded positive square root of a - * {@code double} value. - * Special cases: - *

- * Otherwise, the result is the {@code double} value closest to - * the true mathematical square root of the argument value. - * - * @param a a value. - * @return the positive square root of {@code a}. - * If the argument is NaN or less than zero, the result is NaN. - */ - @JavaScriptBody(args="a", body="return Math.sqrt(a);") - public static double sqrt(double a) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the smallest (closest to negative infinity) - * {@code double} value that is greater than or equal to the - * argument and is equal to a mathematical integer. Special cases: - * Note - * that the value of {@code Math.ceil(x)} is exactly the - * value of {@code -Math.floor(-x)}. - * - * - * @param a a value. - * @return the smallest (closest to negative infinity) - * floating-point value that is greater than or equal to - * the argument and is equal to a mathematical integer. - */ - @JavaScriptBody(args="a", body="return Math.ceil(a);") - public static double ceil(double a) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the largest (closest to positive infinity) - * {@code double} value that is less than or equal to the - * argument and is equal to a mathematical integer. Special cases: - * - * - * @param a a value. - * @return the largest (closest to positive infinity) - * floating-point value that less than or equal to the argument - * and is equal to a mathematical integer. - */ - @JavaScriptBody(args="a", body="return Math.floor(a);") - public static double floor(double a) { - throw new UnsupportedOperationException(); - } - /** - * Computes the remainder operation on two arguments as prescribed - * by the IEEE 754 standard. - * The remainder value is mathematically equal to - * f1 - f2 × n, - * where n is the mathematical integer closest to the exact - * mathematical value of the quotient {@code f1/f2}, and if two - * mathematical integers are equally close to {@code f1/f2}, - * then n is the integer that is even. If the remainder is - * zero, its sign is the same as the sign of the first argument. - * Special cases: - * - * - * @param f1 the dividend. - * @param f2 the divisor. - * @return the remainder when {@code f1} is divided by - * {@code f2}. - */ - public static double IEEEremainder(double f1, double f2) { - return f1 - (f2 * Math.round(f1 / f2)); - } - - /** - * Returns the {@code double} value that is closest in value - * to the argument and is equal to a mathematical integer. If two - * {@code double} values that are mathematical integers are - * equally close, the result is the integer value that is - * even. Special cases: - * - * - * @param a a {@code double} value. - * @return the closest floating-point value to {@code a} that is - * equal to a mathematical integer. - */ - public static double rint(double a) { - double ceil = ceil(a); - double floor = floor(a); - - double dc = ceil - a; - double df = a - floor; - - if (dc < df) { - return ceil; - } else if (dc > df) { - return floor; - } - - int tenC = (int) (ceil % 10.0); - - if (tenC % 2 == 0) { - return ceil; - } else { - return floor; - } - } - - /** - * Returns the angle theta from the conversion of rectangular - * coordinates ({@code x}, {@code y}) to polar - * coordinates (r, theta). - * This method computes the phase theta by computing an arc tangent - * of {@code y/x} in the range of -pi to pi. Special - * cases: - * - * - *

The computed result must be within 2 ulps of the exact result. - * Results must be semi-monotonic. - * - * @param y the ordinate coordinate - * @param x the abscissa coordinate - * @return the theta component of the point - * (rtheta) - * in polar coordinates that corresponds to the point - * (xy) in Cartesian coordinates. - */ - @JavaScriptBody(args={"y", "x"}, body="return Math.atan2(y, x);") - public static double atan2(double y, double x) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the value of the first argument raised to the power of the - * second argument. Special cases: - * - *

- * - *

(In the foregoing descriptions, a floating-point value is - * considered to be an integer if and only if it is finite and a - * fixed point of the method {@link #ceil ceil} or, - * equivalently, a fixed point of the method {@link #floor - * floor}. A value is a fixed point of a one-argument - * method if and only if the result of applying the method to the - * value is equal to the value.) - * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. - * - * @param a the base. - * @param b the exponent. - * @return the value {@code a}{@code b}. - */ - @JavaScriptBody(args={"a", "b"}, body="return Math.pow(a, b);") - public static double pow(double a, double b) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the closest {@code int} to the argument, with ties - * rounding up. - * - *

- * Special cases: - *

- * - * @param a a floating-point value to be rounded to an integer. - * @return the value of the argument rounded to the nearest - * {@code int} value. - * @see java.lang.Integer#MAX_VALUE - * @see java.lang.Integer#MIN_VALUE - */ - public static int round(float a) { - return (int)roundDbl(a); - } - - /** - * Returns the closest {@code long} to the argument, with ties - * rounding up. - * - *

Special cases: - *

- * - * @param a a floating-point value to be rounded to a - * {@code long}. - * @return the value of the argument rounded to the nearest - * {@code long} value. - * @see java.lang.Long#MAX_VALUE - * @see java.lang.Long#MIN_VALUE - */ - public static long round(double a) { - return (long)roundDbl(a); - } - - @JavaScriptBody(args="a", body="return Math.round(a);") - private static native double roundDbl(double d); - -// private static Random randomNumberGenerator; -// -// private static synchronized Random initRNG() { -// Random rnd = randomNumberGenerator; -// return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd; -// } - - /** - * Returns a {@code double} value with a positive sign, greater - * than or equal to {@code 0.0} and less than {@code 1.0}. - * Returned values are chosen pseudorandomly with (approximately) - * uniform distribution from that range. - * - *

When this method is first called, it creates a single new - * pseudorandom-number generator, exactly as if by the expression - * - *

{@code new java.util.Random()}
- * - * This new pseudorandom-number generator is used thereafter for - * all calls to this method and is used nowhere else. - * - *

This method is properly synchronized to allow correct use by - * more than one thread. However, if many threads need to generate - * pseudorandom numbers at a great rate, it may reduce contention - * for each thread to have its own pseudorandom-number generator. - * - * @return a pseudorandom {@code double} greater than or equal - * to {@code 0.0} and less than {@code 1.0}. - * @see Random#nextDouble() - */ - @JavaScriptBody(args={}, body="return Math.random();") - public static double random() { - throw new UnsupportedOperationException(); - } - - /** - * Returns the absolute value of an {@code int} value. - * If the argument is not negative, the argument is returned. - * If the argument is negative, the negation of the argument is returned. - * - *

Note that if the argument is equal to the value of - * {@link Integer#MIN_VALUE}, the most negative representable - * {@code int} value, the result is that same value, which is - * negative. - * - * @param a the argument whose absolute value is to be determined - * @return the absolute value of the argument. - */ - public static int abs(int a) { - return (a < 0) ? -a : a; - } - - /** - * Returns the absolute value of a {@code long} value. - * If the argument is not negative, the argument is returned. - * If the argument is negative, the negation of the argument is returned. - * - *

Note that if the argument is equal to the value of - * {@link Long#MIN_VALUE}, the most negative representable - * {@code long} value, the result is that same value, which - * is negative. - * - * @param a the argument whose absolute value is to be determined - * @return the absolute value of the argument. - */ - public static long abs(long a) { - return (a < 0) ? -a : a; - } - - /** - * Returns the absolute value of a {@code float} value. - * If the argument is not negative, the argument is returned. - * If the argument is negative, the negation of the argument is returned. - * Special cases: - *

- * In other words, the result is the same as the value of the expression: - *

{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))} - * - * @param a the argument whose absolute value is to be determined - * @return the absolute value of the argument. - */ - public static float abs(float a) { - return (a <= 0.0F) ? 0.0F - a : a; - } - - /** - * Returns the absolute value of a {@code double} value. - * If the argument is not negative, the argument is returned. - * If the argument is negative, the negation of the argument is returned. - * Special cases: - *

- * In other words, the result is the same as the value of the expression: - *

{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)} - * - * @param a the argument whose absolute value is to be determined - * @return the absolute value of the argument. - */ - public static double abs(double a) { - return (a <= 0.0D) ? 0.0D - a : a; - } - - /** - * Returns the greater of two {@code int} values. That is, the - * result is the argument closer to the value of - * {@link Integer#MAX_VALUE}. If the arguments have the same value, - * the result is that same value. - * - * @param a an argument. - * @param b another argument. - * @return the larger of {@code a} and {@code b}. - */ - public static int max(int a, int b) { - return (a >= b) ? a : b; - } - - /** - * Returns the greater of two {@code long} values. That is, the - * result is the argument closer to the value of - * {@link Long#MAX_VALUE}. If the arguments have the same value, - * the result is that same value. - * - * @param a an argument. - * @param b another argument. - * @return the larger of {@code a} and {@code b}. - */ - public static long max(long a, long b) { - return (a >= b) ? a : b; - } - - /** - * Returns the greater of two {@code float} values. That is, - * the result is the argument closer to positive infinity. If the - * arguments have the same value, the result is that same - * value. If either value is NaN, then the result is NaN. Unlike - * the numerical comparison operators, this method considers - * negative zero to be strictly smaller than positive zero. If one - * argument is positive zero and the other negative zero, the - * result is positive zero. - * - * @param a an argument. - * @param b another argument. - * @return the larger of {@code a} and {@code b}. - */ - @JavaScriptBody(args={"a", "b"}, - body="return Math.max(a,b);" - ) - public static float max(float a, float b) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the greater of two {@code double} values. That - * is, the result is the argument closer to positive infinity. If - * the arguments have the same value, the result is that same - * value. If either value is NaN, then the result is NaN. Unlike - * the numerical comparison operators, this method considers - * negative zero to be strictly smaller than positive zero. If one - * argument is positive zero and the other negative zero, the - * result is positive zero. - * - * @param a an argument. - * @param b another argument. - * @return the larger of {@code a} and {@code b}. - */ - @JavaScriptBody(args={"a", "b"}, - body="return Math.max(a,b);" - ) - public static double max(double a, double b) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the smaller of two {@code int} values. That is, - * the result the argument closer to the value of - * {@link Integer#MIN_VALUE}. If the arguments have the same - * value, the result is that same value. - * - * @param a an argument. - * @param b another argument. - * @return the smaller of {@code a} and {@code b}. - */ - public static int min(int a, int b) { - return (a <= b) ? a : b; - } - - /** - * Returns the smaller of two {@code long} values. That is, - * the result is the argument closer to the value of - * {@link Long#MIN_VALUE}. If the arguments have the same - * value, the result is that same value. - * - * @param a an argument. - * @param b another argument. - * @return the smaller of {@code a} and {@code b}. - */ - public static long min(long a, long b) { - return (a <= b) ? a : b; - } - - /** - * Returns the smaller of two {@code float} values. That is, - * the result is the value closer to negative infinity. If the - * arguments have the same value, the result is that same - * value. If either value is NaN, then the result is NaN. Unlike - * the numerical comparison operators, this method considers - * negative zero to be strictly smaller than positive zero. If - * one argument is positive zero and the other is negative zero, - * the result is negative zero. - * - * @param a an argument. - * @param b another argument. - * @return the smaller of {@code a} and {@code b}. - */ - @JavaScriptBody(args={"a", "b"}, - body="return Math.min(a,b);" - ) - public static float min(float a, float b) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the smaller of two {@code double} values. That - * is, the result is the value closer to negative infinity. If the - * arguments have the same value, the result is that same - * value. If either value is NaN, then the result is NaN. Unlike - * the numerical comparison operators, this method considers - * negative zero to be strictly smaller than positive zero. If one - * argument is positive zero and the other is negative zero, the - * result is negative zero. - * - * @param a an argument. - * @param b another argument. - * @return the smaller of {@code a} and {@code b}. - */ - @JavaScriptBody(args={"a", "b"}, - body="return Math.min(a,b);" - ) - public static double min(double a, double b) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the size of an ulp of the argument. An ulp of a - * {@code double} value is the positive distance between this - * floating-point value and the {@code double} value next - * larger in magnitude. Note that for non-NaN x, - * ulp(-x) == ulp(x). - * - *

Special Cases: - *

- * - * @param d the floating-point value whose ulp is to be returned - * @return the size of an ulp of the argument - * @author Joseph D. Darcy - * @since 1.5 - */ -// public static double ulp(double d) { -// return sun.misc.FpUtils.ulp(d); -// } - - /** - * Returns the size of an ulp of the argument. An ulp of a - * {@code float} value is the positive distance between this - * floating-point value and the {@code float} value next - * larger in magnitude. Note that for non-NaN x, - * ulp(-x) == ulp(x). - * - *

Special Cases: - *

- * - * @param f the floating-point value whose ulp is to be returned - * @return the size of an ulp of the argument - * @author Joseph D. Darcy - * @since 1.5 - */ -// public static float ulp(float f) { -// return sun.misc.FpUtils.ulp(f); -// } - - /** - * Returns the signum function of the argument; zero if the argument - * is zero, 1.0 if the argument is greater than zero, -1.0 if the - * argument is less than zero. - * - *

Special Cases: - *

- * - * @param d the floating-point value whose signum is to be returned - * @return the signum function of the argument - * @author Joseph D. Darcy - * @since 1.5 - */ - public static double signum(double d) { - if (d < 0.0) { return -1.0; } - if (d > 0.0) { return 1.0; } - return d; - } - - /** - * Returns the signum function of the argument; zero if the argument - * is zero, 1.0f if the argument is greater than zero, -1.0f if the - * argument is less than zero. - * - *

Special Cases: - *

- * - * @param f the floating-point value whose signum is to be returned - * @return the signum function of the argument - * @author Joseph D. Darcy - * @since 1.5 - */ - public static float signum(float f) { - if (f < 0.0f) { return -1.0f; } - if (f > 0.0f) { return 1.0f; } - return f; - } - - /** - * Returns the first floating-point argument with the sign of the - * second floating-point argument. Note that unlike the {@link - * StrictMath#copySign(double, double) StrictMath.copySign} - * method, this method does not require NaN {@code sign} - * arguments to be treated as positive values; implementations are - * permitted to treat some NaN arguments as positive and other NaN - * arguments as negative to allow greater performance. - * - * @param magnitude the parameter providing the magnitude of the result - * @param sign the parameter providing the sign of the result - * @return a value with the magnitude of {@code magnitude} - * and the sign of {@code sign}. - * @since 1.6 - */ -// public static double copySign(double magnitude, double sign) { -// return sun.misc.FpUtils.rawCopySign(magnitude, sign); -// } - - /** - * Returns the first floating-point argument with the sign of the - * second floating-point argument. Note that unlike the {@link - * StrictMath#copySign(float, float) StrictMath.copySign} - * method, this method does not require NaN {@code sign} - * arguments to be treated as positive values; implementations are - * permitted to treat some NaN arguments as positive and other NaN - * arguments as negative to allow greater performance. - * - * @param magnitude the parameter providing the magnitude of the result - * @param sign the parameter providing the sign of the result - * @return a value with the magnitude of {@code magnitude} - * and the sign of {@code sign}. - * @since 1.6 - */ -// public static float copySign(float magnitude, float sign) { -// return sun.misc.FpUtils.rawCopySign(magnitude, sign); -// } - - /** - * Returns the unbiased exponent used in the representation of a - * {@code float}. Special cases: - * - * - * @param f a {@code float} value - * @return the unbiased exponent of the argument - * @since 1.6 - */ -// public static int getExponent(float f) { -// return sun.misc.FpUtils.getExponent(f); -// } - - /** - * Returns the unbiased exponent used in the representation of a - * {@code double}. Special cases: - * - * - * @param d a {@code double} value - * @return the unbiased exponent of the argument - * @since 1.6 - */ -// public static int getExponent(double d) { -// return sun.misc.FpUtils.getExponent(d); -// } - - /** - * Returns the floating-point number adjacent to the first - * argument in the direction of the second argument. If both - * arguments compare as equal the second argument is returned. - * - *

- * Special cases: - *

- * - * @param start starting floating-point value - * @param direction value indicating which of - * {@code start}'s neighbors or {@code start} should - * be returned - * @return The floating-point number adjacent to {@code start} in the - * direction of {@code direction}. - * @since 1.6 - */ -// public static double nextAfter(double start, double direction) { -// return sun.misc.FpUtils.nextAfter(start, direction); -// } - - /** - * Returns the floating-point number adjacent to the first - * argument in the direction of the second argument. If both - * arguments compare as equal a value equivalent to the second argument - * is returned. - * - *

- * Special cases: - *

- * - * @param start starting floating-point value - * @param direction value indicating which of - * {@code start}'s neighbors or {@code start} should - * be returned - * @return The floating-point number adjacent to {@code start} in the - * direction of {@code direction}. - * @since 1.6 - */ -// public static float nextAfter(float start, double direction) { -// return sun.misc.FpUtils.nextAfter(start, direction); -// } - - /** - * Returns the floating-point value adjacent to {@code d} in - * the direction of positive infinity. This method is - * semantically equivalent to {@code nextAfter(d, - * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} - * implementation may run faster than its equivalent - * {@code nextAfter} call. - * - *

Special Cases: - *

- * - * @param d starting floating-point value - * @return The adjacent floating-point value closer to positive - * infinity. - * @since 1.6 - */ -// public static double nextUp(double d) { -// return sun.misc.FpUtils.nextUp(d); -// } - - /** - * Returns the floating-point value adjacent to {@code f} in - * the direction of positive infinity. This method is - * semantically equivalent to {@code nextAfter(f, - * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} - * implementation may run faster than its equivalent - * {@code nextAfter} call. - * - *

Special Cases: - *

- * - * @param f starting floating-point value - * @return The adjacent floating-point value closer to positive - * infinity. - * @since 1.6 - */ -// public static float nextUp(float f) { -// return sun.misc.FpUtils.nextUp(f); -// } - - - /** - * Return {@code d} × - * 2{@code scaleFactor} rounded as if performed - * by a single correctly rounded floating-point multiply to a - * member of the double value set. See the Java - * Language Specification for a discussion of floating-point - * value sets. If the exponent of the result is between {@link - * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the - * answer is calculated exactly. If the exponent of the result - * would be larger than {@code Double.MAX_EXPONENT}, an - * infinity is returned. Note that if the result is subnormal, - * precision may be lost; that is, when {@code scalb(x, n)} - * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal - * x. When the result is non-NaN, the result has the same - * sign as {@code d}. - * - *

Special cases: - *

- * - * @param d number to be scaled by a power of two. - * @param scaleFactor power of 2 used to scale {@code d} - * @return {@code d} × 2{@code scaleFactor} - * @since 1.6 - */ -// public static double scalb(double d, int scaleFactor) { -// return sun.misc.FpUtils.scalb(d, scaleFactor); -// } - - /** - * Return {@code f} × - * 2{@code scaleFactor} rounded as if performed - * by a single correctly rounded floating-point multiply to a - * member of the float value set. See the Java - * Language Specification for a discussion of floating-point - * value sets. If the exponent of the result is between {@link - * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the - * answer is calculated exactly. If the exponent of the result - * would be larger than {@code Float.MAX_EXPONENT}, an - * infinity is returned. Note that if the result is subnormal, - * precision may be lost; that is, when {@code scalb(x, n)} - * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal - * x. When the result is non-NaN, the result has the same - * sign as {@code f}. - * - *

Special cases: - *

- * - * @param f number to be scaled by a power of two. - * @param scaleFactor power of 2 used to scale {@code f} - * @return {@code f} × 2{@code scaleFactor} - * @since 1.6 - */ -// public static float scalb(float f, int scaleFactor) { -// return sun.misc.FpUtils.scalb(f, scaleFactor); -// } -}