# HG changeset patch # User Jaroslav Tulach # Date 1351636409 -3600 # Node ID 2377bb30dd1bf60f4c9cd0e64214c20735ab39d2 # Parent dbfbcd71814602c4029a3b9cb1dd41eb27b4d684 Removing StrictMath diff -r dbfbcd718146 -r 2377bb30dd1b emul/src/main/java/java/lang/Math.java --- a/emul/src/main/java/java/lang/Math.java Tue Oct 30 22:59:31 2012 +0100 +++ b/emul/src/main/java/java/lang/Math.java Tue Oct 30 23:33:29 2012 +0100 @@ -118,8 +118,9 @@ * @param a an angle, in radians. * @return the sine of the argument. */ + @JavaScriptBody(args="a", body="return Math.sin(a);") public static double sin(double a) { - return StrictMath.sin(a); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -133,8 +134,9 @@ * @param a an angle, in radians. * @return the cosine of the argument. */ + @JavaScriptBody(args="a", body="return Math.cos(a);") public static double cos(double a) { - return StrictMath.cos(a); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -150,8 +152,9 @@ * @param a an angle, in radians. * @return the tangent of the argument. */ + @JavaScriptBody(args="a", body="return Math.tan(a);") public static double tan(double a) { - return StrictMath.tan(a); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -168,8 +171,9 @@ * @param a the value whose arc sine is to be returned. * @return the arc sine of the argument. */ + @JavaScriptBody(args="a", body="return Math.asin(a);") public static double asin(double a) { - return StrictMath.asin(a); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -184,8 +188,9 @@ * @param a the value whose arc cosine is to be returned. * @return the arc cosine of the argument. */ + @JavaScriptBody(args="a", body="return Math.acos(a);") public static double acos(double a) { - return StrictMath.acos(a); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -201,8 +206,9 @@ * @param a the value whose arc tangent is to be returned. * @return the arc tangent of the argument. */ + @JavaScriptBody(args="a", body="return Math.atan(a);") public static double atan(double a) { - return StrictMath.atan(a); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -251,8 +257,9 @@ * @return the value e{@code a}, * where e is the base of the natural logarithms. */ + @JavaScriptBody(args="a", body="return Math.exp(a);") public static double exp(double a) { - return StrictMath.exp(a); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -272,8 +279,9 @@ * @return the value ln {@code a}, the natural logarithm of * {@code a}. */ + @JavaScriptBody(args="a", body="return Math.log(a);") public static double log(double a) { - return StrictMath.log(a); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -297,8 +305,9 @@ * @return the base 10 logarithm of {@code a}. * @since 1.5 */ + @JavaScriptBody(args="a", body="return Math.log(a) / Math.LN10;") public static double log10(double a) { - return StrictMath.log10(a); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -318,69 +327,9 @@ * @return the positive square root of {@code a}. * If the argument is NaN or less than zero, the result is NaN. */ + @JavaScriptBody(args="a", body="return Math.sqrt(a);") public static double sqrt(double a) { - return StrictMath.sqrt(a); // default impl. delegates to StrictMath - // Note that hardware sqrt instructions - // frequently can be directly used by JITs - // and should be much faster than doing - // Math.sqrt in software. - } - - - /** - * Returns the cube root of a {@code double} value. For - * positive finite {@code x}, {@code cbrt(-x) == - * -cbrt(x)}; that is, the cube root of a negative value is - * the negative of the cube root of that value's magnitude. - * - * Special cases: - * - * - * - *

The computed result must be within 1 ulp of the exact result. - * - * @param a a value. - * @return the cube root of {@code a}. - * @since 1.5 - */ - public static double cbrt(double a) { - return StrictMath.cbrt(a); - } - - /** - * Computes the remainder operation on two arguments as prescribed - * by the IEEE 754 standard. - * The remainder value is mathematically equal to - * f1 - f2 × n, - * where n is the mathematical integer closest to the exact - * mathematical value of the quotient {@code f1/f2}, and if two - * mathematical integers are equally close to {@code f1/f2}, - * then n is the integer that is even. If the remainder is - * zero, its sign is the same as the sign of the first argument. - * Special cases: - *

- * - * @param f1 the dividend. - * @param f2 the divisor. - * @return the remainder when {@code f1} is divided by - * {@code f2}. - */ - public static double IEEEremainder(double f1, double f2) { - return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath + throw new UnsupportedOperationException(); } /** @@ -402,8 +351,9 @@ * floating-point value that is greater than or equal to * the argument and is equal to a mathematical integer. */ + @JavaScriptBody(args="a", body="return Math.ceil(a);") public static double ceil(double a) { - return StrictMath.ceil(a); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -421,27 +371,9 @@ * floating-point value that less than or equal to the argument * and is equal to a mathematical integer. */ + @JavaScriptBody(args="a", body="return Math.floor(a);") public static double floor(double a) { - return StrictMath.floor(a); // default impl. delegates to StrictMath - } - - /** - * Returns the {@code double} value that is closest in value - * to the argument and is equal to a mathematical integer. If two - * {@code double} values that are mathematical integers are - * equally close, the result is the integer value that is - * even. Special cases: - * - * - * @param a a {@code double} value. - * @return the closest floating-point value to {@code a} that is - * equal to a mathematical integer. - */ - public static double rint(double a) { - return StrictMath.rint(a); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -496,8 +428,9 @@ * in polar coordinates that corresponds to the point * (xy) in Cartesian coordinates. */ + @JavaScriptBody(args={"y", "x"}, body="return Math.atan2(y, x);") public static double atan2(double y, double x) { - return StrictMath.atan2(y, x); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -623,8 +556,9 @@ * @param b the exponent. * @return the value {@code a}{@code b}. */ + @JavaScriptBody(args={"a", "b"}, body="return Math.pow(a, b);") public static double pow(double a, double b) { - return StrictMath.pow(a, b); // default impl. delegates to StrictMath + throw new UnsupportedOperationException(); } /** @@ -647,11 +581,9 @@ * @see java.lang.Integer#MAX_VALUE * @see java.lang.Integer#MIN_VALUE */ + @JavaScriptBody(args="a", body="return Math.round(a);") public static int round(float a) { - if (a != 0x1.fffffep-2f) // greatest float value less than 0.5 - return (int)floor(a + 0.5f); - else - return 0; + throw new UnsupportedOperationException(); } /** @@ -674,11 +606,9 @@ * @see java.lang.Long#MAX_VALUE * @see java.lang.Long#MIN_VALUE */ + @JavaScriptBody(args="a", body="return Math.round(a);") public static long round(double a) { - if (a != 0x1.fffffffffffffp-2) // greatest double value less than 0.5 - return (long)floor(a + 0.5d); - else - return 0; + throw new UnsupportedOperationException(); } // private static Random randomNumberGenerator; @@ -1024,207 +954,6 @@ // } /** - * Returns the hyperbolic sine of a {@code double} value. - * The hyperbolic sine of x is defined to be - * (ex - e-x)/2 - * where e is {@linkplain Math#E Euler's number}. - * - *

Special cases: - *

- * - *

The computed result must be within 2.5 ulps of the exact result. - * - * @param x The number whose hyperbolic sine is to be returned. - * @return The hyperbolic sine of {@code x}. - * @since 1.5 - */ - public static double sinh(double x) { - return StrictMath.sinh(x); - } - - /** - * Returns the hyperbolic cosine of a {@code double} value. - * The hyperbolic cosine of x is defined to be - * (ex + e-x)/2 - * where e is {@linkplain Math#E Euler's number}. - * - *

Special cases: - *

- * - *

The computed result must be within 2.5 ulps of the exact result. - * - * @param x The number whose hyperbolic cosine is to be returned. - * @return The hyperbolic cosine of {@code x}. - * @since 1.5 - */ - public static double cosh(double x) { - return StrictMath.cosh(x); - } - - /** - * Returns the hyperbolic tangent of a {@code double} value. - * The hyperbolic tangent of x is defined to be - * (ex - e-x)/(ex + e-x), - * in other words, {@linkplain Math#sinh - * sinh(x)}/{@linkplain Math#cosh cosh(x)}. Note - * that the absolute value of the exact tanh is always less than - * 1. - * - *

Special cases: - *

- * - *

The computed result must be within 2.5 ulps of the exact result. - * The result of {@code tanh} for any finite input must have - * an absolute value less than or equal to 1. Note that once the - * exact result of tanh is within 1/2 of an ulp of the limit value - * of ±1, correctly signed ±{@code 1.0} should - * be returned. - * - * @param x The number whose hyperbolic tangent is to be returned. - * @return The hyperbolic tangent of {@code x}. - * @since 1.5 - */ - public static double tanh(double x) { - return StrictMath.tanh(x); - } - - /** - * Returns sqrt(x2 +y2) - * without intermediate overflow or underflow. - * - *

Special cases: - *

- * - *

The computed result must be within 1 ulp of the exact - * result. If one parameter is held constant, the results must be - * semi-monotonic in the other parameter. - * - * @param x a value - * @param y a value - * @return sqrt(x2 +y2) - * without intermediate overflow or underflow - * @since 1.5 - */ - public static double hypot(double x, double y) { - return StrictMath.hypot(x, y); - } - - /** - * Returns ex -1. Note that for values of - * x near 0, the exact sum of - * {@code expm1(x)} + 1 is much closer to the true - * result of ex than {@code exp(x)}. - * - *

Special cases: - *

- * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. The result of - * {@code expm1} for any finite input must be greater than or - * equal to {@code -1.0}. Note that once the exact result of - * e{@code x} - 1 is within 1/2 - * ulp of the limit value -1, {@code -1.0} should be - * returned. - * - * @param x the exponent to raise e to in the computation of - * e{@code x} -1. - * @return the value e{@code x} - 1. - * @since 1.5 - */ - public static double expm1(double x) { - return StrictMath.expm1(x); - } - - /** - * Returns the natural logarithm of the sum of the argument and 1. - * Note that for small values {@code x}, the result of - * {@code log1p(x)} is much closer to the true result of ln(1 - * + {@code x}) than the floating-point evaluation of - * {@code log(1.0+x)}. - * - *

Special cases: - * - *

- * - *

The computed result must be within 1 ulp of the exact result. - * Results must be semi-monotonic. - * - * @param x a value - * @return the value ln({@code x} + 1), the natural - * log of {@code x} + 1 - * @since 1.5 - */ - public static double log1p(double x) { - return StrictMath.log1p(x); - } - - /** * Returns the first floating-point argument with the sign of the * second floating-point argument. Note that unlike the {@link * StrictMath#copySign(double, double) StrictMath.copySign} diff -r dbfbcd718146 -r 2377bb30dd1b emul/src/main/java/java/lang/StrictMath.java --- a/emul/src/main/java/java/lang/StrictMath.java Tue Oct 30 22:59:31 2012 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1457 +0,0 @@ -/* - * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved. - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. - * - * This code is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 only, as - * published by the Free Software Foundation. Oracle designates this - * particular file as subject to the "Classpath" exception as provided - * by Oracle in the LICENSE file that accompanied this code. - * - * This code is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * version 2 for more details (a copy is included in the LICENSE file that - * accompanied this code). - * - * You should have received a copy of the GNU General Public License version - * 2 along with this work; if not, write to the Free Software Foundation, - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. - * - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA - * or visit www.oracle.com if you need additional information or have any - * questions. - */ - -package java.lang; - -/** - * The class {@code StrictMath} contains methods for performing basic - * numeric operations such as the elementary exponential, logarithm, - * square root, and trigonometric functions. - * - *

To help ensure portability of Java programs, the definitions of - * some of the numeric functions in this package require that they - * produce the same results as certain published algorithms. These - * algorithms are available from the well-known network library - * {@code netlib} as the package "Freely Distributable Math - * Library," {@code fdlibm}. These - * algorithms, which are written in the C programming language, are - * then to be understood as executed with all floating-point - * operations following the rules of Java floating-point arithmetic. - * - *

The Java math library is defined with respect to - * {@code fdlibm} version 5.3. Where {@code fdlibm} provides - * more than one definition for a function (such as - * {@code acos}), use the "IEEE 754 core function" version - * (residing in a file whose name begins with the letter - * {@code e}). The methods which require {@code fdlibm} - * semantics are {@code sin}, {@code cos}, {@code tan}, - * {@code asin}, {@code acos}, {@code atan}, - * {@code exp}, {@code log}, {@code log10}, - * {@code cbrt}, {@code atan2}, {@code pow}, - * {@code sinh}, {@code cosh}, {@code tanh}, - * {@code hypot}, {@code expm1}, and {@code log1p}. - * - * @author unascribed - * @author Joseph D. Darcy - * @since 1.3 - */ - -public final class StrictMath { - - /** - * Don't let anyone instantiate this class. - */ - private StrictMath() {} - - /** - * The {@code double} value that is closer than any other to - * e, the base of the natural logarithms. - */ - public static final double E = 2.7182818284590452354; - - /** - * The {@code double} value that is closer than any other to - * pi, the ratio of the circumference of a circle to its - * diameter. - */ - public static final double PI = 3.14159265358979323846; - - /** - * Returns the trigonometric sine of an angle. Special cases: - *

- * - * @param a an angle, in radians. - * @return the sine of the argument. - */ - public static native double sin(double a); - - /** - * Returns the trigonometric cosine of an angle. Special cases: - * - * - * @param a an angle, in radians. - * @return the cosine of the argument. - */ - public static native double cos(double a); - - /** - * Returns the trigonometric tangent of an angle. Special cases: - * - * - * @param a an angle, in radians. - * @return the tangent of the argument. - */ - public static native double tan(double a); - - /** - * Returns the arc sine of a value; the returned angle is in the - * range -pi/2 through pi/2. Special cases: - * - * - * @param a the value whose arc sine is to be returned. - * @return the arc sine of the argument. - */ - public static native double asin(double a); - - /** - * Returns the arc cosine of a value; the returned angle is in the - * range 0.0 through pi. Special case: - * - * - * @param a the value whose arc cosine is to be returned. - * @return the arc cosine of the argument. - */ - public static native double acos(double a); - - /** - * Returns the arc tangent of a value; the returned angle is in the - * range -pi/2 through pi/2. Special cases: - * - * - * @param a the value whose arc tangent is to be returned. - * @return the arc tangent of the argument. - */ - public static native double atan(double a); - - /** - * Converts an angle measured in degrees to an approximately - * equivalent angle measured in radians. The conversion from - * degrees to radians is generally inexact. - * - * @param angdeg an angle, in degrees - * @return the measurement of the angle {@code angdeg} - * in radians. - */ - public static strictfp double toRadians(double angdeg) { - return angdeg / 180.0 * PI; - } - - /** - * Converts an angle measured in radians to an approximately - * equivalent angle measured in degrees. The conversion from - * radians to degrees is generally inexact; users should - * not expect {@code cos(toRadians(90.0))} to exactly - * equal {@code 0.0}. - * - * @param angrad an angle, in radians - * @return the measurement of the angle {@code angrad} - * in degrees. - */ - public static strictfp double toDegrees(double angrad) { - return angrad * 180.0 / PI; - } - - /** - * Returns Euler's number e raised to the power of a - * {@code double} value. Special cases: - * - * - * @param a the exponent to raise e to. - * @return the value e{@code a}, - * where e is the base of the natural logarithms. - */ - public static native double exp(double a); - - /** - * Returns the natural logarithm (base e) of a {@code double} - * value. Special cases: - * - * - * @param a a value - * @return the value ln {@code a}, the natural logarithm of - * {@code a}. - */ - public static native double log(double a); - - - /** - * Returns the base 10 logarithm of a {@code double} value. - * Special cases: - * - * - * - * @param a a value - * @return the base 10 logarithm of {@code a}. - * @since 1.5 - */ - public static native double log10(double a); - - /** - * Returns the correctly rounded positive square root of a - * {@code double} value. - * Special cases: - * - * Otherwise, the result is the {@code double} value closest to - * the true mathematical square root of the argument value. - * - * @param a a value. - * @return the positive square root of {@code a}. - */ - public static native double sqrt(double a); - - /** - * Returns the cube root of a {@code double} value. For - * positive finite {@code x}, {@code cbrt(-x) == - * -cbrt(x)}; that is, the cube root of a negative value is - * the negative of the cube root of that value's magnitude. - * Special cases: - * - * - * - * @param a a value. - * @return the cube root of {@code a}. - * @since 1.5 - */ - public static native double cbrt(double a); - - /** - * Computes the remainder operation on two arguments as prescribed - * by the IEEE 754 standard. - * The remainder value is mathematically equal to - * f1 - f2 × n, - * where n is the mathematical integer closest to the exact - * mathematical value of the quotient {@code f1/f2}, and if two - * mathematical integers are equally close to {@code f1/f2}, - * then n is the integer that is even. If the remainder is - * zero, its sign is the same as the sign of the first argument. - * Special cases: - * - * - * @param f1 the dividend. - * @param f2 the divisor. - * @return the remainder when {@code f1} is divided by - * {@code f2}. - */ - public static native double IEEEremainder(double f1, double f2); - - /** - * Returns the smallest (closest to negative infinity) - * {@code double} value that is greater than or equal to the - * argument and is equal to a mathematical integer. Special cases: - * Note - * that the value of {@code StrictMath.ceil(x)} is exactly the - * value of {@code -StrictMath.floor(-x)}. - * - * @param a a value. - * @return the smallest (closest to negative infinity) - * floating-point value that is greater than or equal to - * the argument and is equal to a mathematical integer. - */ - public static double ceil(double a) { - return floorOrCeil(a, -0.0, 1.0, 1.0); - } - - /** - * Returns the largest (closest to positive infinity) - * {@code double} value that is less than or equal to the - * argument and is equal to a mathematical integer. Special cases: - * - * - * @param a a value. - * @return the largest (closest to positive infinity) - * floating-point value that less than or equal to the argument - * and is equal to a mathematical integer. - */ - public static double floor(double a) { - return floorOrCeil(a, -1.0, 0.0, -1.0); - } - - /** - * Internal method to share logic between floor and ceil. - * - * @param a the value to be floored or ceiled - * @param negativeBoundary result for values in (-1, 0) - * @param positiveBoundary result for values in (0, 1) - * @param increment value to add when the argument is non-integral - */ - private static double floorOrCeil(double a, - double negativeBoundary, - double positiveBoundary, - double sign) { - int exponent = getExponent(a); - - if (exponent < 0) { - /* - * Absolute value of argument is less than 1. - * floorOrceil(-0.0) => -0.0 - * floorOrceil(+0.0) => +0.0 - */ - return ((a == 0.0) ? a : - ( (a < 0.0) ? negativeBoundary : positiveBoundary) ); - } else if (exponent >= 52) { - /* - * Infinity, NaN, or a value so large it must be integral. - */ - return a; - } - // Else the argument is either an integral value already XOR it - // has to be rounded to one. - assert exponent >= 0 && exponent <= 51; - - long doppel = Double.doubleToRawLongBits(a); - long mask = 0; // DoubleConsts.SIGNIF_BIT_MASK >> exponent; - - if ( (mask & doppel) == 0L ) - return a; // integral value - else { - double result = Double.longBitsToDouble(doppel & (~mask)); - if (sign*a > 0.0) - result = result + sign; - return result; - } - } - - /** - * Returns the {@code double} value that is closest in value - * to the argument and is equal to a mathematical integer. If two - * {@code double} values that are mathematical integers are - * equally close to the value of the argument, the result is the - * integer value that is even. Special cases: - * - * - * @param a a value. - * @return the closest floating-point value to {@code a} that is - * equal to a mathematical integer. - * @author Joseph D. Darcy - */ - public static double rint(double a) { - throw new UnsupportedOperationException(); - /* - * If the absolute value of a is not less than 2^52, it - * is either a finite integer (the double format does not have - * enough significand bits for a number that large to have any - * fractional portion), an infinity, or a NaN. In any of - * these cases, rint of the argument is the argument. - * - * Otherwise, the sum (twoToThe52 + a ) will properly round - * away any fractional portion of a since ulp(twoToThe52) == - * 1.0; subtracting out twoToThe52 from this sum will then be - * exact and leave the rounded integer portion of a. - * - * This method does *not* need to be declared strictfp to get - * fully reproducible results. Whether or not a method is - * declared strictfp can only make a difference in the - * returned result if some operation would overflow or - * underflow with strictfp semantics. The operation - * (twoToThe52 + a ) cannot overflow since large values of a - * are screened out; the add cannot underflow since twoToThe52 - * is too large. The subtraction ((twoToThe52 + a ) - - * twoToThe52) will be exact as discussed above and thus - * cannot overflow or meaningfully underflow. Finally, the - * last multiply in the return statement is by plus or minus - * 1.0, which is exact too. - */ -// double twoToThe52 = (double)(1L << 52); // 2^52 -// double sign = FpUtils.rawCopySign(1.0, a); // preserve sign info -// a = Math.abs(a); -// -// if (a < twoToThe52) { // E_min <= ilogb(a) <= 51 -// a = ((twoToThe52 + a ) - twoToThe52); -// } -// -// return sign * a; // restore original sign - } - - /** - * Returns the angle theta from the conversion of rectangular - * coordinates ({@code x}, {@code y}) to polar - * coordinates (r, theta). - * This method computes the phase theta by computing an arc tangent - * of {@code y/x} in the range of -pi to pi. Special - * cases: - * - * - * @param y the ordinate coordinate - * @param x the abscissa coordinate - * @return the theta component of the point - * (rtheta) - * in polar coordinates that corresponds to the point - * (xy) in Cartesian coordinates. - */ - public static native double atan2(double y, double x); - - - /** - * Returns the value of the first argument raised to the power of the - * second argument. Special cases: - * - * - * - *

(In the foregoing descriptions, a floating-point value is - * considered to be an integer if and only if it is finite and a - * fixed point of the method {@link #ceil ceil} or, - * equivalently, a fixed point of the method {@link #floor - * floor}. A value is a fixed point of a one-argument - * method if and only if the result of applying the method to the - * value is equal to the value.) - * - * @param a base. - * @param b the exponent. - * @return the value {@code a}{@code b}. - */ - public static native double pow(double a, double b); - - /** - * Returns the closest {@code int} to the argument, with ties - * rounding up. - * - *

Special cases: - *

- * - * @param a a floating-point value to be rounded to an integer. - * @return the value of the argument rounded to the nearest - * {@code int} value. - * @see java.lang.Integer#MAX_VALUE - * @see java.lang.Integer#MIN_VALUE - */ - public static int round(float a) { - return Math.round(a); - } - - /** - * Returns the closest {@code long} to the argument, with ties - * rounding up. - * - *

Special cases: - *

- * - * @param a a floating-point value to be rounded to a - * {@code long}. - * @return the value of the argument rounded to the nearest - * {@code long} value. - * @see java.lang.Long#MAX_VALUE - * @see java.lang.Long#MIN_VALUE - */ - public static long round(double a) { - return Math.round(a); - } - - /** - * Returns a {@code double} value with a positive sign, greater - * than or equal to {@code 0.0} and less than {@code 1.0}. - * Returned values are chosen pseudorandomly with (approximately) - * uniform distribution from that range. - * - *

When this method is first called, it creates a single new - * pseudorandom-number generator, exactly as if by the expression - * - *

{@code new java.util.Random()}
- * - * This new pseudorandom-number generator is used thereafter for - * all calls to this method and is used nowhere else. - * - *

This method is properly synchronized to allow correct use by - * more than one thread. However, if many threads need to generate - * pseudorandom numbers at a great rate, it may reduce contention - * for each thread to have its own pseudorandom number generator. - * - * @return a pseudorandom {@code double} greater than or equal - * to {@code 0.0} and less than {@code 1.0}. - * @see Random#nextDouble() - */ - public static double random() { - throw new UnsupportedOperationException(); - } - - /** - * Returns the absolute value of an {@code int} value.. - * If the argument is not negative, the argument is returned. - * If the argument is negative, the negation of the argument is returned. - * - *

Note that if the argument is equal to the value of - * {@link Integer#MIN_VALUE}, the most negative representable - * {@code int} value, the result is that same value, which is - * negative. - * - * @param a the argument whose absolute value is to be determined. - * @return the absolute value of the argument. - */ - public static int abs(int a) { - return (a < 0) ? -a : a; - } - - /** - * Returns the absolute value of a {@code long} value. - * If the argument is not negative, the argument is returned. - * If the argument is negative, the negation of the argument is returned. - * - *

Note that if the argument is equal to the value of - * {@link Long#MIN_VALUE}, the most negative representable - * {@code long} value, the result is that same value, which - * is negative. - * - * @param a the argument whose absolute value is to be determined. - * @return the absolute value of the argument. - */ - public static long abs(long a) { - return (a < 0) ? -a : a; - } - - /** - * Returns the absolute value of a {@code float} value. - * If the argument is not negative, the argument is returned. - * If the argument is negative, the negation of the argument is returned. - * Special cases: - *

- * In other words, the result is the same as the value of the expression: - *

{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))} - * - * @param a the argument whose absolute value is to be determined - * @return the absolute value of the argument. - */ - public static float abs(float a) { - return (a <= 0.0F) ? 0.0F - a : a; - } - - /** - * Returns the absolute value of a {@code double} value. - * If the argument is not negative, the argument is returned. - * If the argument is negative, the negation of the argument is returned. - * Special cases: - *

- * In other words, the result is the same as the value of the expression: - *

{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)} - * - * @param a the argument whose absolute value is to be determined - * @return the absolute value of the argument. - */ - public static double abs(double a) { - return (a <= 0.0D) ? 0.0D - a : a; - } - - /** - * Returns the greater of two {@code int} values. That is, the - * result is the argument closer to the value of - * {@link Integer#MAX_VALUE}. If the arguments have the same value, - * the result is that same value. - * - * @param a an argument. - * @param b another argument. - * @return the larger of {@code a} and {@code b}. - */ - public static int max(int a, int b) { - return (a >= b) ? a : b; - } - - /** - * Returns the greater of two {@code long} values. That is, the - * result is the argument closer to the value of - * {@link Long#MAX_VALUE}. If the arguments have the same value, - * the result is that same value. - * - * @param a an argument. - * @param b another argument. - * @return the larger of {@code a} and {@code b}. - */ - public static long max(long a, long b) { - return (a >= b) ? a : b; - } - - // Use raw bit-wise conversions on guaranteed non-NaN arguments. - private static long negativeZeroFloatBits = Float.floatToRawIntBits(-0.0f); - private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d); - - /** - * Returns the greater of two {@code float} values. That is, - * the result is the argument closer to positive infinity. If the - * arguments have the same value, the result is that same - * value. If either value is NaN, then the result is NaN. Unlike - * the numerical comparison operators, this method considers - * negative zero to be strictly smaller than positive zero. If one - * argument is positive zero and the other negative zero, the - * result is positive zero. - * - * @param a an argument. - * @param b another argument. - * @return the larger of {@code a} and {@code b}. - */ - public static float max(float a, float b) { - if (a != a) - return a; // a is NaN - if ((a == 0.0f) && - (b == 0.0f) && - (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) { - // Raw conversion ok since NaN can't map to -0.0. - return b; - } - return (a >= b) ? a : b; - } - - /** - * Returns the greater of two {@code double} values. That - * is, the result is the argument closer to positive infinity. If - * the arguments have the same value, the result is that same - * value. If either value is NaN, then the result is NaN. Unlike - * the numerical comparison operators, this method considers - * negative zero to be strictly smaller than positive zero. If one - * argument is positive zero and the other negative zero, the - * result is positive zero. - * - * @param a an argument. - * @param b another argument. - * @return the larger of {@code a} and {@code b}. - */ - public static double max(double a, double b) { - if (a != a) - return a; // a is NaN - if ((a == 0.0d) && - (b == 0.0d) && - (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) { - // Raw conversion ok since NaN can't map to -0.0. - return b; - } - return (a >= b) ? a : b; - } - - /** - * Returns the smaller of two {@code int} values. That is, - * the result the argument closer to the value of - * {@link Integer#MIN_VALUE}. If the arguments have the same - * value, the result is that same value. - * - * @param a an argument. - * @param b another argument. - * @return the smaller of {@code a} and {@code b}. - */ - public static int min(int a, int b) { - return (a <= b) ? a : b; - } - - /** - * Returns the smaller of two {@code long} values. That is, - * the result is the argument closer to the value of - * {@link Long#MIN_VALUE}. If the arguments have the same - * value, the result is that same value. - * - * @param a an argument. - * @param b another argument. - * @return the smaller of {@code a} and {@code b}. - */ - public static long min(long a, long b) { - return (a <= b) ? a : b; - } - - /** - * Returns the smaller of two {@code float} values. That is, - * the result is the value closer to negative infinity. If the - * arguments have the same value, the result is that same - * value. If either value is NaN, then the result is NaN. Unlike - * the numerical comparison operators, this method considers - * negative zero to be strictly smaller than positive zero. If - * one argument is positive zero and the other is negative zero, - * the result is negative zero. - * - * @param a an argument. - * @param b another argument. - * @return the smaller of {@code a} and {@code b.} - */ - public static float min(float a, float b) { - if (a != a) - return a; // a is NaN - if ((a == 0.0f) && - (b == 0.0f) && - (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) { - // Raw conversion ok since NaN can't map to -0.0. - return b; - } - return (a <= b) ? a : b; - } - - /** - * Returns the smaller of two {@code double} values. That - * is, the result is the value closer to negative infinity. If the - * arguments have the same value, the result is that same - * value. If either value is NaN, then the result is NaN. Unlike - * the numerical comparison operators, this method considers - * negative zero to be strictly smaller than positive zero. If one - * argument is positive zero and the other is negative zero, the - * result is negative zero. - * - * @param a an argument. - * @param b another argument. - * @return the smaller of {@code a} and {@code b}. - */ - public static double min(double a, double b) { - if (a != a) - return a; // a is NaN - if ((a == 0.0d) && - (b == 0.0d) && - (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) { - // Raw conversion ok since NaN can't map to -0.0. - return b; - } - return (a <= b) ? a : b; - } - - /** - * Returns the size of an ulp of the argument. An ulp of a - * {@code double} value is the positive distance between this - * floating-point value and the {@code double} value next - * larger in magnitude. Note that for non-NaN x, - * ulp(-x) == ulp(x). - * - *

Special Cases: - *

- * - * @param d the floating-point value whose ulp is to be returned - * @return the size of an ulp of the argument - * @author Joseph D. Darcy - * @since 1.5 - */ - public static double ulp(double d) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the size of an ulp of the argument. An ulp of a - * {@code float} value is the positive distance between this - * floating-point value and the {@code float} value next - * larger in magnitude. Note that for non-NaN x, - * ulp(-x) == ulp(x). - * - *

Special Cases: - *

- * - * @param f the floating-point value whose ulp is to be returned - * @return the size of an ulp of the argument - * @author Joseph D. Darcy - * @since 1.5 - */ - public static float ulp(float f) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the signum function of the argument; zero if the argument - * is zero, 1.0 if the argument is greater than zero, -1.0 if the - * argument is less than zero. - * - *

Special Cases: - *

- * - * @param d the floating-point value whose signum is to be returned - * @return the signum function of the argument - * @author Joseph D. Darcy - * @since 1.5 - */ - public static double signum(double d) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the signum function of the argument; zero if the argument - * is zero, 1.0f if the argument is greater than zero, -1.0f if the - * argument is less than zero. - * - *

Special Cases: - *

- * - * @param f the floating-point value whose signum is to be returned - * @return the signum function of the argument - * @author Joseph D. Darcy - * @since 1.5 - */ - public static float signum(float f) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the hyperbolic sine of a {@code double} value. - * The hyperbolic sine of x is defined to be - * (ex - e-x)/2 - * where e is {@linkplain Math#E Euler's number}. - * - *

Special cases: - *

- * - * @param x The number whose hyperbolic sine is to be returned. - * @return The hyperbolic sine of {@code x}. - * @since 1.5 - */ - public static native double sinh(double x); - - /** - * Returns the hyperbolic cosine of a {@code double} value. - * The hyperbolic cosine of x is defined to be - * (ex + e-x)/2 - * where e is {@linkplain Math#E Euler's number}. - * - *

Special cases: - *

- * - * @param x The number whose hyperbolic cosine is to be returned. - * @return The hyperbolic cosine of {@code x}. - * @since 1.5 - */ - public static native double cosh(double x); - - /** - * Returns the hyperbolic tangent of a {@code double} value. - * The hyperbolic tangent of x is defined to be - * (ex - e-x)/(ex + e-x), - * in other words, {@linkplain Math#sinh - * sinh(x)}/{@linkplain Math#cosh cosh(x)}. Note - * that the absolute value of the exact tanh is always less than - * 1. - * - *

Special cases: - *

- * - * @param x The number whose hyperbolic tangent is to be returned. - * @return The hyperbolic tangent of {@code x}. - * @since 1.5 - */ - public static native double tanh(double x); - - /** - * Returns sqrt(x2 +y2) - * without intermediate overflow or underflow. - * - *

Special cases: - *

- * - * @param x a value - * @param y a value - * @return sqrt(x2 +y2) - * without intermediate overflow or underflow - * @since 1.5 - */ - public static native double hypot(double x, double y); - - /** - * Returns ex -1. Note that for values of - * x near 0, the exact sum of - * {@code expm1(x)} + 1 is much closer to the true - * result of ex than {@code exp(x)}. - * - *

Special cases: - *

- * - * @param x the exponent to raise e to in the computation of - * e{@code x} -1. - * @return the value e{@code x} - 1. - * @since 1.5 - */ - public static native double expm1(double x); - - /** - * Returns the natural logarithm of the sum of the argument and 1. - * Note that for small values {@code x}, the result of - * {@code log1p(x)} is much closer to the true result of ln(1 - * + {@code x}) than the floating-point evaluation of - * {@code log(1.0+x)}. - * - *

Special cases: - *

- * - * @param x a value - * @return the value ln({@code x} + 1), the natural - * log of {@code x} + 1 - * @since 1.5 - */ - public static native double log1p(double x); - - /** - * Returns the first floating-point argument with the sign of the - * second floating-point argument. For this method, a NaN - * {@code sign} argument is always treated as if it were - * positive. - * - * @param magnitude the parameter providing the magnitude of the result - * @param sign the parameter providing the sign of the result - * @return a value with the magnitude of {@code magnitude} - * and the sign of {@code sign}. - * @since 1.6 - */ - public static double copySign(double magnitude, double sign) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the first floating-point argument with the sign of the - * second floating-point argument. For this method, a NaN - * {@code sign} argument is always treated as if it were - * positive. - * - * @param magnitude the parameter providing the magnitude of the result - * @param sign the parameter providing the sign of the result - * @return a value with the magnitude of {@code magnitude} - * and the sign of {@code sign}. - * @since 1.6 - */ - public static float copySign(float magnitude, float sign) { - throw new UnsupportedOperationException(); - } - /** - * Returns the unbiased exponent used in the representation of a - * {@code float}. Special cases: - * - * - * @param f a {@code float} value - * @since 1.6 - */ - public static int getExponent(float f) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the unbiased exponent used in the representation of a - * {@code double}. Special cases: - * - * - * @param d a {@code double} value - * @since 1.6 - */ - public static int getExponent(double d) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the floating-point number adjacent to the first - * argument in the direction of the second argument. If both - * arguments compare as equal the second argument is returned. - * - *

Special cases: - *

- * - * @param start starting floating-point value - * @param direction value indicating which of - * {@code start}'s neighbors or {@code start} should - * be returned - * @return The floating-point number adjacent to {@code start} in the - * direction of {@code direction}. - * @since 1.6 - */ - public static double nextAfter(double start, double direction) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the floating-point number adjacent to the first - * argument in the direction of the second argument. If both - * arguments compare as equal a value equivalent to the second argument - * is returned. - * - *

Special cases: - *

- * - * @param start starting floating-point value - * @param direction value indicating which of - * {@code start}'s neighbors or {@code start} should - * be returned - * @return The floating-point number adjacent to {@code start} in the - * direction of {@code direction}. - * @since 1.6 - */ - public static float nextAfter(float start, double direction) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the floating-point value adjacent to {@code d} in - * the direction of positive infinity. This method is - * semantically equivalent to {@code nextAfter(d, - * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} - * implementation may run faster than its equivalent - * {@code nextAfter} call. - * - *

Special Cases: - *

- * - * @param d starting floating-point value - * @return The adjacent floating-point value closer to positive - * infinity. - * @since 1.6 - */ - public static double nextUp(double d) { - throw new UnsupportedOperationException(); - } - - /** - * Returns the floating-point value adjacent to {@code f} in - * the direction of positive infinity. This method is - * semantically equivalent to {@code nextAfter(f, - * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} - * implementation may run faster than its equivalent - * {@code nextAfter} call. - * - *

Special Cases: - *

- * - * @param f starting floating-point value - * @return The adjacent floating-point value closer to positive - * infinity. - * @since 1.6 - */ - public static float nextUp(float f) { - throw new UnsupportedOperationException(); - } - - - /** - * Return {@code d} × - * 2{@code scaleFactor} rounded as if performed - * by a single correctly rounded floating-point multiply to a - * member of the double value set. See the Java - * Language Specification for a discussion of floating-point - * value sets. If the exponent of the result is between {@link - * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the - * answer is calculated exactly. If the exponent of the result - * would be larger than {@code Double.MAX_EXPONENT}, an - * infinity is returned. Note that if the result is subnormal, - * precision may be lost; that is, when {@code scalb(x, n)} - * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal - * x. When the result is non-NaN, the result has the same - * sign as {@code d}. - * - *

Special cases: - *

- * - * @param d number to be scaled by a power of two. - * @param scaleFactor power of 2 used to scale {@code d} - * @return {@code d} × 2{@code scaleFactor} - * @since 1.6 - */ - public static double scalb(double d, int scaleFactor) { - throw new UnsupportedOperationException(); - } - - /** - * Return {@code f} × - * 2{@code scaleFactor} rounded as if performed - * by a single correctly rounded floating-point multiply to a - * member of the float value set. See the Java - * Language Specification for a discussion of floating-point - * value sets. If the exponent of the result is between {@link - * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the - * answer is calculated exactly. If the exponent of the result - * would be larger than {@code Float.MAX_EXPONENT}, an - * infinity is returned. Note that if the result is subnormal, - * precision may be lost; that is, when {@code scalb(x, n)} - * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal - * x. When the result is non-NaN, the result has the same - * sign as {@code f}. - * - *

Special cases: - *

- * - * @param f number to be scaled by a power of two. - * @param scaleFactor power of 2 used to scale {@code f} - * @return {@code f} × 2{@code scaleFactor} - * @since 1.6 - */ - public static float scalb(float f, int scaleFactor) { - throw new UnsupportedOperationException(); - } -} diff -r dbfbcd718146 -r 2377bb30dd1b vm/src/test/java/org/apidesign/vm4brwsr/NumberTest.java --- a/vm/src/test/java/org/apidesign/vm4brwsr/NumberTest.java Tue Oct 30 22:59:31 2012 +0100 +++ b/vm/src/test/java/org/apidesign/vm4brwsr/NumberTest.java Tue Oct 30 23:33:29 2012 +0100 @@ -19,8 +19,8 @@ import javax.script.Invocable; import javax.script.ScriptException; +import static org.testng.Assert.*; import org.testng.annotations.BeforeClass; -import static org.testng.Assert.*; import org.testng.annotations.Test; /** @@ -45,6 +45,16 @@ "3.3" ); } + + @Test public void javalog1000() throws Exception { + assertEquals(3.0, Math.log10(1000.0), 0.00003, "log_10(1000) == 3"); + } + + @Test public void jslog1000() throws Exception { + assertExec("log_10(1000) == 3", "java_lang_Math_log10DD", + Double.valueOf(3.0), 1000.0 + ); + } private static CharSequence codeSeq; @@ -76,6 +86,12 @@ if (expRes.equals(ret)) { return; } + if (expRes instanceof Double && ret instanceof Double) { + double expD = ((Double)expRes).doubleValue(); + double retD = ((Double)ret).doubleValue(); + assertEquals(retD, expD, 0.000004, msg + " was " + ret + "\n" + codeSeq); + return; + } assertEquals(ret, expRes, msg + "was: " + ret + "\n" + codeSeq); }