# HG changeset patch # User Jaroslav Tulach # Date 1348908983 -7200 # Node ID cc0d42d2110a62222e6e349cef188baba0e4f551 # Parent 8a74b5d8d1d45dea954bec868fa601d4c0d87d78 Bringing in math & numbers diff -r 8a74b5d8d1d4 -r cc0d42d2110a emul/src/main/java/java/lang/Byte.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/emul/src/main/java/java/lang/Byte.java Sat Sep 29 10:56:23 2012 +0200 @@ -0,0 +1,452 @@ +/* + * Copyright (c) 1996, 2009, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang; + +/** + * + * The {@code Byte} class wraps a value of primitive type {@code byte} + * in an object. An object of type {@code Byte} contains a single + * field whose type is {@code byte}. + * + *

In addition, this class provides several methods for converting + * a {@code byte} to a {@code String} and a {@code String} to a {@code + * byte}, as well as other constants and methods useful when dealing + * with a {@code byte}. + * + * @author Nakul Saraiya + * @author Joseph D. Darcy + * @see java.lang.Number + * @since JDK1.1 + */ +public final class Byte extends Number implements Comparable { + + /** + * A constant holding the minimum value a {@code byte} can + * have, -27. + */ + public static final byte MIN_VALUE = -128; + + /** + * A constant holding the maximum value a {@code byte} can + * have, 27-1. + */ + public static final byte MAX_VALUE = 127; + + /** + * The {@code Class} instance representing the primitive type + * {@code byte}. + */ + public static final Class TYPE = (Class) Class.getPrimitiveClass("byte"); + + /** + * Returns a new {@code String} object representing the + * specified {@code byte}. The radix is assumed to be 10. + * + * @param b the {@code byte} to be converted + * @return the string representation of the specified {@code byte} + * @see java.lang.Integer#toString(int) + */ + public static String toString(byte b) { + return Integer.toString((int)b, 10); + } + + private static class ByteCache { + private ByteCache(){} + + static final Byte cache[] = new Byte[-(-128) + 127 + 1]; + + static { + for(int i = 0; i < cache.length; i++) + cache[i] = new Byte((byte)(i - 128)); + } + } + + /** + * Returns a {@code Byte} instance representing the specified + * {@code byte} value. + * If a new {@code Byte} instance is not required, this method + * should generally be used in preference to the constructor + * {@link #Byte(byte)}, as this method is likely to yield + * significantly better space and time performance since + * all byte values are cached. + * + * @param b a byte value. + * @return a {@code Byte} instance representing {@code b}. + * @since 1.5 + */ + public static Byte valueOf(byte b) { + final int offset = 128; + return ByteCache.cache[(int)b + offset]; + } + + /** + * Parses the string argument as a signed {@code byte} in the + * radix specified by the second argument. The characters in the + * string must all be digits, of the specified radix (as + * determined by whether {@link java.lang.Character#digit(char, + * int)} returns a nonnegative value) except that the first + * character may be an ASCII minus sign {@code '-'} + * ('\u002D') to indicate a negative value or an + * ASCII plus sign {@code '+'} ('\u002B') to + * indicate a positive value. The resulting {@code byte} value is + * returned. + * + *

An exception of type {@code NumberFormatException} is + * thrown if any of the following situations occurs: + *

+ * + * @param s the {@code String} containing the + * {@code byte} + * representation to be parsed + * @param radix the radix to be used while parsing {@code s} + * @return the {@code byte} value represented by the string + * argument in the specified radix + * @throws NumberFormatException If the string does + * not contain a parsable {@code byte}. + */ + public static byte parseByte(String s, int radix) + throws NumberFormatException { + int i = Integer.parseInt(s, radix); + if (i < MIN_VALUE || i > MAX_VALUE) + throw new NumberFormatException( + "Value out of range. Value:\"" + s + "\" Radix:" + radix); + return (byte)i; + } + + /** + * Parses the string argument as a signed decimal {@code + * byte}. The characters in the string must all be decimal digits, + * except that the first character may be an ASCII minus sign + * {@code '-'} ('\u002D') to indicate a negative + * value or an ASCII plus sign {@code '+'} + * ('\u002B') to indicate a positive value. The + * resulting {@code byte} value is returned, exactly as if the + * argument and the radix 10 were given as arguments to the {@link + * #parseByte(java.lang.String, int)} method. + * + * @param s a {@code String} containing the + * {@code byte} representation to be parsed + * @return the {@code byte} value represented by the + * argument in decimal + * @throws NumberFormatException if the string does not + * contain a parsable {@code byte}. + */ + public static byte parseByte(String s) throws NumberFormatException { + return parseByte(s, 10); + } + + /** + * Returns a {@code Byte} object holding the value + * extracted from the specified {@code String} when parsed + * with the radix given by the second argument. The first argument + * is interpreted as representing a signed {@code byte} in + * the radix specified by the second argument, exactly as if the + * argument were given to the {@link #parseByte(java.lang.String, + * int)} method. The result is a {@code Byte} object that + * represents the {@code byte} value specified by the string. + * + *

In other words, this method returns a {@code Byte} object + * equal to the value of: + * + *

+ * {@code new Byte(Byte.parseByte(s, radix))} + *
+ * + * @param s the string to be parsed + * @param radix the radix to be used in interpreting {@code s} + * @return a {@code Byte} object holding the value + * represented by the string argument in the + * specified radix. + * @throws NumberFormatException If the {@code String} does + * not contain a parsable {@code byte}. + */ + public static Byte valueOf(String s, int radix) + throws NumberFormatException { + return valueOf(parseByte(s, radix)); + } + + /** + * Returns a {@code Byte} object holding the value + * given by the specified {@code String}. The argument is + * interpreted as representing a signed decimal {@code byte}, + * exactly as if the argument were given to the {@link + * #parseByte(java.lang.String)} method. The result is a + * {@code Byte} object that represents the {@code byte} + * value specified by the string. + * + *

In other words, this method returns a {@code Byte} object + * equal to the value of: + * + *

+ * {@code new Byte(Byte.parseByte(s))} + *
+ * + * @param s the string to be parsed + * @return a {@code Byte} object holding the value + * represented by the string argument + * @throws NumberFormatException If the {@code String} does + * not contain a parsable {@code byte}. + */ + public static Byte valueOf(String s) throws NumberFormatException { + return valueOf(s, 10); + } + + /** + * Decodes a {@code String} into a {@code Byte}. + * Accepts decimal, hexadecimal, and octal numbers given by + * the following grammar: + * + *
+ *
+ *
DecodableString: + *
Signopt DecimalNumeral + *
Signopt {@code 0x} HexDigits + *
Signopt {@code 0X} HexDigits + *
Signopt {@code #} HexDigits + *
Signopt {@code 0} OctalDigits + *

+ *

Sign: + *
{@code -} + *
{@code +} + *
+ *
+ * + * DecimalNumeral, HexDigits, and OctalDigits + * are as defined in section 3.10.1 of + * The Java™ Language Specification, + * except that underscores are not accepted between digits. + * + *

The sequence of characters following an optional + * sign and/or radix specifier ("{@code 0x}", "{@code 0X}", + * "{@code #}", or leading zero) is parsed as by the {@code + * Byte.parseByte} method with the indicated radix (10, 16, or 8). + * This sequence of characters must represent a positive value or + * a {@link NumberFormatException} will be thrown. The result is + * negated if first character of the specified {@code String} is + * the minus sign. No whitespace characters are permitted in the + * {@code String}. + * + * @param nm the {@code String} to decode. + * @return a {@code Byte} object holding the {@code byte} + * value represented by {@code nm} + * @throws NumberFormatException if the {@code String} does not + * contain a parsable {@code byte}. + * @see java.lang.Byte#parseByte(java.lang.String, int) + */ + public static Byte decode(String nm) throws NumberFormatException { + int i = Integer.decode(nm); + if (i < MIN_VALUE || i > MAX_VALUE) + throw new NumberFormatException( + "Value " + i + " out of range from input " + nm); + return valueOf((byte)i); + } + + /** + * The value of the {@code Byte}. + * + * @serial + */ + private final byte value; + + /** + * Constructs a newly allocated {@code Byte} object that + * represents the specified {@code byte} value. + * + * @param value the value to be represented by the + * {@code Byte}. + */ + public Byte(byte value) { + this.value = value; + } + + /** + * Constructs a newly allocated {@code Byte} object that + * represents the {@code byte} value indicated by the + * {@code String} parameter. The string is converted to a + * {@code byte} value in exactly the manner used by the + * {@code parseByte} method for radix 10. + * + * @param s the {@code String} to be converted to a + * {@code Byte} + * @throws NumberFormatException If the {@code String} + * does not contain a parsable {@code byte}. + * @see java.lang.Byte#parseByte(java.lang.String, int) + */ + public Byte(String s) throws NumberFormatException { + this.value = parseByte(s, 10); + } + + /** + * Returns the value of this {@code Byte} as a + * {@code byte}. + */ + public byte byteValue() { + return value; + } + + /** + * Returns the value of this {@code Byte} as a + * {@code short}. + */ + public short shortValue() { + return (short)value; + } + + /** + * Returns the value of this {@code Byte} as an + * {@code int}. + */ + public int intValue() { + return (int)value; + } + + /** + * Returns the value of this {@code Byte} as a + * {@code long}. + */ + public long longValue() { + return (long)value; + } + + /** + * Returns the value of this {@code Byte} as a + * {@code float}. + */ + public float floatValue() { + return (float)value; + } + + /** + * Returns the value of this {@code Byte} as a + * {@code double}. + */ + public double doubleValue() { + return (double)value; + } + + /** + * Returns a {@code String} object representing this + * {@code Byte}'s value. The value is converted to signed + * decimal representation and returned as a string, exactly as if + * the {@code byte} value were given as an argument to the + * {@link java.lang.Byte#toString(byte)} method. + * + * @return a string representation of the value of this object in + * base 10. + */ + public String toString() { + return Integer.toString((int)value); + } + + /** + * Returns a hash code for this {@code Byte}; equal to the result + * of invoking {@code intValue()}. + * + * @return a hash code value for this {@code Byte} + */ + public int hashCode() { + return (int)value; + } + + /** + * Compares this object to the specified object. The result is + * {@code true} if and only if the argument is not + * {@code null} and is a {@code Byte} object that + * contains the same {@code byte} value as this object. + * + * @param obj the object to compare with + * @return {@code true} if the objects are the same; + * {@code false} otherwise. + */ + public boolean equals(Object obj) { + if (obj instanceof Byte) { + return value == ((Byte)obj).byteValue(); + } + return false; + } + + /** + * Compares two {@code Byte} objects numerically. + * + * @param anotherByte the {@code Byte} to be compared. + * @return the value {@code 0} if this {@code Byte} is + * equal to the argument {@code Byte}; a value less than + * {@code 0} if this {@code Byte} is numerically less + * than the argument {@code Byte}; and a value greater than + * {@code 0} if this {@code Byte} is numerically + * greater than the argument {@code Byte} (signed + * comparison). + * @since 1.2 + */ + public int compareTo(Byte anotherByte) { + return compare(this.value, anotherByte.value); + } + + /** + * Compares two {@code byte} values numerically. + * The value returned is identical to what would be returned by: + *

+     *    Byte.valueOf(x).compareTo(Byte.valueOf(y))
+     * 
+ * + * @param x the first {@code byte} to compare + * @param y the second {@code byte} to compare + * @return the value {@code 0} if {@code x == y}; + * a value less than {@code 0} if {@code x < y}; and + * a value greater than {@code 0} if {@code x > y} + * @since 1.7 + */ + public static int compare(byte x, byte y) { + return x - y; + } + + /** + * The number of bits used to represent a {@code byte} value in two's + * complement binary form. + * + * @since 1.5 + */ + public static final int SIZE = 8; + + /** use serialVersionUID from JDK 1.1. for interoperability */ + private static final long serialVersionUID = -7183698231559129828L; +} diff -r 8a74b5d8d1d4 -r cc0d42d2110a emul/src/main/java/java/lang/Double.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/emul/src/main/java/java/lang/Double.java Sat Sep 29 10:56:23 2012 +0200 @@ -0,0 +1,988 @@ +/* + * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang; + +import sun.misc.FloatingDecimal; +import sun.misc.FpUtils; +import sun.misc.DoubleConsts; + +/** + * The {@code Double} class wraps a value of the primitive type + * {@code double} in an object. An object of type + * {@code Double} contains a single field whose type is + * {@code double}. + * + *

In addition, this class provides several methods for converting a + * {@code double} to a {@code String} and a + * {@code String} to a {@code double}, as well as other + * constants and methods useful when dealing with a + * {@code double}. + * + * @author Lee Boynton + * @author Arthur van Hoff + * @author Joseph D. Darcy + * @since JDK1.0 + */ +public final class Double extends Number implements Comparable { + /** + * A constant holding the positive infinity of type + * {@code double}. It is equal to the value returned by + * {@code Double.longBitsToDouble(0x7ff0000000000000L)}. + */ + public static final double POSITIVE_INFINITY = 1.0 / 0.0; + + /** + * A constant holding the negative infinity of type + * {@code double}. It is equal to the value returned by + * {@code Double.longBitsToDouble(0xfff0000000000000L)}. + */ + public static final double NEGATIVE_INFINITY = -1.0 / 0.0; + + /** + * A constant holding a Not-a-Number (NaN) value of type + * {@code double}. It is equivalent to the value returned by + * {@code Double.longBitsToDouble(0x7ff8000000000000L)}. + */ + public static final double NaN = 0.0d / 0.0; + + /** + * A constant holding the largest positive finite value of type + * {@code double}, + * (2-2-52)·21023. It is equal to + * the hexadecimal floating-point literal + * {@code 0x1.fffffffffffffP+1023} and also equal to + * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}. + */ + public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308 + + /** + * A constant holding the smallest positive normal value of type + * {@code double}, 2-1022. It is equal to the + * hexadecimal floating-point literal {@code 0x1.0p-1022} and also + * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}. + * + * @since 1.6 + */ + public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308 + + /** + * A constant holding the smallest positive nonzero value of type + * {@code double}, 2-1074. It is equal to the + * hexadecimal floating-point literal + * {@code 0x0.0000000000001P-1022} and also equal to + * {@code Double.longBitsToDouble(0x1L)}. + */ + public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324 + + /** + * Maximum exponent a finite {@code double} variable may have. + * It is equal to the value returned by + * {@code Math.getExponent(Double.MAX_VALUE)}. + * + * @since 1.6 + */ + public static final int MAX_EXPONENT = 1023; + + /** + * Minimum exponent a normalized {@code double} variable may + * have. It is equal to the value returned by + * {@code Math.getExponent(Double.MIN_NORMAL)}. + * + * @since 1.6 + */ + public static final int MIN_EXPONENT = -1022; + + /** + * The number of bits used to represent a {@code double} value. + * + * @since 1.5 + */ + public static final int SIZE = 64; + + /** + * The {@code Class} instance representing the primitive type + * {@code double}. + * + * @since JDK1.1 + */ + public static final Class TYPE = (Class) Class.getPrimitiveClass("double"); + + /** + * Returns a string representation of the {@code double} + * argument. All characters mentioned below are ASCII characters. + *

+ * How many digits must be printed for the fractional part of + * m or a? There must be at least one digit to represent + * the fractional part, and beyond that as many, but only as many, more + * digits as are needed to uniquely distinguish the argument value from + * adjacent values of type {@code double}. That is, suppose that + * x is the exact mathematical value represented by the decimal + * representation produced by this method for a finite nonzero argument + * d. Then d must be the {@code double} value nearest + * to x; or if two {@code double} values are equally close + * to x, then d must be one of them and the least + * significant bit of the significand of d must be {@code 0}. + * + *

To create localized string representations of a floating-point + * value, use subclasses of {@link java.text.NumberFormat}. + * + * @param d the {@code double} to be converted. + * @return a string representation of the argument. + */ + public static String toString(double d) { + return new FloatingDecimal(d).toJavaFormatString(); + } + + /** + * Returns a hexadecimal string representation of the + * {@code double} argument. All characters mentioned below + * are ASCII characters. + * + *

+ * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + *

Examples

Floating-point ValueHexadecimal String
{@code 1.0} {@code 0x1.0p0}
{@code -1.0} {@code -0x1.0p0}
{@code 2.0} {@code 0x1.0p1}
{@code 3.0} {@code 0x1.8p1}
{@code 0.5} {@code 0x1.0p-1}
{@code 0.25} {@code 0x1.0p-2}
{@code Double.MAX_VALUE}{@code 0x1.fffffffffffffp1023}
{@code Minimum Normal Value}{@code 0x1.0p-1022}
{@code Maximum Subnormal Value}{@code 0x0.fffffffffffffp-1022}
{@code Double.MIN_VALUE}{@code 0x0.0000000000001p-1022}
+ * @param d the {@code double} to be converted. + * @return a hex string representation of the argument. + * @since 1.5 + * @author Joseph D. Darcy + */ + public static String toHexString(double d) { + /* + * Modeled after the "a" conversion specifier in C99, section + * 7.19.6.1; however, the output of this method is more + * tightly specified. + */ + if (!FpUtils.isFinite(d) ) + // For infinity and NaN, use the decimal output. + return Double.toString(d); + else { + // Initialized to maximum size of output. + StringBuffer answer = new StringBuffer(24); + + if (FpUtils.rawCopySign(1.0, d) == -1.0) // value is negative, + answer.append("-"); // so append sign info + + answer.append("0x"); + + d = Math.abs(d); + + if(d == 0.0) { + answer.append("0.0p0"); + } + else { + boolean subnormal = (d < DoubleConsts.MIN_NORMAL); + + // Isolate significand bits and OR in a high-order bit + // so that the string representation has a known + // length. + long signifBits = (Double.doubleToLongBits(d) + & DoubleConsts.SIGNIF_BIT_MASK) | + 0x1000000000000000L; + + // Subnormal values have a 0 implicit bit; normal + // values have a 1 implicit bit. + answer.append(subnormal ? "0." : "1."); + + // Isolate the low-order 13 digits of the hex + // representation. If all the digits are zero, + // replace with a single 0; otherwise, remove all + // trailing zeros. + String signif = Long.toHexString(signifBits).substring(3,16); + answer.append(signif.equals("0000000000000") ? // 13 zeros + "0": + signif.replaceFirst("0{1,12}$", "")); + + // If the value is subnormal, use the E_min exponent + // value for double; otherwise, extract and report d's + // exponent (the representation of a subnormal uses + // E_min -1). + answer.append("p" + (subnormal ? + DoubleConsts.MIN_EXPONENT: + FpUtils.getExponent(d) )); + } + return answer.toString(); + } + } + + /** + * Returns a {@code Double} object holding the + * {@code double} value represented by the argument string + * {@code s}. + * + *

If {@code s} is {@code null}, then a + * {@code NullPointerException} is thrown. + * + *

Leading and trailing whitespace characters in {@code s} + * are ignored. Whitespace is removed as if by the {@link + * String#trim} method; that is, both ASCII space and control + * characters are removed. The rest of {@code s} should + * constitute a FloatValue as described by the lexical + * syntax rules: + * + *

+ *
+ *
FloatValue: + *
Signopt {@code NaN} + *
Signopt {@code Infinity} + *
Signopt FloatingPointLiteral + *
Signopt HexFloatingPointLiteral + *
SignedInteger + *
+ * + *

+ * + *

+ *
HexFloatingPointLiteral: + *
HexSignificand BinaryExponent FloatTypeSuffixopt + *
+ * + *

+ * + *

+ *
HexSignificand: + *
HexNumeral + *
HexNumeral {@code .} + *
{@code 0x} HexDigitsopt + * {@code .} HexDigits + *
{@code 0X} HexDigitsopt + * {@code .} HexDigits + *
+ * + *

+ * + *

+ *
BinaryExponent: + *
BinaryExponentIndicator SignedInteger + *
+ * + *

+ * + *

+ *
BinaryExponentIndicator: + *
{@code p} + *
{@code P} + *
+ * + *
+ * + * where Sign, FloatingPointLiteral, + * HexNumeral, HexDigits, SignedInteger and + * FloatTypeSuffix are as defined in the lexical structure + * sections of + * The Java™ Language Specification, + * except that underscores are not accepted between digits. + * If {@code s} does not have the form of + * a FloatValue, then a {@code NumberFormatException} + * is thrown. Otherwise, {@code s} is regarded as + * representing an exact decimal value in the usual + * "computerized scientific notation" or as an exact + * hexadecimal value; this exact numerical value is then + * conceptually converted to an "infinitely precise" + * binary value that is then rounded to type {@code double} + * by the usual round-to-nearest rule of IEEE 754 floating-point + * arithmetic, which includes preserving the sign of a zero + * value. + * + * Note that the round-to-nearest rule also implies overflow and + * underflow behaviour; if the exact value of {@code s} is large + * enough in magnitude (greater than or equal to ({@link + * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2), + * rounding to {@code double} will result in an infinity and if the + * exact value of {@code s} is small enough in magnitude (less + * than or equal to {@link #MIN_VALUE}/2), rounding to float will + * result in a zero. + * + * Finally, after rounding a {@code Double} object representing + * this {@code double} value is returned. + * + *

To interpret localized string representations of a + * floating-point value, use subclasses of {@link + * java.text.NumberFormat}. + * + *

Note that trailing format specifiers, specifiers that + * determine the type of a floating-point literal + * ({@code 1.0f} is a {@code float} value; + * {@code 1.0d} is a {@code double} value), do + * not influence the results of this method. In other + * words, the numerical value of the input string is converted + * directly to the target floating-point type. The two-step + * sequence of conversions, string to {@code float} followed + * by {@code float} to {@code double}, is not + * equivalent to converting a string directly to + * {@code double}. For example, the {@code float} + * literal {@code 0.1f} is equal to the {@code double} + * value {@code 0.10000000149011612}; the {@code float} + * literal {@code 0.1f} represents a different numerical + * value than the {@code double} literal + * {@code 0.1}. (The numerical value 0.1 cannot be exactly + * represented in a binary floating-point number.) + * + *

To avoid calling this method on an invalid string and having + * a {@code NumberFormatException} be thrown, the regular + * expression below can be used to screen the input string: + * + * + *

+     *  final String Digits     = "(\\p{Digit}+)";
+     *  final String HexDigits  = "(\\p{XDigit}+)";
+     *  // an exponent is 'e' or 'E' followed by an optionally
+     *  // signed decimal integer.
+     *  final String Exp        = "[eE][+-]?"+Digits;
+     *  final String fpRegex    =
+     *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
+     *       "[+-]?(" + // Optional sign character
+     *       "NaN|" +           // "NaN" string
+     *       "Infinity|" +      // "Infinity" string
+     *
+     *       // A decimal floating-point string representing a finite positive
+     *       // number without a leading sign has at most five basic pieces:
+     *       // Digits . Digits ExponentPart FloatTypeSuffix
+     *       //
+     *       // Since this method allows integer-only strings as input
+     *       // in addition to strings of floating-point literals, the
+     *       // two sub-patterns below are simplifications of the grammar
+     *       // productions from section 3.10.2 of
+     *       // The Java™ Language Specification.
+     *
+     *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
+     *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
+     *
+     *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
+     *       "(\\.("+Digits+")("+Exp+")?)|"+
+     *
+     *       // Hexadecimal strings
+     *       "((" +
+     *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
+     *        "(0[xX]" + HexDigits + "(\\.)?)|" +
+     *
+     *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
+     *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
+     *
+     *        ")[pP][+-]?" + Digits + "))" +
+     *       "[fFdD]?))" +
+     *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
+     *
+     *  if (Pattern.matches(fpRegex, myString))
+     *      Double.valueOf(myString); // Will not throw NumberFormatException
+     *  else {
+     *      // Perform suitable alternative action
+     *  }
+     * 
+ * + * + * @param s the string to be parsed. + * @return a {@code Double} object holding the value + * represented by the {@code String} argument. + * @throws NumberFormatException if the string does not contain a + * parsable number. + */ + public static Double valueOf(String s) throws NumberFormatException { + return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue()); + } + + /** + * Returns a {@code Double} instance representing the specified + * {@code double} value. + * If a new {@code Double} instance is not required, this method + * should generally be used in preference to the constructor + * {@link #Double(double)}, as this method is likely to yield + * significantly better space and time performance by caching + * frequently requested values. + * + * @param d a double value. + * @return a {@code Double} instance representing {@code d}. + * @since 1.5 + */ + public static Double valueOf(double d) { + return new Double(d); + } + + /** + * Returns a new {@code double} initialized to the value + * represented by the specified {@code String}, as performed + * by the {@code valueOf} method of class + * {@code Double}. + * + * @param s the string to be parsed. + * @return the {@code double} value represented by the string + * argument. + * @throws NullPointerException if the string is null + * @throws NumberFormatException if the string does not contain + * a parsable {@code double}. + * @see java.lang.Double#valueOf(String) + * @since 1.2 + */ + public static double parseDouble(String s) throws NumberFormatException { + return FloatingDecimal.readJavaFormatString(s).doubleValue(); + } + + /** + * Returns {@code true} if the specified number is a + * Not-a-Number (NaN) value, {@code false} otherwise. + * + * @param v the value to be tested. + * @return {@code true} if the value of the argument is NaN; + * {@code false} otherwise. + */ + static public boolean isNaN(double v) { + return (v != v); + } + + /** + * Returns {@code true} if the specified number is infinitely + * large in magnitude, {@code false} otherwise. + * + * @param v the value to be tested. + * @return {@code true} if the value of the argument is positive + * infinity or negative infinity; {@code false} otherwise. + */ + static public boolean isInfinite(double v) { + return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY); + } + + /** + * The value of the Double. + * + * @serial + */ + private final double value; + + /** + * Constructs a newly allocated {@code Double} object that + * represents the primitive {@code double} argument. + * + * @param value the value to be represented by the {@code Double}. + */ + public Double(double value) { + this.value = value; + } + + /** + * Constructs a newly allocated {@code Double} object that + * represents the floating-point value of type {@code double} + * represented by the string. The string is converted to a + * {@code double} value as if by the {@code valueOf} method. + * + * @param s a string to be converted to a {@code Double}. + * @throws NumberFormatException if the string does not contain a + * parsable number. + * @see java.lang.Double#valueOf(java.lang.String) + */ + public Double(String s) throws NumberFormatException { + // REMIND: this is inefficient + this(valueOf(s).doubleValue()); + } + + /** + * Returns {@code true} if this {@code Double} value is + * a Not-a-Number (NaN), {@code false} otherwise. + * + * @return {@code true} if the value represented by this object is + * NaN; {@code false} otherwise. + */ + public boolean isNaN() { + return isNaN(value); + } + + /** + * Returns {@code true} if this {@code Double} value is + * infinitely large in magnitude, {@code false} otherwise. + * + * @return {@code true} if the value represented by this object is + * positive infinity or negative infinity; + * {@code false} otherwise. + */ + public boolean isInfinite() { + return isInfinite(value); + } + + /** + * Returns a string representation of this {@code Double} object. + * The primitive {@code double} value represented by this + * object is converted to a string exactly as if by the method + * {@code toString} of one argument. + * + * @return a {@code String} representation of this object. + * @see java.lang.Double#toString(double) + */ + public String toString() { + return toString(value); + } + + /** + * Returns the value of this {@code Double} as a {@code byte} (by + * casting to a {@code byte}). + * + * @return the {@code double} value represented by this object + * converted to type {@code byte} + * @since JDK1.1 + */ + public byte byteValue() { + return (byte)value; + } + + /** + * Returns the value of this {@code Double} as a + * {@code short} (by casting to a {@code short}). + * + * @return the {@code double} value represented by this object + * converted to type {@code short} + * @since JDK1.1 + */ + public short shortValue() { + return (short)value; + } + + /** + * Returns the value of this {@code Double} as an + * {@code int} (by casting to type {@code int}). + * + * @return the {@code double} value represented by this object + * converted to type {@code int} + */ + public int intValue() { + return (int)value; + } + + /** + * Returns the value of this {@code Double} as a + * {@code long} (by casting to type {@code long}). + * + * @return the {@code double} value represented by this object + * converted to type {@code long} + */ + public long longValue() { + return (long)value; + } + + /** + * Returns the {@code float} value of this + * {@code Double} object. + * + * @return the {@code double} value represented by this object + * converted to type {@code float} + * @since JDK1.0 + */ + public float floatValue() { + return (float)value; + } + + /** + * Returns the {@code double} value of this + * {@code Double} object. + * + * @return the {@code double} value represented by this object + */ + public double doubleValue() { + return (double)value; + } + + /** + * Returns a hash code for this {@code Double} object. The + * result is the exclusive OR of the two halves of the + * {@code long} integer bit representation, exactly as + * produced by the method {@link #doubleToLongBits(double)}, of + * the primitive {@code double} value represented by this + * {@code Double} object. That is, the hash code is the value + * of the expression: + * + *
+ * {@code (int)(v^(v>>>32))} + *
+ * + * where {@code v} is defined by: + * + *
+ * {@code long v = Double.doubleToLongBits(this.doubleValue());} + *
+ * + * @return a {@code hash code} value for this object. + */ + public int hashCode() { + long bits = doubleToLongBits(value); + return (int)(bits ^ (bits >>> 32)); + } + + /** + * Compares this object against the specified object. The result + * is {@code true} if and only if the argument is not + * {@code null} and is a {@code Double} object that + * represents a {@code double} that has the same value as the + * {@code double} represented by this object. For this + * purpose, two {@code double} values are considered to be + * the same if and only if the method {@link + * #doubleToLongBits(double)} returns the identical + * {@code long} value when applied to each. + * + *

Note that in most cases, for two instances of class + * {@code Double}, {@code d1} and {@code d2}, the + * value of {@code d1.equals(d2)} is {@code true} if and + * only if + * + *

+ * {@code d1.doubleValue() == d2.doubleValue()} + *
+ * + *

also has the value {@code true}. However, there are two + * exceptions: + *

+ * This definition allows hash tables to operate properly. + * @param obj the object to compare with. + * @return {@code true} if the objects are the same; + * {@code false} otherwise. + * @see java.lang.Double#doubleToLongBits(double) + */ + public boolean equals(Object obj) { + return (obj instanceof Double) + && (doubleToLongBits(((Double)obj).value) == + doubleToLongBits(value)); + } + + /** + * Returns a representation of the specified floating-point value + * according to the IEEE 754 floating-point "double + * format" bit layout. + * + *

Bit 63 (the bit that is selected by the mask + * {@code 0x8000000000000000L}) represents the sign of the + * floating-point number. Bits + * 62-52 (the bits that are selected by the mask + * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0 + * (the bits that are selected by the mask + * {@code 0x000fffffffffffffL}) represent the significand + * (sometimes called the mantissa) of the floating-point number. + * + *

If the argument is positive infinity, the result is + * {@code 0x7ff0000000000000L}. + * + *

If the argument is negative infinity, the result is + * {@code 0xfff0000000000000L}. + * + *

If the argument is NaN, the result is + * {@code 0x7ff8000000000000L}. + * + *

In all cases, the result is a {@code long} integer that, when + * given to the {@link #longBitsToDouble(long)} method, will produce a + * floating-point value the same as the argument to + * {@code doubleToLongBits} (except all NaN values are + * collapsed to a single "canonical" NaN value). + * + * @param value a {@code double} precision floating-point number. + * @return the bits that represent the floating-point number. + */ + public static long doubleToLongBits(double value) { + long result = doubleToRawLongBits(value); + // Check for NaN based on values of bit fields, maximum + // exponent and nonzero significand. + if ( ((result & DoubleConsts.EXP_BIT_MASK) == + DoubleConsts.EXP_BIT_MASK) && + (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L) + result = 0x7ff8000000000000L; + return result; + } + + /** + * Returns a representation of the specified floating-point value + * according to the IEEE 754 floating-point "double + * format" bit layout, preserving Not-a-Number (NaN) values. + * + *

Bit 63 (the bit that is selected by the mask + * {@code 0x8000000000000000L}) represents the sign of the + * floating-point number. Bits + * 62-52 (the bits that are selected by the mask + * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0 + * (the bits that are selected by the mask + * {@code 0x000fffffffffffffL}) represent the significand + * (sometimes called the mantissa) of the floating-point number. + * + *

If the argument is positive infinity, the result is + * {@code 0x7ff0000000000000L}. + * + *

If the argument is negative infinity, the result is + * {@code 0xfff0000000000000L}. + * + *

If the argument is NaN, the result is the {@code long} + * integer representing the actual NaN value. Unlike the + * {@code doubleToLongBits} method, + * {@code doubleToRawLongBits} does not collapse all the bit + * patterns encoding a NaN to a single "canonical" NaN + * value. + * + *

In all cases, the result is a {@code long} integer that, + * when given to the {@link #longBitsToDouble(long)} method, will + * produce a floating-point value the same as the argument to + * {@code doubleToRawLongBits}. + * + * @param value a {@code double} precision floating-point number. + * @return the bits that represent the floating-point number. + * @since 1.3 + */ + public static native long doubleToRawLongBits(double value); + + /** + * Returns the {@code double} value corresponding to a given + * bit representation. + * The argument is considered to be a representation of a + * floating-point value according to the IEEE 754 floating-point + * "double format" bit layout. + * + *

If the argument is {@code 0x7ff0000000000000L}, the result + * is positive infinity. + * + *

If the argument is {@code 0xfff0000000000000L}, the result + * is negative infinity. + * + *

If the argument is any value in the range + * {@code 0x7ff0000000000001L} through + * {@code 0x7fffffffffffffffL} or in the range + * {@code 0xfff0000000000001L} through + * {@code 0xffffffffffffffffL}, the result is a NaN. No IEEE + * 754 floating-point operation provided by Java can distinguish + * between two NaN values of the same type with different bit + * patterns. Distinct values of NaN are only distinguishable by + * use of the {@code Double.doubleToRawLongBits} method. + * + *

In all other cases, let s, e, and m be three + * values that can be computed from the argument: + * + *

+     * int s = ((bits >> 63) == 0) ? 1 : -1;
+     * int e = (int)((bits >> 52) & 0x7ffL);
+     * long m = (e == 0) ?
+     *                 (bits & 0xfffffffffffffL) << 1 :
+     *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
+     * 
+ * + * Then the floating-point result equals the value of the mathematical + * expression s·m·2e-1075. + * + *

Note that this method may not be able to return a + * {@code double} NaN with exactly same bit pattern as the + * {@code long} argument. IEEE 754 distinguishes between two + * kinds of NaNs, quiet NaNs and signaling NaNs. The + * differences between the two kinds of NaN are generally not + * visible in Java. Arithmetic operations on signaling NaNs turn + * them into quiet NaNs with a different, but often similar, bit + * pattern. However, on some processors merely copying a + * signaling NaN also performs that conversion. In particular, + * copying a signaling NaN to return it to the calling method + * may perform this conversion. So {@code longBitsToDouble} + * may not be able to return a {@code double} with a + * signaling NaN bit pattern. Consequently, for some + * {@code long} values, + * {@code doubleToRawLongBits(longBitsToDouble(start))} may + * not equal {@code start}. Moreover, which + * particular bit patterns represent signaling NaNs is platform + * dependent; although all NaN bit patterns, quiet or signaling, + * must be in the NaN range identified above. + * + * @param bits any {@code long} integer. + * @return the {@code double} floating-point value with the same + * bit pattern. + */ + public static native double longBitsToDouble(long bits); + + /** + * Compares two {@code Double} objects numerically. There + * are two ways in which comparisons performed by this method + * differ from those performed by the Java language numerical + * comparison operators ({@code <, <=, ==, >=, >}) + * when applied to primitive {@code double} values: + *

+ * This ensures that the natural ordering of + * {@code Double} objects imposed by this method is consistent + * with equals. + * + * @param anotherDouble the {@code Double} to be compared. + * @return the value {@code 0} if {@code anotherDouble} is + * numerically equal to this {@code Double}; a value + * less than {@code 0} if this {@code Double} + * is numerically less than {@code anotherDouble}; + * and a value greater than {@code 0} if this + * {@code Double} is numerically greater than + * {@code anotherDouble}. + * + * @since 1.2 + */ + public int compareTo(Double anotherDouble) { + return Double.compare(value, anotherDouble.value); + } + + /** + * Compares the two specified {@code double} values. The sign + * of the integer value returned is the same as that of the + * integer that would be returned by the call: + *
+     *    new Double(d1).compareTo(new Double(d2))
+     * 
+ * + * @param d1 the first {@code double} to compare + * @param d2 the second {@code double} to compare + * @return the value {@code 0} if {@code d1} is + * numerically equal to {@code d2}; a value less than + * {@code 0} if {@code d1} is numerically less than + * {@code d2}; and a value greater than {@code 0} + * if {@code d1} is numerically greater than + * {@code d2}. + * @since 1.4 + */ + public static int compare(double d1, double d2) { + if (d1 < d2) + return -1; // Neither val is NaN, thisVal is smaller + if (d1 > d2) + return 1; // Neither val is NaN, thisVal is larger + + // Cannot use doubleToRawLongBits because of possibility of NaNs. + long thisBits = Double.doubleToLongBits(d1); + long anotherBits = Double.doubleToLongBits(d2); + + return (thisBits == anotherBits ? 0 : // Values are equal + (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) + 1)); // (0.0, -0.0) or (NaN, !NaN) + } + + /** use serialVersionUID from JDK 1.0.2 for interoperability */ + private static final long serialVersionUID = -9172774392245257468L; +} diff -r 8a74b5d8d1d4 -r cc0d42d2110a emul/src/main/java/java/lang/Float.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/emul/src/main/java/java/lang/Float.java Sat Sep 29 10:56:23 2012 +0200 @@ -0,0 +1,892 @@ +/* + * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang; + +import sun.misc.FloatingDecimal; +import sun.misc.FpUtils; +import sun.misc.FloatConsts; +import sun.misc.DoubleConsts; + +/** + * The {@code Float} class wraps a value of primitive type + * {@code float} in an object. An object of type + * {@code Float} contains a single field whose type is + * {@code float}. + * + *

In addition, this class provides several methods for converting a + * {@code float} to a {@code String} and a + * {@code String} to a {@code float}, as well as other + * constants and methods useful when dealing with a + * {@code float}. + * + * @author Lee Boynton + * @author Arthur van Hoff + * @author Joseph D. Darcy + * @since JDK1.0 + */ +public final class Float extends Number implements Comparable { + /** + * A constant holding the positive infinity of type + * {@code float}. It is equal to the value returned by + * {@code Float.intBitsToFloat(0x7f800000)}. + */ + public static final float POSITIVE_INFINITY = 1.0f / 0.0f; + + /** + * A constant holding the negative infinity of type + * {@code float}. It is equal to the value returned by + * {@code Float.intBitsToFloat(0xff800000)}. + */ + public static final float NEGATIVE_INFINITY = -1.0f / 0.0f; + + /** + * A constant holding a Not-a-Number (NaN) value of type + * {@code float}. It is equivalent to the value returned by + * {@code Float.intBitsToFloat(0x7fc00000)}. + */ + public static final float NaN = 0.0f / 0.0f; + + /** + * A constant holding the largest positive finite value of type + * {@code float}, (2-2-23)·2127. + * It is equal to the hexadecimal floating-point literal + * {@code 0x1.fffffeP+127f} and also equal to + * {@code Float.intBitsToFloat(0x7f7fffff)}. + */ + public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f + + /** + * A constant holding the smallest positive normal value of type + * {@code float}, 2-126. It is equal to the + * hexadecimal floating-point literal {@code 0x1.0p-126f} and also + * equal to {@code Float.intBitsToFloat(0x00800000)}. + * + * @since 1.6 + */ + public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f + + /** + * A constant holding the smallest positive nonzero value of type + * {@code float}, 2-149. It is equal to the + * hexadecimal floating-point literal {@code 0x0.000002P-126f} + * and also equal to {@code Float.intBitsToFloat(0x1)}. + */ + public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f + + /** + * Maximum exponent a finite {@code float} variable may have. It + * is equal to the value returned by {@code + * Math.getExponent(Float.MAX_VALUE)}. + * + * @since 1.6 + */ + public static final int MAX_EXPONENT = 127; + + /** + * Minimum exponent a normalized {@code float} variable may have. + * It is equal to the value returned by {@code + * Math.getExponent(Float.MIN_NORMAL)}. + * + * @since 1.6 + */ + public static final int MIN_EXPONENT = -126; + + /** + * The number of bits used to represent a {@code float} value. + * + * @since 1.5 + */ + public static final int SIZE = 32; + + /** + * The {@code Class} instance representing the primitive type + * {@code float}. + * + * @since JDK1.1 + */ + public static final Class TYPE = Class.getPrimitiveClass("float"); + + /** + * Returns a string representation of the {@code float} + * argument. All characters mentioned below are ASCII characters. + *

+ * How many digits must be printed for the fractional part of + * m or a? There must be at least one digit + * to represent the fractional part, and beyond that as many, but + * only as many, more digits as are needed to uniquely distinguish + * the argument value from adjacent values of type + * {@code float}. That is, suppose that x is the + * exact mathematical value represented by the decimal + * representation produced by this method for a finite nonzero + * argument f. Then f must be the {@code float} + * value nearest to x; or, if two {@code float} values are + * equally close to x, then f must be one of + * them and the least significant bit of the significand of + * f must be {@code 0}. + * + *

To create localized string representations of a floating-point + * value, use subclasses of {@link java.text.NumberFormat}. + * + * @param f the float to be converted. + * @return a string representation of the argument. + */ + public static String toString(float f) { + return new FloatingDecimal(f).toJavaFormatString(); + } + + /** + * Returns a hexadecimal string representation of the + * {@code float} argument. All characters mentioned below are + * ASCII characters. + * + *

+ * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + *

Examples

Floating-point ValueHexadecimal String
{@code 1.0} {@code 0x1.0p0}
{@code -1.0} {@code -0x1.0p0}
{@code 2.0} {@code 0x1.0p1}
{@code 3.0} {@code 0x1.8p1}
{@code 0.5} {@code 0x1.0p-1}
{@code 0.25} {@code 0x1.0p-2}
{@code Float.MAX_VALUE}{@code 0x1.fffffep127}
{@code Minimum Normal Value}{@code 0x1.0p-126}
{@code Maximum Subnormal Value}{@code 0x0.fffffep-126}
{@code Float.MIN_VALUE}{@code 0x0.000002p-126}
+ * @param f the {@code float} to be converted. + * @return a hex string representation of the argument. + * @since 1.5 + * @author Joseph D. Darcy + */ + public static String toHexString(float f) { + if (Math.abs(f) < FloatConsts.MIN_NORMAL + && f != 0.0f ) {// float subnormal + // Adjust exponent to create subnormal double, then + // replace subnormal double exponent with subnormal float + // exponent + String s = Double.toHexString(FpUtils.scalb((double)f, + /* -1022+126 */ + DoubleConsts.MIN_EXPONENT- + FloatConsts.MIN_EXPONENT)); + return s.replaceFirst("p-1022$", "p-126"); + } + else // double string will be the same as float string + return Double.toHexString(f); + } + + /** + * Returns a {@code Float} object holding the + * {@code float} value represented by the argument string + * {@code s}. + * + *

If {@code s} is {@code null}, then a + * {@code NullPointerException} is thrown. + * + *

Leading and trailing whitespace characters in {@code s} + * are ignored. Whitespace is removed as if by the {@link + * String#trim} method; that is, both ASCII space and control + * characters are removed. The rest of {@code s} should + * constitute a FloatValue as described by the lexical + * syntax rules: + * + *

+ *
+ *
FloatValue: + *
Signopt {@code NaN} + *
Signopt {@code Infinity} + *
Signopt FloatingPointLiteral + *
Signopt HexFloatingPointLiteral + *
SignedInteger + *
+ * + *

+ * + *

+ *
HexFloatingPointLiteral: + *
HexSignificand BinaryExponent FloatTypeSuffixopt + *
+ * + *

+ * + *

+ *
HexSignificand: + *
HexNumeral + *
HexNumeral {@code .} + *
{@code 0x} HexDigitsopt + * {@code .} HexDigits + *
{@code 0X} HexDigitsopt + * {@code .} HexDigits + *
+ * + *

+ * + *

+ *
BinaryExponent: + *
BinaryExponentIndicator SignedInteger + *
+ * + *

+ * + *

+ *
BinaryExponentIndicator: + *
{@code p} + *
{@code P} + *
+ * + *
+ * + * where Sign, FloatingPointLiteral, + * HexNumeral, HexDigits, SignedInteger and + * FloatTypeSuffix are as defined in the lexical structure + * sections of + * The Java™ Language Specification, + * except that underscores are not accepted between digits. + * If {@code s} does not have the form of + * a FloatValue, then a {@code NumberFormatException} + * is thrown. Otherwise, {@code s} is regarded as + * representing an exact decimal value in the usual + * "computerized scientific notation" or as an exact + * hexadecimal value; this exact numerical value is then + * conceptually converted to an "infinitely precise" + * binary value that is then rounded to type {@code float} + * by the usual round-to-nearest rule of IEEE 754 floating-point + * arithmetic, which includes preserving the sign of a zero + * value. + * + * Note that the round-to-nearest rule also implies overflow and + * underflow behaviour; if the exact value of {@code s} is large + * enough in magnitude (greater than or equal to ({@link + * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2), + * rounding to {@code float} will result in an infinity and if the + * exact value of {@code s} is small enough in magnitude (less + * than or equal to {@link #MIN_VALUE}/2), rounding to float will + * result in a zero. + * + * Finally, after rounding a {@code Float} object representing + * this {@code float} value is returned. + * + *

To interpret localized string representations of a + * floating-point value, use subclasses of {@link + * java.text.NumberFormat}. + * + *

Note that trailing format specifiers, specifiers that + * determine the type of a floating-point literal + * ({@code 1.0f} is a {@code float} value; + * {@code 1.0d} is a {@code double} value), do + * not influence the results of this method. In other + * words, the numerical value of the input string is converted + * directly to the target floating-point type. In general, the + * two-step sequence of conversions, string to {@code double} + * followed by {@code double} to {@code float}, is + * not equivalent to converting a string directly to + * {@code float}. For example, if first converted to an + * intermediate {@code double} and then to + * {@code float}, the string
+ * {@code "1.00000017881393421514957253748434595763683319091796875001d"}
+ * results in the {@code float} value + * {@code 1.0000002f}; if the string is converted directly to + * {@code float}, 1.0000001f results. + * + *

To avoid calling this method on an invalid string and having + * a {@code NumberFormatException} be thrown, the documentation + * for {@link Double#valueOf Double.valueOf} lists a regular + * expression which can be used to screen the input. + * + * @param s the string to be parsed. + * @return a {@code Float} object holding the value + * represented by the {@code String} argument. + * @throws NumberFormatException if the string does not contain a + * parsable number. + */ + public static Float valueOf(String s) throws NumberFormatException { + return new Float(FloatingDecimal.readJavaFormatString(s).floatValue()); + } + + /** + * Returns a {@code Float} instance representing the specified + * {@code float} value. + * If a new {@code Float} instance is not required, this method + * should generally be used in preference to the constructor + * {@link #Float(float)}, as this method is likely to yield + * significantly better space and time performance by caching + * frequently requested values. + * + * @param f a float value. + * @return a {@code Float} instance representing {@code f}. + * @since 1.5 + */ + public static Float valueOf(float f) { + return new Float(f); + } + + /** + * Returns a new {@code float} initialized to the value + * represented by the specified {@code String}, as performed + * by the {@code valueOf} method of class {@code Float}. + * + * @param s the string to be parsed. + * @return the {@code float} value represented by the string + * argument. + * @throws NullPointerException if the string is null + * @throws NumberFormatException if the string does not contain a + * parsable {@code float}. + * @see java.lang.Float#valueOf(String) + * @since 1.2 + */ + public static float parseFloat(String s) throws NumberFormatException { + return FloatingDecimal.readJavaFormatString(s).floatValue(); + } + + /** + * Returns {@code true} if the specified number is a + * Not-a-Number (NaN) value, {@code false} otherwise. + * + * @param v the value to be tested. + * @return {@code true} if the argument is NaN; + * {@code false} otherwise. + */ + static public boolean isNaN(float v) { + return (v != v); + } + + /** + * Returns {@code true} if the specified number is infinitely + * large in magnitude, {@code false} otherwise. + * + * @param v the value to be tested. + * @return {@code true} if the argument is positive infinity or + * negative infinity; {@code false} otherwise. + */ + static public boolean isInfinite(float v) { + return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY); + } + + /** + * The value of the Float. + * + * @serial + */ + private final float value; + + /** + * Constructs a newly allocated {@code Float} object that + * represents the primitive {@code float} argument. + * + * @param value the value to be represented by the {@code Float}. + */ + public Float(float value) { + this.value = value; + } + + /** + * Constructs a newly allocated {@code Float} object that + * represents the argument converted to type {@code float}. + * + * @param value the value to be represented by the {@code Float}. + */ + public Float(double value) { + this.value = (float)value; + } + + /** + * Constructs a newly allocated {@code Float} object that + * represents the floating-point value of type {@code float} + * represented by the string. The string is converted to a + * {@code float} value as if by the {@code valueOf} method. + * + * @param s a string to be converted to a {@code Float}. + * @throws NumberFormatException if the string does not contain a + * parsable number. + * @see java.lang.Float#valueOf(java.lang.String) + */ + public Float(String s) throws NumberFormatException { + // REMIND: this is inefficient + this(valueOf(s).floatValue()); + } + + /** + * Returns {@code true} if this {@code Float} value is a + * Not-a-Number (NaN), {@code false} otherwise. + * + * @return {@code true} if the value represented by this object is + * NaN; {@code false} otherwise. + */ + public boolean isNaN() { + return isNaN(value); + } + + /** + * Returns {@code true} if this {@code Float} value is + * infinitely large in magnitude, {@code false} otherwise. + * + * @return {@code true} if the value represented by this object is + * positive infinity or negative infinity; + * {@code false} otherwise. + */ + public boolean isInfinite() { + return isInfinite(value); + } + + /** + * Returns a string representation of this {@code Float} object. + * The primitive {@code float} value represented by this object + * is converted to a {@code String} exactly as if by the method + * {@code toString} of one argument. + * + * @return a {@code String} representation of this object. + * @see java.lang.Float#toString(float) + */ + public String toString() { + return Float.toString(value); + } + + /** + * Returns the value of this {@code Float} as a {@code byte} (by + * casting to a {@code byte}). + * + * @return the {@code float} value represented by this object + * converted to type {@code byte} + */ + public byte byteValue() { + return (byte)value; + } + + /** + * Returns the value of this {@code Float} as a {@code short} (by + * casting to a {@code short}). + * + * @return the {@code float} value represented by this object + * converted to type {@code short} + * @since JDK1.1 + */ + public short shortValue() { + return (short)value; + } + + /** + * Returns the value of this {@code Float} as an {@code int} (by + * casting to type {@code int}). + * + * @return the {@code float} value represented by this object + * converted to type {@code int} + */ + public int intValue() { + return (int)value; + } + + /** + * Returns value of this {@code Float} as a {@code long} (by + * casting to type {@code long}). + * + * @return the {@code float} value represented by this object + * converted to type {@code long} + */ + public long longValue() { + return (long)value; + } + + /** + * Returns the {@code float} value of this {@code Float} object. + * + * @return the {@code float} value represented by this object + */ + public float floatValue() { + return value; + } + + /** + * Returns the {@code double} value of this {@code Float} object. + * + * @return the {@code float} value represented by this + * object is converted to type {@code double} and the + * result of the conversion is returned. + */ + public double doubleValue() { + return (double)value; + } + + /** + * Returns a hash code for this {@code Float} object. The + * result is the integer bit representation, exactly as produced + * by the method {@link #floatToIntBits(float)}, of the primitive + * {@code float} value represented by this {@code Float} + * object. + * + * @return a hash code value for this object. + */ + public int hashCode() { + return floatToIntBits(value); + } + + /** + + * Compares this object against the specified object. The result + * is {@code true} if and only if the argument is not + * {@code null} and is a {@code Float} object that + * represents a {@code float} with the same value as the + * {@code float} represented by this object. For this + * purpose, two {@code float} values are considered to be the + * same if and only if the method {@link #floatToIntBits(float)} + * returns the identical {@code int} value when applied to + * each. + * + *

Note that in most cases, for two instances of class + * {@code Float}, {@code f1} and {@code f2}, the value + * of {@code f1.equals(f2)} is {@code true} if and only if + * + *

+     *   f1.floatValue() == f2.floatValue()
+     * 
+ * + *

also has the value {@code true}. However, there are two exceptions: + *

+ * + * This definition allows hash tables to operate properly. + * + * @param obj the object to be compared + * @return {@code true} if the objects are the same; + * {@code false} otherwise. + * @see java.lang.Float#floatToIntBits(float) + */ + public boolean equals(Object obj) { + return (obj instanceof Float) + && (floatToIntBits(((Float)obj).value) == floatToIntBits(value)); + } + + /** + * Returns a representation of the specified floating-point value + * according to the IEEE 754 floating-point "single format" bit + * layout. + * + *

Bit 31 (the bit that is selected by the mask + * {@code 0x80000000}) represents the sign of the floating-point + * number. + * Bits 30-23 (the bits that are selected by the mask + * {@code 0x7f800000}) represent the exponent. + * Bits 22-0 (the bits that are selected by the mask + * {@code 0x007fffff}) represent the significand (sometimes called + * the mantissa) of the floating-point number. + * + *

If the argument is positive infinity, the result is + * {@code 0x7f800000}. + * + *

If the argument is negative infinity, the result is + * {@code 0xff800000}. + * + *

If the argument is NaN, the result is {@code 0x7fc00000}. + * + *

In all cases, the result is an integer that, when given to the + * {@link #intBitsToFloat(int)} method, will produce a floating-point + * value the same as the argument to {@code floatToIntBits} + * (except all NaN values are collapsed to a single + * "canonical" NaN value). + * + * @param value a floating-point number. + * @return the bits that represent the floating-point number. + */ + public static int floatToIntBits(float value) { + int result = floatToRawIntBits(value); + // Check for NaN based on values of bit fields, maximum + // exponent and nonzero significand. + if ( ((result & FloatConsts.EXP_BIT_MASK) == + FloatConsts.EXP_BIT_MASK) && + (result & FloatConsts.SIGNIF_BIT_MASK) != 0) + result = 0x7fc00000; + return result; + } + + /** + * Returns a representation of the specified floating-point value + * according to the IEEE 754 floating-point "single format" bit + * layout, preserving Not-a-Number (NaN) values. + * + *

Bit 31 (the bit that is selected by the mask + * {@code 0x80000000}) represents the sign of the floating-point + * number. + * Bits 30-23 (the bits that are selected by the mask + * {@code 0x7f800000}) represent the exponent. + * Bits 22-0 (the bits that are selected by the mask + * {@code 0x007fffff}) represent the significand (sometimes called + * the mantissa) of the floating-point number. + * + *

If the argument is positive infinity, the result is + * {@code 0x7f800000}. + * + *

If the argument is negative infinity, the result is + * {@code 0xff800000}. + * + *

If the argument is NaN, the result is the integer representing + * the actual NaN value. Unlike the {@code floatToIntBits} + * method, {@code floatToRawIntBits} does not collapse all the + * bit patterns encoding a NaN to a single "canonical" + * NaN value. + * + *

In all cases, the result is an integer that, when given to the + * {@link #intBitsToFloat(int)} method, will produce a + * floating-point value the same as the argument to + * {@code floatToRawIntBits}. + * + * @param value a floating-point number. + * @return the bits that represent the floating-point number. + * @since 1.3 + */ + public static native int floatToRawIntBits(float value); + + /** + * Returns the {@code float} value corresponding to a given + * bit representation. + * The argument is considered to be a representation of a + * floating-point value according to the IEEE 754 floating-point + * "single format" bit layout. + * + *

If the argument is {@code 0x7f800000}, the result is positive + * infinity. + * + *

If the argument is {@code 0xff800000}, the result is negative + * infinity. + * + *

If the argument is any value in the range + * {@code 0x7f800001} through {@code 0x7fffffff} or in + * the range {@code 0xff800001} through + * {@code 0xffffffff}, the result is a NaN. No IEEE 754 + * floating-point operation provided by Java can distinguish + * between two NaN values of the same type with different bit + * patterns. Distinct values of NaN are only distinguishable by + * use of the {@code Float.floatToRawIntBits} method. + * + *

In all other cases, let s, e, and m be three + * values that can be computed from the argument: + * + *

+     * int s = ((bits >> 31) == 0) ? 1 : -1;
+     * int e = ((bits >> 23) & 0xff);
+     * int m = (e == 0) ?
+     *                 (bits & 0x7fffff) << 1 :
+     *                 (bits & 0x7fffff) | 0x800000;
+     * 
+ * + * Then the floating-point result equals the value of the mathematical + * expression s·m·2e-150. + * + *

Note that this method may not be able to return a + * {@code float} NaN with exactly same bit pattern as the + * {@code int} argument. IEEE 754 distinguishes between two + * kinds of NaNs, quiet NaNs and signaling NaNs. The + * differences between the two kinds of NaN are generally not + * visible in Java. Arithmetic operations on signaling NaNs turn + * them into quiet NaNs with a different, but often similar, bit + * pattern. However, on some processors merely copying a + * signaling NaN also performs that conversion. In particular, + * copying a signaling NaN to return it to the calling method may + * perform this conversion. So {@code intBitsToFloat} may + * not be able to return a {@code float} with a signaling NaN + * bit pattern. Consequently, for some {@code int} values, + * {@code floatToRawIntBits(intBitsToFloat(start))} may + * not equal {@code start}. Moreover, which + * particular bit patterns represent signaling NaNs is platform + * dependent; although all NaN bit patterns, quiet or signaling, + * must be in the NaN range identified above. + * + * @param bits an integer. + * @return the {@code float} floating-point value with the same bit + * pattern. + */ + public static native float intBitsToFloat(int bits); + + /** + * Compares two {@code Float} objects numerically. There are + * two ways in which comparisons performed by this method differ + * from those performed by the Java language numerical comparison + * operators ({@code <, <=, ==, >=, >}) when + * applied to primitive {@code float} values: + * + *

+ * + * This ensures that the natural ordering of {@code Float} + * objects imposed by this method is consistent with equals. + * + * @param anotherFloat the {@code Float} to be compared. + * @return the value {@code 0} if {@code anotherFloat} is + * numerically equal to this {@code Float}; a value + * less than {@code 0} if this {@code Float} + * is numerically less than {@code anotherFloat}; + * and a value greater than {@code 0} if this + * {@code Float} is numerically greater than + * {@code anotherFloat}. + * + * @since 1.2 + * @see Comparable#compareTo(Object) + */ + public int compareTo(Float anotherFloat) { + return Float.compare(value, anotherFloat.value); + } + + /** + * Compares the two specified {@code float} values. The sign + * of the integer value returned is the same as that of the + * integer that would be returned by the call: + *
+     *    new Float(f1).compareTo(new Float(f2))
+     * 
+ * + * @param f1 the first {@code float} to compare. + * @param f2 the second {@code float} to compare. + * @return the value {@code 0} if {@code f1} is + * numerically equal to {@code f2}; a value less than + * {@code 0} if {@code f1} is numerically less than + * {@code f2}; and a value greater than {@code 0} + * if {@code f1} is numerically greater than + * {@code f2}. + * @since 1.4 + */ + public static int compare(float f1, float f2) { + if (f1 < f2) + return -1; // Neither val is NaN, thisVal is smaller + if (f1 > f2) + return 1; // Neither val is NaN, thisVal is larger + + // Cannot use floatToRawIntBits because of possibility of NaNs. + int thisBits = Float.floatToIntBits(f1); + int anotherBits = Float.floatToIntBits(f2); + + return (thisBits == anotherBits ? 0 : // Values are equal + (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) + 1)); // (0.0, -0.0) or (NaN, !NaN) + } + + /** use serialVersionUID from JDK 1.0.2 for interoperability */ + private static final long serialVersionUID = -2671257302660747028L; +} diff -r 8a74b5d8d1d4 -r cc0d42d2110a emul/src/main/java/java/lang/Long.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/emul/src/main/java/java/lang/Long.java Sat Sep 29 10:56:23 2012 +0200 @@ -0,0 +1,1199 @@ +/* + * Copyright (c) 1994, 2009, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang; + +/** + * The {@code Long} class wraps a value of the primitive type {@code + * long} in an object. An object of type {@code Long} contains a + * single field whose type is {@code long}. + * + *

In addition, this class provides several methods for converting + * a {@code long} to a {@code String} and a {@code String} to a {@code + * long}, as well as other constants and methods useful when dealing + * with a {@code long}. + * + *

Implementation note: The implementations of the "bit twiddling" + * methods (such as {@link #highestOneBit(long) highestOneBit} and + * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are + * based on material from Henry S. Warren, Jr.'s Hacker's + * Delight, (Addison Wesley, 2002). + * + * @author Lee Boynton + * @author Arthur van Hoff + * @author Josh Bloch + * @author Joseph D. Darcy + * @since JDK1.0 + */ +public final class Long extends Number implements Comparable { + /** + * A constant holding the minimum value a {@code long} can + * have, -263. + */ + public static final long MIN_VALUE = 0x8000000000000000L; + + /** + * A constant holding the maximum value a {@code long} can + * have, 263-1. + */ + public static final long MAX_VALUE = 0x7fffffffffffffffL; + + /** + * The {@code Class} instance representing the primitive type + * {@code long}. + * + * @since JDK1.1 + */ + public static final Class TYPE = (Class) Class.getPrimitiveClass("long"); + + /** + * Returns a string representation of the first argument in the + * radix specified by the second argument. + * + *

If the radix is smaller than {@code Character.MIN_RADIX} + * or larger than {@code Character.MAX_RADIX}, then the radix + * {@code 10} is used instead. + * + *

If the first argument is negative, the first element of the + * result is the ASCII minus sign {@code '-'} + * ('\u002d'). If the first argument is not + * negative, no sign character appears in the result. + * + *

The remaining characters of the result represent the magnitude + * of the first argument. If the magnitude is zero, it is + * represented by a single zero character {@code '0'} + * ('\u0030'); otherwise, the first character of + * the representation of the magnitude will not be the zero + * character. The following ASCII characters are used as digits: + * + *

+ * {@code 0123456789abcdefghijklmnopqrstuvwxyz} + *
+ * + * These are '\u0030' through + * '\u0039' and '\u0061' through + * '\u007a'. If {@code radix} is + * N, then the first N of these characters + * are used as radix-N digits in the order shown. Thus, + * the digits for hexadecimal (radix 16) are + * {@code 0123456789abcdef}. If uppercase letters are + * desired, the {@link java.lang.String#toUpperCase()} method may + * be called on the result: + * + *
+ * {@code Long.toString(n, 16).toUpperCase()} + *
+ * + * @param i a {@code long} to be converted to a string. + * @param radix the radix to use in the string representation. + * @return a string representation of the argument in the specified radix. + * @see java.lang.Character#MAX_RADIX + * @see java.lang.Character#MIN_RADIX + */ + public static String toString(long i, int radix) { + if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) + radix = 10; + if (radix == 10) + return toString(i); + char[] buf = new char[65]; + int charPos = 64; + boolean negative = (i < 0); + + if (!negative) { + i = -i; + } + + while (i <= -radix) { + buf[charPos--] = Integer.digits[(int)(-(i % radix))]; + i = i / radix; + } + buf[charPos] = Integer.digits[(int)(-i)]; + + if (negative) { + buf[--charPos] = '-'; + } + + return new String(buf, charPos, (65 - charPos)); + } + + /** + * Returns a string representation of the {@code long} + * argument as an unsigned integer in base 16. + * + *

The unsigned {@code long} value is the argument plus + * 264 if the argument is negative; otherwise, it is + * equal to the argument. This value is converted to a string of + * ASCII digits in hexadecimal (base 16) with no extra + * leading {@code 0}s. If the unsigned magnitude is zero, it + * is represented by a single zero character {@code '0'} + * ('\u0030'); otherwise, the first character of + * the representation of the unsigned magnitude will not be the + * zero character. The following characters are used as + * hexadecimal digits: + * + *

+ * {@code 0123456789abcdef} + *
+ * + * These are the characters '\u0030' through + * '\u0039' and '\u0061' through + * '\u0066'. If uppercase letters are desired, + * the {@link java.lang.String#toUpperCase()} method may be called + * on the result: + * + *
+ * {@code Long.toHexString(n).toUpperCase()} + *
+ * + * @param i a {@code long} to be converted to a string. + * @return the string representation of the unsigned {@code long} + * value represented by the argument in hexadecimal + * (base 16). + * @since JDK 1.0.2 + */ + public static String toHexString(long i) { + return toUnsignedString(i, 4); + } + + /** + * Returns a string representation of the {@code long} + * argument as an unsigned integer in base 8. + * + *

The unsigned {@code long} value is the argument plus + * 264 if the argument is negative; otherwise, it is + * equal to the argument. This value is converted to a string of + * ASCII digits in octal (base 8) with no extra leading + * {@code 0}s. + * + *

If the unsigned magnitude is zero, it is represented by a + * single zero character {@code '0'} + * ('\u0030'); otherwise, the first character of + * the representation of the unsigned magnitude will not be the + * zero character. The following characters are used as octal + * digits: + * + *

+ * {@code 01234567} + *
+ * + * These are the characters '\u0030' through + * '\u0037'. + * + * @param i a {@code long} to be converted to a string. + * @return the string representation of the unsigned {@code long} + * value represented by the argument in octal (base 8). + * @since JDK 1.0.2 + */ + public static String toOctalString(long i) { + return toUnsignedString(i, 3); + } + + /** + * Returns a string representation of the {@code long} + * argument as an unsigned integer in base 2. + * + *

The unsigned {@code long} value is the argument plus + * 264 if the argument is negative; otherwise, it is + * equal to the argument. This value is converted to a string of + * ASCII digits in binary (base 2) with no extra leading + * {@code 0}s. If the unsigned magnitude is zero, it is + * represented by a single zero character {@code '0'} + * ('\u0030'); otherwise, the first character of + * the representation of the unsigned magnitude will not be the + * zero character. The characters {@code '0'} + * ('\u0030') and {@code '1'} + * ('\u0031') are used as binary digits. + * + * @param i a {@code long} to be converted to a string. + * @return the string representation of the unsigned {@code long} + * value represented by the argument in binary (base 2). + * @since JDK 1.0.2 + */ + public static String toBinaryString(long i) { + return toUnsignedString(i, 1); + } + + /** + * Convert the integer to an unsigned number. + */ + private static String toUnsignedString(long i, int shift) { + char[] buf = new char[64]; + int charPos = 64; + int radix = 1 << shift; + long mask = radix - 1; + do { + buf[--charPos] = Integer.digits[(int)(i & mask)]; + i >>>= shift; + } while (i != 0); + return new String(buf, charPos, (64 - charPos)); + } + + /** + * Returns a {@code String} object representing the specified + * {@code long}. The argument is converted to signed decimal + * representation and returned as a string, exactly as if the + * argument and the radix 10 were given as arguments to the {@link + * #toString(long, int)} method. + * + * @param i a {@code long} to be converted. + * @return a string representation of the argument in base 10. + */ + public static String toString(long i) { + if (i == Long.MIN_VALUE) + return "-9223372036854775808"; + int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i); + char[] buf = new char[size]; + getChars(i, size, buf); + return new String(0, size, buf); + } + + /** + * Places characters representing the integer i into the + * character array buf. The characters are placed into + * the buffer backwards starting with the least significant + * digit at the specified index (exclusive), and working + * backwards from there. + * + * Will fail if i == Long.MIN_VALUE + */ + static void getChars(long i, int index, char[] buf) { + long q; + int r; + int charPos = index; + char sign = 0; + + if (i < 0) { + sign = '-'; + i = -i; + } + + // Get 2 digits/iteration using longs until quotient fits into an int + while (i > Integer.MAX_VALUE) { + q = i / 100; + // really: r = i - (q * 100); + r = (int)(i - ((q << 6) + (q << 5) + (q << 2))); + i = q; + buf[--charPos] = Integer.DigitOnes[r]; + buf[--charPos] = Integer.DigitTens[r]; + } + + // Get 2 digits/iteration using ints + int q2; + int i2 = (int)i; + while (i2 >= 65536) { + q2 = i2 / 100; + // really: r = i2 - (q * 100); + r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2)); + i2 = q2; + buf[--charPos] = Integer.DigitOnes[r]; + buf[--charPos] = Integer.DigitTens[r]; + } + + // Fall thru to fast mode for smaller numbers + // assert(i2 <= 65536, i2); + for (;;) { + q2 = (i2 * 52429) >>> (16+3); + r = i2 - ((q2 << 3) + (q2 << 1)); // r = i2-(q2*10) ... + buf[--charPos] = Integer.digits[r]; + i2 = q2; + if (i2 == 0) break; + } + if (sign != 0) { + buf[--charPos] = sign; + } + } + + // Requires positive x + static int stringSize(long x) { + long p = 10; + for (int i=1; i<19; i++) { + if (x < p) + return i; + p = 10*p; + } + return 19; + } + + /** + * Parses the string argument as a signed {@code long} in the + * radix specified by the second argument. The characters in the + * string must all be digits of the specified radix (as determined + * by whether {@link java.lang.Character#digit(char, int)} returns + * a nonnegative value), except that the first character may be an + * ASCII minus sign {@code '-'} ('\u002D') to + * indicate a negative value or an ASCII plus sign {@code '+'} + * ('\u002B') to indicate a positive value. The + * resulting {@code long} value is returned. + * + *

Note that neither the character {@code L} + * ('\u004C') nor {@code l} + * ('\u006C') is permitted to appear at the end + * of the string as a type indicator, as would be permitted in + * Java programming language source code - except that either + * {@code L} or {@code l} may appear as a digit for a + * radix greater than 22. + * + *

An exception of type {@code NumberFormatException} is + * thrown if any of the following situations occurs: + *

+ * + *

Examples: + *

+     * parseLong("0", 10) returns 0L
+     * parseLong("473", 10) returns 473L
+     * parseLong("+42", 10) returns 42L
+     * parseLong("-0", 10) returns 0L
+     * parseLong("-FF", 16) returns -255L
+     * parseLong("1100110", 2) returns 102L
+     * parseLong("99", 8) throws a NumberFormatException
+     * parseLong("Hazelnut", 10) throws a NumberFormatException
+     * parseLong("Hazelnut", 36) returns 1356099454469L
+     * 
+ * + * @param s the {@code String} containing the + * {@code long} representation to be parsed. + * @param radix the radix to be used while parsing {@code s}. + * @return the {@code long} represented by the string argument in + * the specified radix. + * @throws NumberFormatException if the string does not contain a + * parsable {@code long}. + */ + public static long parseLong(String s, int radix) + throws NumberFormatException + { + if (s == null) { + throw new NumberFormatException("null"); + } + + if (radix < Character.MIN_RADIX) { + throw new NumberFormatException("radix " + radix + + " less than Character.MIN_RADIX"); + } + if (radix > Character.MAX_RADIX) { + throw new NumberFormatException("radix " + radix + + " greater than Character.MAX_RADIX"); + } + + long result = 0; + boolean negative = false; + int i = 0, len = s.length(); + long limit = -Long.MAX_VALUE; + long multmin; + int digit; + + if (len > 0) { + char firstChar = s.charAt(0); + if (firstChar < '0') { // Possible leading "+" or "-" + if (firstChar == '-') { + negative = true; + limit = Long.MIN_VALUE; + } else if (firstChar != '+') + throw NumberFormatException.forInputString(s); + + if (len == 1) // Cannot have lone "+" or "-" + throw NumberFormatException.forInputString(s); + i++; + } + multmin = limit / radix; + while (i < len) { + // Accumulating negatively avoids surprises near MAX_VALUE + digit = Character.digit(s.charAt(i++),radix); + if (digit < 0) { + throw NumberFormatException.forInputString(s); + } + if (result < multmin) { + throw NumberFormatException.forInputString(s); + } + result *= radix; + if (result < limit + digit) { + throw NumberFormatException.forInputString(s); + } + result -= digit; + } + } else { + throw NumberFormatException.forInputString(s); + } + return negative ? result : -result; + } + + /** + * Parses the string argument as a signed decimal {@code long}. + * The characters in the string must all be decimal digits, except + * that the first character may be an ASCII minus sign {@code '-'} + * (\u002D') to indicate a negative value or an + * ASCII plus sign {@code '+'} ('\u002B') to + * indicate a positive value. The resulting {@code long} value is + * returned, exactly as if the argument and the radix {@code 10} + * were given as arguments to the {@link + * #parseLong(java.lang.String, int)} method. + * + *

Note that neither the character {@code L} + * ('\u004C') nor {@code l} + * ('\u006C') is permitted to appear at the end + * of the string as a type indicator, as would be permitted in + * Java programming language source code. + * + * @param s a {@code String} containing the {@code long} + * representation to be parsed + * @return the {@code long} represented by the argument in + * decimal. + * @throws NumberFormatException if the string does not contain a + * parsable {@code long}. + */ + public static long parseLong(String s) throws NumberFormatException { + return parseLong(s, 10); + } + + /** + * Returns a {@code Long} object holding the value + * extracted from the specified {@code String} when parsed + * with the radix given by the second argument. The first + * argument is interpreted as representing a signed + * {@code long} in the radix specified by the second + * argument, exactly as if the arguments were given to the {@link + * #parseLong(java.lang.String, int)} method. The result is a + * {@code Long} object that represents the {@code long} + * value specified by the string. + * + *

In other words, this method returns a {@code Long} object equal + * to the value of: + * + *

+ * {@code new Long(Long.parseLong(s, radix))} + *
+ * + * @param s the string to be parsed + * @param radix the radix to be used in interpreting {@code s} + * @return a {@code Long} object holding the value + * represented by the string argument in the specified + * radix. + * @throws NumberFormatException If the {@code String} does not + * contain a parsable {@code long}. + */ + public static Long valueOf(String s, int radix) throws NumberFormatException { + return Long.valueOf(parseLong(s, radix)); + } + + /** + * Returns a {@code Long} object holding the value + * of the specified {@code String}. The argument is + * interpreted as representing a signed decimal {@code long}, + * exactly as if the argument were given to the {@link + * #parseLong(java.lang.String)} method. The result is a + * {@code Long} object that represents the integer value + * specified by the string. + * + *

In other words, this method returns a {@code Long} object + * equal to the value of: + * + *

+ * {@code new Long(Long.parseLong(s))} + *
+ * + * @param s the string to be parsed. + * @return a {@code Long} object holding the value + * represented by the string argument. + * @throws NumberFormatException If the string cannot be parsed + * as a {@code long}. + */ + public static Long valueOf(String s) throws NumberFormatException + { + return Long.valueOf(parseLong(s, 10)); + } + + private static class LongCache { + private LongCache(){} + + static final Long cache[] = new Long[-(-128) + 127 + 1]; + + static { + for(int i = 0; i < cache.length; i++) + cache[i] = new Long(i - 128); + } + } + + /** + * Returns a {@code Long} instance representing the specified + * {@code long} value. + * If a new {@code Long} instance is not required, this method + * should generally be used in preference to the constructor + * {@link #Long(long)}, as this method is likely to yield + * significantly better space and time performance by caching + * frequently requested values. + * + * Note that unlike the {@linkplain Integer#valueOf(int) + * corresponding method} in the {@code Integer} class, this method + * is not required to cache values within a particular + * range. + * + * @param l a long value. + * @return a {@code Long} instance representing {@code l}. + * @since 1.5 + */ + public static Long valueOf(long l) { + final int offset = 128; + if (l >= -128 && l <= 127) { // will cache + return LongCache.cache[(int)l + offset]; + } + return new Long(l); + } + + /** + * Decodes a {@code String} into a {@code Long}. + * Accepts decimal, hexadecimal, and octal numbers given by the + * following grammar: + * + *
+ *
+ *
DecodableString: + *
Signopt DecimalNumeral + *
Signopt {@code 0x} HexDigits + *
Signopt {@code 0X} HexDigits + *
Signopt {@code #} HexDigits + *
Signopt {@code 0} OctalDigits + *

+ *

Sign: + *
{@code -} + *
{@code +} + *
+ *
+ * + * DecimalNumeral, HexDigits, and OctalDigits + * are as defined in section 3.10.1 of + * The Java™ Language Specification, + * except that underscores are not accepted between digits. + * + *

The sequence of characters following an optional + * sign and/or radix specifier ("{@code 0x}", "{@code 0X}", + * "{@code #}", or leading zero) is parsed as by the {@code + * Long.parseLong} method with the indicated radix (10, 16, or 8). + * This sequence of characters must represent a positive value or + * a {@link NumberFormatException} will be thrown. The result is + * negated if first character of the specified {@code String} is + * the minus sign. No whitespace characters are permitted in the + * {@code String}. + * + * @param nm the {@code String} to decode. + * @return a {@code Long} object holding the {@code long} + * value represented by {@code nm} + * @throws NumberFormatException if the {@code String} does not + * contain a parsable {@code long}. + * @see java.lang.Long#parseLong(String, int) + * @since 1.2 + */ + public static Long decode(String nm) throws NumberFormatException { + int radix = 10; + int index = 0; + boolean negative = false; + Long result; + + if (nm.length() == 0) + throw new NumberFormatException("Zero length string"); + char firstChar = nm.charAt(0); + // Handle sign, if present + if (firstChar == '-') { + negative = true; + index++; + } else if (firstChar == '+') + index++; + + // Handle radix specifier, if present + if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) { + index += 2; + radix = 16; + } + else if (nm.startsWith("#", index)) { + index ++; + radix = 16; + } + else if (nm.startsWith("0", index) && nm.length() > 1 + index) { + index ++; + radix = 8; + } + + if (nm.startsWith("-", index) || nm.startsWith("+", index)) + throw new NumberFormatException("Sign character in wrong position"); + + try { + result = Long.valueOf(nm.substring(index), radix); + result = negative ? Long.valueOf(-result.longValue()) : result; + } catch (NumberFormatException e) { + // If number is Long.MIN_VALUE, we'll end up here. The next line + // handles this case, and causes any genuine format error to be + // rethrown. + String constant = negative ? ("-" + nm.substring(index)) + : nm.substring(index); + result = Long.valueOf(constant, radix); + } + return result; + } + + /** + * The value of the {@code Long}. + * + * @serial + */ + private final long value; + + /** + * Constructs a newly allocated {@code Long} object that + * represents the specified {@code long} argument. + * + * @param value the value to be represented by the + * {@code Long} object. + */ + public Long(long value) { + this.value = value; + } + + /** + * Constructs a newly allocated {@code Long} object that + * represents the {@code long} value indicated by the + * {@code String} parameter. The string is converted to a + * {@code long} value in exactly the manner used by the + * {@code parseLong} method for radix 10. + * + * @param s the {@code String} to be converted to a + * {@code Long}. + * @throws NumberFormatException if the {@code String} does not + * contain a parsable {@code long}. + * @see java.lang.Long#parseLong(java.lang.String, int) + */ + public Long(String s) throws NumberFormatException { + this.value = parseLong(s, 10); + } + + /** + * Returns the value of this {@code Long} as a + * {@code byte}. + */ + public byte byteValue() { + return (byte)value; + } + + /** + * Returns the value of this {@code Long} as a + * {@code short}. + */ + public short shortValue() { + return (short)value; + } + + /** + * Returns the value of this {@code Long} as an + * {@code int}. + */ + public int intValue() { + return (int)value; + } + + /** + * Returns the value of this {@code Long} as a + * {@code long} value. + */ + public long longValue() { + return (long)value; + } + + /** + * Returns the value of this {@code Long} as a + * {@code float}. + */ + public float floatValue() { + return (float)value; + } + + /** + * Returns the value of this {@code Long} as a + * {@code double}. + */ + public double doubleValue() { + return (double)value; + } + + /** + * Returns a {@code String} object representing this + * {@code Long}'s value. The value is converted to signed + * decimal representation and returned as a string, exactly as if + * the {@code long} value were given as an argument to the + * {@link java.lang.Long#toString(long)} method. + * + * @return a string representation of the value of this object in + * base 10. + */ + public String toString() { + return toString(value); + } + + /** + * Returns a hash code for this {@code Long}. The result is + * the exclusive OR of the two halves of the primitive + * {@code long} value held by this {@code Long} + * object. That is, the hashcode is the value of the expression: + * + *

+ * {@code (int)(this.longValue()^(this.longValue()>>>32))} + *
+ * + * @return a hash code value for this object. + */ + public int hashCode() { + return (int)(value ^ (value >>> 32)); + } + + /** + * Compares this object to the specified object. The result is + * {@code true} if and only if the argument is not + * {@code null} and is a {@code Long} object that + * contains the same {@code long} value as this object. + * + * @param obj the object to compare with. + * @return {@code true} if the objects are the same; + * {@code false} otherwise. + */ + public boolean equals(Object obj) { + if (obj instanceof Long) { + return value == ((Long)obj).longValue(); + } + return false; + } + + /** + * Determines the {@code long} value of the system property + * with the specified name. + * + *

The first argument is treated as the name of a system property. + * System properties are accessible through the {@link + * java.lang.System#getProperty(java.lang.String)} method. The + * string value of this property is then interpreted as a + * {@code long} value and a {@code Long} object + * representing this value is returned. Details of possible + * numeric formats can be found with the definition of + * {@code getProperty}. + * + *

If there is no property with the specified name, if the + * specified name is empty or {@code null}, or if the + * property does not have the correct numeric format, then + * {@code null} is returned. + * + *

In other words, this method returns a {@code Long} object equal to + * the value of: + * + *

+ * {@code getLong(nm, null)} + *
+ * + * @param nm property name. + * @return the {@code Long} value of the property. + * @see java.lang.System#getProperty(java.lang.String) + * @see java.lang.System#getProperty(java.lang.String, java.lang.String) + */ + public static Long getLong(String nm) { + return getLong(nm, null); + } + + /** + * Determines the {@code long} value of the system property + * with the specified name. + * + *

The first argument is treated as the name of a system property. + * System properties are accessible through the {@link + * java.lang.System#getProperty(java.lang.String)} method. The + * string value of this property is then interpreted as a + * {@code long} value and a {@code Long} object + * representing this value is returned. Details of possible + * numeric formats can be found with the definition of + * {@code getProperty}. + * + *

The second argument is the default value. A {@code Long} object + * that represents the value of the second argument is returned if there + * is no property of the specified name, if the property does not have + * the correct numeric format, or if the specified name is empty or null. + * + *

In other words, this method returns a {@code Long} object equal + * to the value of: + * + *

+ * {@code getLong(nm, new Long(val))} + *
+ * + * but in practice it may be implemented in a manner such as: + * + *
+     * Long result = getLong(nm, null);
+     * return (result == null) ? new Long(val) : result;
+     * 
+ * + * to avoid the unnecessary allocation of a {@code Long} object when + * the default value is not needed. + * + * @param nm property name. + * @param val default value. + * @return the {@code Long} value of the property. + * @see java.lang.System#getProperty(java.lang.String) + * @see java.lang.System#getProperty(java.lang.String, java.lang.String) + */ + public static Long getLong(String nm, long val) { + Long result = Long.getLong(nm, null); + return (result == null) ? Long.valueOf(val) : result; + } + + /** + * Returns the {@code long} value of the system property with + * the specified name. The first argument is treated as the name + * of a system property. System properties are accessible through + * the {@link java.lang.System#getProperty(java.lang.String)} + * method. The string value of this property is then interpreted + * as a {@code long} value, as per the + * {@code Long.decode} method, and a {@code Long} object + * representing this value is returned. + * + * + * + *

Note that, in every case, neither {@code L} + * ('\u004C') nor {@code l} + * ('\u006C') is permitted to appear at the end + * of the property value as a type indicator, as would be + * permitted in Java programming language source code. + * + *

The second argument is the default value. The default value is + * returned if there is no property of the specified name, if the + * property does not have the correct numeric format, or if the + * specified name is empty or {@code null}. + * + * @param nm property name. + * @param val default value. + * @return the {@code Long} value of the property. + * @see java.lang.System#getProperty(java.lang.String) + * @see java.lang.System#getProperty(java.lang.String, java.lang.String) + * @see java.lang.Long#decode + */ + public static Long getLong(String nm, Long val) { + String v = null; + try { + v = System.getProperty(nm); + } catch (IllegalArgumentException e) { + } catch (NullPointerException e) { + } + if (v != null) { + try { + return Long.decode(v); + } catch (NumberFormatException e) { + } + } + return val; + } + + /** + * Compares two {@code Long} objects numerically. + * + * @param anotherLong the {@code Long} to be compared. + * @return the value {@code 0} if this {@code Long} is + * equal to the argument {@code Long}; a value less than + * {@code 0} if this {@code Long} is numerically less + * than the argument {@code Long}; and a value greater + * than {@code 0} if this {@code Long} is numerically + * greater than the argument {@code Long} (signed + * comparison). + * @since 1.2 + */ + public int compareTo(Long anotherLong) { + return compare(this.value, anotherLong.value); + } + + /** + * Compares two {@code long} values numerically. + * The value returned is identical to what would be returned by: + *

+     *    Long.valueOf(x).compareTo(Long.valueOf(y))
+     * 
+ * + * @param x the first {@code long} to compare + * @param y the second {@code long} to compare + * @return the value {@code 0} if {@code x == y}; + * a value less than {@code 0} if {@code x < y}; and + * a value greater than {@code 0} if {@code x > y} + * @since 1.7 + */ + public static int compare(long x, long y) { + return (x < y) ? -1 : ((x == y) ? 0 : 1); + } + + + // Bit Twiddling + + /** + * The number of bits used to represent a {@code long} value in two's + * complement binary form. + * + * @since 1.5 + */ + public static final int SIZE = 64; + + /** + * Returns a {@code long} value with at most a single one-bit, in the + * position of the highest-order ("leftmost") one-bit in the specified + * {@code long} value. Returns zero if the specified value has no + * one-bits in its two's complement binary representation, that is, if it + * is equal to zero. + * + * @return a {@code long} value with a single one-bit, in the position + * of the highest-order one-bit in the specified value, or zero if + * the specified value is itself equal to zero. + * @since 1.5 + */ + public static long highestOneBit(long i) { + // HD, Figure 3-1 + i |= (i >> 1); + i |= (i >> 2); + i |= (i >> 4); + i |= (i >> 8); + i |= (i >> 16); + i |= (i >> 32); + return i - (i >>> 1); + } + + /** + * Returns a {@code long} value with at most a single one-bit, in the + * position of the lowest-order ("rightmost") one-bit in the specified + * {@code long} value. Returns zero if the specified value has no + * one-bits in its two's complement binary representation, that is, if it + * is equal to zero. + * + * @return a {@code long} value with a single one-bit, in the position + * of the lowest-order one-bit in the specified value, or zero if + * the specified value is itself equal to zero. + * @since 1.5 + */ + public static long lowestOneBit(long i) { + // HD, Section 2-1 + return i & -i; + } + + /** + * Returns the number of zero bits preceding the highest-order + * ("leftmost") one-bit in the two's complement binary representation + * of the specified {@code long} value. Returns 64 if the + * specified value has no one-bits in its two's complement representation, + * in other words if it is equal to zero. + * + *

Note that this method is closely related to the logarithm base 2. + * For all positive {@code long} values x: + *

+ * + * @return the number of zero bits preceding the highest-order + * ("leftmost") one-bit in the two's complement binary representation + * of the specified {@code long} value, or 64 if the value + * is equal to zero. + * @since 1.5 + */ + public static int numberOfLeadingZeros(long i) { + // HD, Figure 5-6 + if (i == 0) + return 64; + int n = 1; + int x = (int)(i >>> 32); + if (x == 0) { n += 32; x = (int)i; } + if (x >>> 16 == 0) { n += 16; x <<= 16; } + if (x >>> 24 == 0) { n += 8; x <<= 8; } + if (x >>> 28 == 0) { n += 4; x <<= 4; } + if (x >>> 30 == 0) { n += 2; x <<= 2; } + n -= x >>> 31; + return n; + } + + /** + * Returns the number of zero bits following the lowest-order ("rightmost") + * one-bit in the two's complement binary representation of the specified + * {@code long} value. Returns 64 if the specified value has no + * one-bits in its two's complement representation, in other words if it is + * equal to zero. + * + * @return the number of zero bits following the lowest-order ("rightmost") + * one-bit in the two's complement binary representation of the + * specified {@code long} value, or 64 if the value is equal + * to zero. + * @since 1.5 + */ + public static int numberOfTrailingZeros(long i) { + // HD, Figure 5-14 + int x, y; + if (i == 0) return 64; + int n = 63; + y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32); + y = x <<16; if (y != 0) { n = n -16; x = y; } + y = x << 8; if (y != 0) { n = n - 8; x = y; } + y = x << 4; if (y != 0) { n = n - 4; x = y; } + y = x << 2; if (y != 0) { n = n - 2; x = y; } + return n - ((x << 1) >>> 31); + } + + /** + * Returns the number of one-bits in the two's complement binary + * representation of the specified {@code long} value. This function is + * sometimes referred to as the population count. + * + * @return the number of one-bits in the two's complement binary + * representation of the specified {@code long} value. + * @since 1.5 + */ + public static int bitCount(long i) { + // HD, Figure 5-14 + i = i - ((i >>> 1) & 0x5555555555555555L); + i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L); + i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL; + i = i + (i >>> 8); + i = i + (i >>> 16); + i = i + (i >>> 32); + return (int)i & 0x7f; + } + + /** + * Returns the value obtained by rotating the two's complement binary + * representation of the specified {@code long} value left by the + * specified number of bits. (Bits shifted out of the left hand, or + * high-order, side reenter on the right, or low-order.) + * + *

Note that left rotation with a negative distance is equivalent to + * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val, + * distance)}. Note also that rotation by any multiple of 64 is a + * no-op, so all but the last six bits of the rotation distance can be + * ignored, even if the distance is negative: {@code rotateLeft(val, + * distance) == rotateLeft(val, distance & 0x3F)}. + * + * @return the value obtained by rotating the two's complement binary + * representation of the specified {@code long} value left by the + * specified number of bits. + * @since 1.5 + */ + public static long rotateLeft(long i, int distance) { + return (i << distance) | (i >>> -distance); + } + + /** + * Returns the value obtained by rotating the two's complement binary + * representation of the specified {@code long} value right by the + * specified number of bits. (Bits shifted out of the right hand, or + * low-order, side reenter on the left, or high-order.) + * + *

Note that right rotation with a negative distance is equivalent to + * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val, + * distance)}. Note also that rotation by any multiple of 64 is a + * no-op, so all but the last six bits of the rotation distance can be + * ignored, even if the distance is negative: {@code rotateRight(val, + * distance) == rotateRight(val, distance & 0x3F)}. + * + * @return the value obtained by rotating the two's complement binary + * representation of the specified {@code long} value right by the + * specified number of bits. + * @since 1.5 + */ + public static long rotateRight(long i, int distance) { + return (i >>> distance) | (i << -distance); + } + + /** + * Returns the value obtained by reversing the order of the bits in the + * two's complement binary representation of the specified {@code long} + * value. + * + * @return the value obtained by reversing order of the bits in the + * specified {@code long} value. + * @since 1.5 + */ + public static long reverse(long i) { + // HD, Figure 7-1 + i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L; + i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L; + i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL; + i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL; + i = (i << 48) | ((i & 0xffff0000L) << 16) | + ((i >>> 16) & 0xffff0000L) | (i >>> 48); + return i; + } + + /** + * Returns the signum function of the specified {@code long} value. (The + * return value is -1 if the specified value is negative; 0 if the + * specified value is zero; and 1 if the specified value is positive.) + * + * @return the signum function of the specified {@code long} value. + * @since 1.5 + */ + public static int signum(long i) { + // HD, Section 2-7 + return (int) ((i >> 63) | (-i >>> 63)); + } + + /** + * Returns the value obtained by reversing the order of the bytes in the + * two's complement representation of the specified {@code long} value. + * + * @return the value obtained by reversing the bytes in the specified + * {@code long} value. + * @since 1.5 + */ + public static long reverseBytes(long i) { + i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL; + return (i << 48) | ((i & 0xffff0000L) << 16) | + ((i >>> 16) & 0xffff0000L) | (i >>> 48); + } + + /** use serialVersionUID from JDK 1.0.2 for interoperability */ + private static final long serialVersionUID = 4290774380558885855L; +} diff -r 8a74b5d8d1d4 -r cc0d42d2110a emul/src/main/java/java/lang/Math.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/emul/src/main/java/java/lang/Math.java Sat Sep 29 10:56:23 2012 +0200 @@ -0,0 +1,1526 @@ +/* + * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang; +import java.util.Random; + + +/** + * The class {@code Math} contains methods for performing basic + * numeric operations such as the elementary exponential, logarithm, + * square root, and trigonometric functions. + * + *

Unlike some of the numeric methods of class + * {@code StrictMath}, all implementations of the equivalent + * functions of class {@code Math} are not defined to return the + * bit-for-bit same results. This relaxation permits + * better-performing implementations where strict reproducibility is + * not required. + * + *

By default many of the {@code Math} methods simply call + * the equivalent method in {@code StrictMath} for their + * implementation. Code generators are encouraged to use + * platform-specific native libraries or microprocessor instructions, + * where available, to provide higher-performance implementations of + * {@code Math} methods. Such higher-performance + * implementations still must conform to the specification for + * {@code Math}. + * + *

The quality of implementation specifications concern two + * properties, accuracy of the returned result and monotonicity of the + * method. Accuracy of the floating-point {@code Math} methods + * is measured in terms of ulps, units in the last place. For + * a given floating-point format, an ulp of a specific real number + * value is the distance between the two floating-point values + * bracketing that numerical value. When discussing the accuracy of a + * method as a whole rather than at a specific argument, the number of + * ulps cited is for the worst-case error at any argument. If a + * method always has an error less than 0.5 ulps, the method always + * returns the floating-point number nearest the exact result; such a + * method is correctly rounded. A correctly rounded method is + * generally the best a floating-point approximation can be; however, + * it is impractical for many floating-point methods to be correctly + * rounded. Instead, for the {@code Math} class, a larger error + * bound of 1 or 2 ulps is allowed for certain methods. Informally, + * with a 1 ulp error bound, when the exact result is a representable + * number, the exact result should be returned as the computed result; + * otherwise, either of the two floating-point values which bracket + * the exact result may be returned. For exact results large in + * magnitude, one of the endpoints of the bracket may be infinite. + * Besides accuracy at individual arguments, maintaining proper + * relations between the method at different arguments is also + * important. Therefore, most methods with more than 0.5 ulp errors + * are required to be semi-monotonic: whenever the mathematical + * function is non-decreasing, so is the floating-point approximation, + * likewise, whenever the mathematical function is non-increasing, so + * is the floating-point approximation. Not all approximations that + * have 1 ulp accuracy will automatically meet the monotonicity + * requirements. + * + * @author unascribed + * @author Joseph D. Darcy + * @since JDK1.0 + */ + +public final class Math { + + /** + * Don't let anyone instantiate this class. + */ + private Math() {} + + /** + * The {@code double} value that is closer than any other to + * e, the base of the natural logarithms. + */ + public static final double E = 2.7182818284590452354; + + /** + * The {@code double} value that is closer than any other to + * pi, the ratio of the circumference of a circle to its + * diameter. + */ + public static final double PI = 3.14159265358979323846; + + /** + * Returns the trigonometric sine of an angle. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a an angle, in radians. + * @return the sine of the argument. + */ + public static double sin(double a) { + return StrictMath.sin(a); // default impl. delegates to StrictMath + } + + /** + * Returns the trigonometric cosine of an angle. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a an angle, in radians. + * @return the cosine of the argument. + */ + public static double cos(double a) { + return StrictMath.cos(a); // default impl. delegates to StrictMath + } + + /** + * Returns the trigonometric tangent of an angle. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a an angle, in radians. + * @return the tangent of the argument. + */ + public static double tan(double a) { + return StrictMath.tan(a); // default impl. delegates to StrictMath + } + + /** + * Returns the arc sine of a value; the returned angle is in the + * range -pi/2 through pi/2. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a the value whose arc sine is to be returned. + * @return the arc sine of the argument. + */ + public static double asin(double a) { + return StrictMath.asin(a); // default impl. delegates to StrictMath + } + + /** + * Returns the arc cosine of a value; the returned angle is in the + * range 0.0 through pi. Special case: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a the value whose arc cosine is to be returned. + * @return the arc cosine of the argument. + */ + public static double acos(double a) { + return StrictMath.acos(a); // default impl. delegates to StrictMath + } + + /** + * Returns the arc tangent of a value; the returned angle is in the + * range -pi/2 through pi/2. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a the value whose arc tangent is to be returned. + * @return the arc tangent of the argument. + */ + public static double atan(double a) { + return StrictMath.atan(a); // default impl. delegates to StrictMath + } + + /** + * Converts an angle measured in degrees to an approximately + * equivalent angle measured in radians. The conversion from + * degrees to radians is generally inexact. + * + * @param angdeg an angle, in degrees + * @return the measurement of the angle {@code angdeg} + * in radians. + * @since 1.2 + */ + public static double toRadians(double angdeg) { + return angdeg / 180.0 * PI; + } + + /** + * Converts an angle measured in radians to an approximately + * equivalent angle measured in degrees. The conversion from + * radians to degrees is generally inexact; users should + * not expect {@code cos(toRadians(90.0))} to exactly + * equal {@code 0.0}. + * + * @param angrad an angle, in radians + * @return the measurement of the angle {@code angrad} + * in degrees. + * @since 1.2 + */ + public static double toDegrees(double angrad) { + return angrad * 180.0 / PI; + } + + /** + * Returns Euler's number e raised to the power of a + * {@code double} value. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a the exponent to raise e to. + * @return the value e{@code a}, + * where e is the base of the natural logarithms. + */ + public static double exp(double a) { + return StrictMath.exp(a); // default impl. delegates to StrictMath + } + + /** + * Returns the natural logarithm (base e) of a {@code double} + * value. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a a value + * @return the value ln {@code a}, the natural logarithm of + * {@code a}. + */ + public static double log(double a) { + return StrictMath.log(a); // default impl. delegates to StrictMath + } + + /** + * Returns the base 10 logarithm of a {@code double} value. + * Special cases: + * + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a a value + * @return the base 10 logarithm of {@code a}. + * @since 1.5 + */ + public static double log10(double a) { + return StrictMath.log10(a); // default impl. delegates to StrictMath + } + + /** + * Returns the correctly rounded positive square root of a + * {@code double} value. + * Special cases: + *

+ * Otherwise, the result is the {@code double} value closest to + * the true mathematical square root of the argument value. + * + * @param a a value. + * @return the positive square root of {@code a}. + * If the argument is NaN or less than zero, the result is NaN. + */ + public static double sqrt(double a) { + return StrictMath.sqrt(a); // default impl. delegates to StrictMath + // Note that hardware sqrt instructions + // frequently can be directly used by JITs + // and should be much faster than doing + // Math.sqrt in software. + } + + + /** + * Returns the cube root of a {@code double} value. For + * positive finite {@code x}, {@code cbrt(-x) == + * -cbrt(x)}; that is, the cube root of a negative value is + * the negative of the cube root of that value's magnitude. + * + * Special cases: + * + * + * + *

The computed result must be within 1 ulp of the exact result. + * + * @param a a value. + * @return the cube root of {@code a}. + * @since 1.5 + */ + public static double cbrt(double a) { + return StrictMath.cbrt(a); + } + + /** + * Computes the remainder operation on two arguments as prescribed + * by the IEEE 754 standard. + * The remainder value is mathematically equal to + * f1 - f2 × n, + * where n is the mathematical integer closest to the exact + * mathematical value of the quotient {@code f1/f2}, and if two + * mathematical integers are equally close to {@code f1/f2}, + * then n is the integer that is even. If the remainder is + * zero, its sign is the same as the sign of the first argument. + * Special cases: + *

+ * + * @param f1 the dividend. + * @param f2 the divisor. + * @return the remainder when {@code f1} is divided by + * {@code f2}. + */ + public static double IEEEremainder(double f1, double f2) { + return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath + } + + /** + * Returns the smallest (closest to negative infinity) + * {@code double} value that is greater than or equal to the + * argument and is equal to a mathematical integer. Special cases: + * Note + * that the value of {@code Math.ceil(x)} is exactly the + * value of {@code -Math.floor(-x)}. + * + * + * @param a a value. + * @return the smallest (closest to negative infinity) + * floating-point value that is greater than or equal to + * the argument and is equal to a mathematical integer. + */ + public static double ceil(double a) { + return StrictMath.ceil(a); // default impl. delegates to StrictMath + } + + /** + * Returns the largest (closest to positive infinity) + * {@code double} value that is less than or equal to the + * argument and is equal to a mathematical integer. Special cases: + * + * + * @param a a value. + * @return the largest (closest to positive infinity) + * floating-point value that less than or equal to the argument + * and is equal to a mathematical integer. + */ + public static double floor(double a) { + return StrictMath.floor(a); // default impl. delegates to StrictMath + } + + /** + * Returns the {@code double} value that is closest in value + * to the argument and is equal to a mathematical integer. If two + * {@code double} values that are mathematical integers are + * equally close, the result is the integer value that is + * even. Special cases: + * + * + * @param a a {@code double} value. + * @return the closest floating-point value to {@code a} that is + * equal to a mathematical integer. + */ + public static double rint(double a) { + return StrictMath.rint(a); // default impl. delegates to StrictMath + } + + /** + * Returns the angle theta from the conversion of rectangular + * coordinates ({@code x}, {@code y}) to polar + * coordinates (r, theta). + * This method computes the phase theta by computing an arc tangent + * of {@code y/x} in the range of -pi to pi. Special + * cases: + * + * + *

The computed result must be within 2 ulps of the exact result. + * Results must be semi-monotonic. + * + * @param y the ordinate coordinate + * @param x the abscissa coordinate + * @return the theta component of the point + * (rtheta) + * in polar coordinates that corresponds to the point + * (xy) in Cartesian coordinates. + */ + public static double atan2(double y, double x) { + return StrictMath.atan2(y, x); // default impl. delegates to StrictMath + } + + /** + * Returns the value of the first argument raised to the power of the + * second argument. Special cases: + * + *

+ * + *

(In the foregoing descriptions, a floating-point value is + * considered to be an integer if and only if it is finite and a + * fixed point of the method {@link #ceil ceil} or, + * equivalently, a fixed point of the method {@link #floor + * floor}. A value is a fixed point of a one-argument + * method if and only if the result of applying the method to the + * value is equal to the value.) + * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a the base. + * @param b the exponent. + * @return the value {@code a}{@code b}. + */ + public static double pow(double a, double b) { + return StrictMath.pow(a, b); // default impl. delegates to StrictMath + } + + /** + * Returns the closest {@code int} to the argument, with ties + * rounding up. + * + *

+ * Special cases: + *

+ * + * @param a a floating-point value to be rounded to an integer. + * @return the value of the argument rounded to the nearest + * {@code int} value. + * @see java.lang.Integer#MAX_VALUE + * @see java.lang.Integer#MIN_VALUE + */ + public static int round(float a) { + if (a != 0x1.fffffep-2f) // greatest float value less than 0.5 + return (int)floor(a + 0.5f); + else + return 0; + } + + /** + * Returns the closest {@code long} to the argument, with ties + * rounding up. + * + *

Special cases: + *

+ * + * @param a a floating-point value to be rounded to a + * {@code long}. + * @return the value of the argument rounded to the nearest + * {@code long} value. + * @see java.lang.Long#MAX_VALUE + * @see java.lang.Long#MIN_VALUE + */ + public static long round(double a) { + if (a != 0x1.fffffffffffffp-2) // greatest double value less than 0.5 + return (long)floor(a + 0.5d); + else + return 0; + } + + private static Random randomNumberGenerator; + + private static synchronized Random initRNG() { + Random rnd = randomNumberGenerator; + return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd; + } + + /** + * Returns a {@code double} value with a positive sign, greater + * than or equal to {@code 0.0} and less than {@code 1.0}. + * Returned values are chosen pseudorandomly with (approximately) + * uniform distribution from that range. + * + *

When this method is first called, it creates a single new + * pseudorandom-number generator, exactly as if by the expression + * + *

{@code new java.util.Random()}
+ * + * This new pseudorandom-number generator is used thereafter for + * all calls to this method and is used nowhere else. + * + *

This method is properly synchronized to allow correct use by + * more than one thread. However, if many threads need to generate + * pseudorandom numbers at a great rate, it may reduce contention + * for each thread to have its own pseudorandom-number generator. + * + * @return a pseudorandom {@code double} greater than or equal + * to {@code 0.0} and less than {@code 1.0}. + * @see Random#nextDouble() + */ + public static double random() { + Random rnd = randomNumberGenerator; + if (rnd == null) rnd = initRNG(); + return rnd.nextDouble(); + } + + /** + * Returns the absolute value of an {@code int} value. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * + *

Note that if the argument is equal to the value of + * {@link Integer#MIN_VALUE}, the most negative representable + * {@code int} value, the result is that same value, which is + * negative. + * + * @param a the argument whose absolute value is to be determined + * @return the absolute value of the argument. + */ + public static int abs(int a) { + return (a < 0) ? -a : a; + } + + /** + * Returns the absolute value of a {@code long} value. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * + *

Note that if the argument is equal to the value of + * {@link Long#MIN_VALUE}, the most negative representable + * {@code long} value, the result is that same value, which + * is negative. + * + * @param a the argument whose absolute value is to be determined + * @return the absolute value of the argument. + */ + public static long abs(long a) { + return (a < 0) ? -a : a; + } + + /** + * Returns the absolute value of a {@code float} value. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * Special cases: + *

+ * In other words, the result is the same as the value of the expression: + *

{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))} + * + * @param a the argument whose absolute value is to be determined + * @return the absolute value of the argument. + */ + public static float abs(float a) { + return (a <= 0.0F) ? 0.0F - a : a; + } + + /** + * Returns the absolute value of a {@code double} value. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * Special cases: + *

+ * In other words, the result is the same as the value of the expression: + *

{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)} + * + * @param a the argument whose absolute value is to be determined + * @return the absolute value of the argument. + */ + public static double abs(double a) { + return (a <= 0.0D) ? 0.0D - a : a; + } + + /** + * Returns the greater of two {@code int} values. That is, the + * result is the argument closer to the value of + * {@link Integer#MAX_VALUE}. If the arguments have the same value, + * the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + public static int max(int a, int b) { + return (a >= b) ? a : b; + } + + /** + * Returns the greater of two {@code long} values. That is, the + * result is the argument closer to the value of + * {@link Long#MAX_VALUE}. If the arguments have the same value, + * the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + public static long max(long a, long b) { + return (a >= b) ? a : b; + } + + private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f); + private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d); + + /** + * Returns the greater of two {@code float} values. That is, + * the result is the argument closer to positive infinity. If the + * arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If one + * argument is positive zero and the other negative zero, the + * result is positive zero. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + public static float max(float a, float b) { + if (a != a) return a; // a is NaN + if ((a == 0.0f) && (b == 0.0f) + && (Float.floatToIntBits(a) == negativeZeroFloatBits)) { + return b; + } + return (a >= b) ? a : b; + } + + /** + * Returns the greater of two {@code double} values. That + * is, the result is the argument closer to positive infinity. If + * the arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If one + * argument is positive zero and the other negative zero, the + * result is positive zero. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + public static double max(double a, double b) { + if (a != a) return a; // a is NaN + if ((a == 0.0d) && (b == 0.0d) + && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) { + return b; + } + return (a >= b) ? a : b; + } + + /** + * Returns the smaller of two {@code int} values. That is, + * the result the argument closer to the value of + * {@link Integer#MIN_VALUE}. If the arguments have the same + * value, the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b}. + */ + public static int min(int a, int b) { + return (a <= b) ? a : b; + } + + /** + * Returns the smaller of two {@code long} values. That is, + * the result is the argument closer to the value of + * {@link Long#MIN_VALUE}. If the arguments have the same + * value, the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b}. + */ + public static long min(long a, long b) { + return (a <= b) ? a : b; + } + + /** + * Returns the smaller of two {@code float} values. That is, + * the result is the value closer to negative infinity. If the + * arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If + * one argument is positive zero and the other is negative zero, + * the result is negative zero. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b}. + */ + public static float min(float a, float b) { + if (a != a) return a; // a is NaN + if ((a == 0.0f) && (b == 0.0f) + && (Float.floatToIntBits(b) == negativeZeroFloatBits)) { + return b; + } + return (a <= b) ? a : b; + } + + /** + * Returns the smaller of two {@code double} values. That + * is, the result is the value closer to negative infinity. If the + * arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If one + * argument is positive zero and the other is negative zero, the + * result is negative zero. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b}. + */ + public static double min(double a, double b) { + if (a != a) return a; // a is NaN + if ((a == 0.0d) && (b == 0.0d) + && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) { + return b; + } + return (a <= b) ? a : b; + } + + /** + * Returns the size of an ulp of the argument. An ulp of a + * {@code double} value is the positive distance between this + * floating-point value and the {@code double} value next + * larger in magnitude. Note that for non-NaN x, + * ulp(-x) == ulp(x). + * + *

Special Cases: + *

+ * + * @param d the floating-point value whose ulp is to be returned + * @return the size of an ulp of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ + public static double ulp(double d) { + return sun.misc.FpUtils.ulp(d); + } + + /** + * Returns the size of an ulp of the argument. An ulp of a + * {@code float} value is the positive distance between this + * floating-point value and the {@code float} value next + * larger in magnitude. Note that for non-NaN x, + * ulp(-x) == ulp(x). + * + *

Special Cases: + *

+ * + * @param f the floating-point value whose ulp is to be returned + * @return the size of an ulp of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ + public static float ulp(float f) { + return sun.misc.FpUtils.ulp(f); + } + + /** + * Returns the signum function of the argument; zero if the argument + * is zero, 1.0 if the argument is greater than zero, -1.0 if the + * argument is less than zero. + * + *

Special Cases: + *

+ * + * @param d the floating-point value whose signum is to be returned + * @return the signum function of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ + public static double signum(double d) { + return sun.misc.FpUtils.signum(d); + } + + /** + * Returns the signum function of the argument; zero if the argument + * is zero, 1.0f if the argument is greater than zero, -1.0f if the + * argument is less than zero. + * + *

Special Cases: + *

+ * + * @param f the floating-point value whose signum is to be returned + * @return the signum function of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ + public static float signum(float f) { + return sun.misc.FpUtils.signum(f); + } + + /** + * Returns the hyperbolic sine of a {@code double} value. + * The hyperbolic sine of x is defined to be + * (ex - e-x)/2 + * where e is {@linkplain Math#E Euler's number}. + * + *

Special cases: + *

+ * + *

The computed result must be within 2.5 ulps of the exact result. + * + * @param x The number whose hyperbolic sine is to be returned. + * @return The hyperbolic sine of {@code x}. + * @since 1.5 + */ + public static double sinh(double x) { + return StrictMath.sinh(x); + } + + /** + * Returns the hyperbolic cosine of a {@code double} value. + * The hyperbolic cosine of x is defined to be + * (ex + e-x)/2 + * where e is {@linkplain Math#E Euler's number}. + * + *

Special cases: + *

+ * + *

The computed result must be within 2.5 ulps of the exact result. + * + * @param x The number whose hyperbolic cosine is to be returned. + * @return The hyperbolic cosine of {@code x}. + * @since 1.5 + */ + public static double cosh(double x) { + return StrictMath.cosh(x); + } + + /** + * Returns the hyperbolic tangent of a {@code double} value. + * The hyperbolic tangent of x is defined to be + * (ex - e-x)/(ex + e-x), + * in other words, {@linkplain Math#sinh + * sinh(x)}/{@linkplain Math#cosh cosh(x)}. Note + * that the absolute value of the exact tanh is always less than + * 1. + * + *

Special cases: + *

+ * + *

The computed result must be within 2.5 ulps of the exact result. + * The result of {@code tanh} for any finite input must have + * an absolute value less than or equal to 1. Note that once the + * exact result of tanh is within 1/2 of an ulp of the limit value + * of ±1, correctly signed ±{@code 1.0} should + * be returned. + * + * @param x The number whose hyperbolic tangent is to be returned. + * @return The hyperbolic tangent of {@code x}. + * @since 1.5 + */ + public static double tanh(double x) { + return StrictMath.tanh(x); + } + + /** + * Returns sqrt(x2 +y2) + * without intermediate overflow or underflow. + * + *

Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact + * result. If one parameter is held constant, the results must be + * semi-monotonic in the other parameter. + * + * @param x a value + * @param y a value + * @return sqrt(x2 +y2) + * without intermediate overflow or underflow + * @since 1.5 + */ + public static double hypot(double x, double y) { + return StrictMath.hypot(x, y); + } + + /** + * Returns ex -1. Note that for values of + * x near 0, the exact sum of + * {@code expm1(x)} + 1 is much closer to the true + * result of ex than {@code exp(x)}. + * + *

Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. The result of + * {@code expm1} for any finite input must be greater than or + * equal to {@code -1.0}. Note that once the exact result of + * e{@code x} - 1 is within 1/2 + * ulp of the limit value -1, {@code -1.0} should be + * returned. + * + * @param x the exponent to raise e to in the computation of + * e{@code x} -1. + * @return the value e{@code x} - 1. + * @since 1.5 + */ + public static double expm1(double x) { + return StrictMath.expm1(x); + } + + /** + * Returns the natural logarithm of the sum of the argument and 1. + * Note that for small values {@code x}, the result of + * {@code log1p(x)} is much closer to the true result of ln(1 + * + {@code x}) than the floating-point evaluation of + * {@code log(1.0+x)}. + * + *

Special cases: + * + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param x a value + * @return the value ln({@code x} + 1), the natural + * log of {@code x} + 1 + * @since 1.5 + */ + public static double log1p(double x) { + return StrictMath.log1p(x); + } + + /** + * Returns the first floating-point argument with the sign of the + * second floating-point argument. Note that unlike the {@link + * StrictMath#copySign(double, double) StrictMath.copySign} + * method, this method does not require NaN {@code sign} + * arguments to be treated as positive values; implementations are + * permitted to treat some NaN arguments as positive and other NaN + * arguments as negative to allow greater performance. + * + * @param magnitude the parameter providing the magnitude of the result + * @param sign the parameter providing the sign of the result + * @return a value with the magnitude of {@code magnitude} + * and the sign of {@code sign}. + * @since 1.6 + */ + public static double copySign(double magnitude, double sign) { + return sun.misc.FpUtils.rawCopySign(magnitude, sign); + } + + /** + * Returns the first floating-point argument with the sign of the + * second floating-point argument. Note that unlike the {@link + * StrictMath#copySign(float, float) StrictMath.copySign} + * method, this method does not require NaN {@code sign} + * arguments to be treated as positive values; implementations are + * permitted to treat some NaN arguments as positive and other NaN + * arguments as negative to allow greater performance. + * + * @param magnitude the parameter providing the magnitude of the result + * @param sign the parameter providing the sign of the result + * @return a value with the magnitude of {@code magnitude} + * and the sign of {@code sign}. + * @since 1.6 + */ + public static float copySign(float magnitude, float sign) { + return sun.misc.FpUtils.rawCopySign(magnitude, sign); + } + + /** + * Returns the unbiased exponent used in the representation of a + * {@code float}. Special cases: + * + *

+ * @param f a {@code float} value + * @return the unbiased exponent of the argument + * @since 1.6 + */ + public static int getExponent(float f) { + return sun.misc.FpUtils.getExponent(f); + } + + /** + * Returns the unbiased exponent used in the representation of a + * {@code double}. Special cases: + * + * + * @param d a {@code double} value + * @return the unbiased exponent of the argument + * @since 1.6 + */ + public static int getExponent(double d) { + return sun.misc.FpUtils.getExponent(d); + } + + /** + * Returns the floating-point number adjacent to the first + * argument in the direction of the second argument. If both + * arguments compare as equal the second argument is returned. + * + *

+ * Special cases: + *

+ * + * @param start starting floating-point value + * @param direction value indicating which of + * {@code start}'s neighbors or {@code start} should + * be returned + * @return The floating-point number adjacent to {@code start} in the + * direction of {@code direction}. + * @since 1.6 + */ + public static double nextAfter(double start, double direction) { + return sun.misc.FpUtils.nextAfter(start, direction); + } + + /** + * Returns the floating-point number adjacent to the first + * argument in the direction of the second argument. If both + * arguments compare as equal a value equivalent to the second argument + * is returned. + * + *

+ * Special cases: + *

+ * + * @param start starting floating-point value + * @param direction value indicating which of + * {@code start}'s neighbors or {@code start} should + * be returned + * @return The floating-point number adjacent to {@code start} in the + * direction of {@code direction}. + * @since 1.6 + */ + public static float nextAfter(float start, double direction) { + return sun.misc.FpUtils.nextAfter(start, direction); + } + + /** + * Returns the floating-point value adjacent to {@code d} in + * the direction of positive infinity. This method is + * semantically equivalent to {@code nextAfter(d, + * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} + * implementation may run faster than its equivalent + * {@code nextAfter} call. + * + *

Special Cases: + *

+ * + * @param d starting floating-point value + * @return The adjacent floating-point value closer to positive + * infinity. + * @since 1.6 + */ + public static double nextUp(double d) { + return sun.misc.FpUtils.nextUp(d); + } + + /** + * Returns the floating-point value adjacent to {@code f} in + * the direction of positive infinity. This method is + * semantically equivalent to {@code nextAfter(f, + * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} + * implementation may run faster than its equivalent + * {@code nextAfter} call. + * + *

Special Cases: + *

+ * + * @param f starting floating-point value + * @return The adjacent floating-point value closer to positive + * infinity. + * @since 1.6 + */ + public static float nextUp(float f) { + return sun.misc.FpUtils.nextUp(f); + } + + + /** + * Return {@code d} × + * 2{@code scaleFactor} rounded as if performed + * by a single correctly rounded floating-point multiply to a + * member of the double value set. See the Java + * Language Specification for a discussion of floating-point + * value sets. If the exponent of the result is between {@link + * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the + * answer is calculated exactly. If the exponent of the result + * would be larger than {@code Double.MAX_EXPONENT}, an + * infinity is returned. Note that if the result is subnormal, + * precision may be lost; that is, when {@code scalb(x, n)} + * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal + * x. When the result is non-NaN, the result has the same + * sign as {@code d}. + * + *

Special cases: + *

+ * + * @param d number to be scaled by a power of two. + * @param scaleFactor power of 2 used to scale {@code d} + * @return {@code d} × 2{@code scaleFactor} + * @since 1.6 + */ + public static double scalb(double d, int scaleFactor) { + return sun.misc.FpUtils.scalb(d, scaleFactor); + } + + /** + * Return {@code f} × + * 2{@code scaleFactor} rounded as if performed + * by a single correctly rounded floating-point multiply to a + * member of the float value set. See the Java + * Language Specification for a discussion of floating-point + * value sets. If the exponent of the result is between {@link + * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the + * answer is calculated exactly. If the exponent of the result + * would be larger than {@code Float.MAX_EXPONENT}, an + * infinity is returned. Note that if the result is subnormal, + * precision may be lost; that is, when {@code scalb(x, n)} + * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal + * x. When the result is non-NaN, the result has the same + * sign as {@code f}. + * + *

Special cases: + *

+ * + * @param f number to be scaled by a power of two. + * @param scaleFactor power of 2 used to scale {@code f} + * @return {@code f} × 2{@code scaleFactor} + * @since 1.6 + */ + public static float scalb(float f, int scaleFactor) { + return sun.misc.FpUtils.scalb(f, scaleFactor); + } +} diff -r 8a74b5d8d1d4 -r cc0d42d2110a emul/src/main/java/java/lang/Short.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/emul/src/main/java/java/lang/Short.java Sat Sep 29 10:56:23 2012 +0200 @@ -0,0 +1,468 @@ +/* + * Copyright (c) 1996, 2009, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang; + +/** + * The {@code Short} class wraps a value of primitive type {@code + * short} in an object. An object of type {@code Short} contains a + * single field whose type is {@code short}. + * + *

In addition, this class provides several methods for converting + * a {@code short} to a {@code String} and a {@code String} to a + * {@code short}, as well as other constants and methods useful when + * dealing with a {@code short}. + * + * @author Nakul Saraiya + * @author Joseph D. Darcy + * @see java.lang.Number + * @since JDK1.1 + */ +public final class Short extends Number implements Comparable { + + /** + * A constant holding the minimum value a {@code short} can + * have, -215. + */ + public static final short MIN_VALUE = -32768; + + /** + * A constant holding the maximum value a {@code short} can + * have, 215-1. + */ + public static final short MAX_VALUE = 32767; + + /** + * The {@code Class} instance representing the primitive type + * {@code short}. + */ + public static final Class TYPE = (Class) Class.getPrimitiveClass("short"); + + /** + * Returns a new {@code String} object representing the + * specified {@code short}. The radix is assumed to be 10. + * + * @param s the {@code short} to be converted + * @return the string representation of the specified {@code short} + * @see java.lang.Integer#toString(int) + */ + public static String toString(short s) { + return Integer.toString((int)s, 10); + } + + /** + * Parses the string argument as a signed {@code short} in the + * radix specified by the second argument. The characters in the + * string must all be digits, of the specified radix (as + * determined by whether {@link java.lang.Character#digit(char, + * int)} returns a nonnegative value) except that the first + * character may be an ASCII minus sign {@code '-'} + * ('\u002D') to indicate a negative value or an + * ASCII plus sign {@code '+'} ('\u002B') to + * indicate a positive value. The resulting {@code short} value + * is returned. + * + *

An exception of type {@code NumberFormatException} is + * thrown if any of the following situations occurs: + *

+ * + * @param s the {@code String} containing the + * {@code short} representation to be parsed + * @param radix the radix to be used while parsing {@code s} + * @return the {@code short} represented by the string + * argument in the specified radix. + * @throws NumberFormatException If the {@code String} + * does not contain a parsable {@code short}. + */ + public static short parseShort(String s, int radix) + throws NumberFormatException { + int i = Integer.parseInt(s, radix); + if (i < MIN_VALUE || i > MAX_VALUE) + throw new NumberFormatException( + "Value out of range. Value:\"" + s + "\" Radix:" + radix); + return (short)i; + } + + /** + * Parses the string argument as a signed decimal {@code + * short}. The characters in the string must all be decimal + * digits, except that the first character may be an ASCII minus + * sign {@code '-'} ('\u002D') to indicate a + * negative value or an ASCII plus sign {@code '+'} + * ('\u002B') to indicate a positive value. The + * resulting {@code short} value is returned, exactly as if the + * argument and the radix 10 were given as arguments to the {@link + * #parseShort(java.lang.String, int)} method. + * + * @param s a {@code String} containing the {@code short} + * representation to be parsed + * @return the {@code short} value represented by the + * argument in decimal. + * @throws NumberFormatException If the string does not + * contain a parsable {@code short}. + */ + public static short parseShort(String s) throws NumberFormatException { + return parseShort(s, 10); + } + + /** + * Returns a {@code Short} object holding the value + * extracted from the specified {@code String} when parsed + * with the radix given by the second argument. The first argument + * is interpreted as representing a signed {@code short} in + * the radix specified by the second argument, exactly as if the + * argument were given to the {@link #parseShort(java.lang.String, + * int)} method. The result is a {@code Short} object that + * represents the {@code short} value specified by the string. + * + *

In other words, this method returns a {@code Short} object + * equal to the value of: + * + *

+ * {@code new Short(Short.parseShort(s, radix))} + *
+ * + * @param s the string to be parsed + * @param radix the radix to be used in interpreting {@code s} + * @return a {@code Short} object holding the value + * represented by the string argument in the + * specified radix. + * @throws NumberFormatException If the {@code String} does + * not contain a parsable {@code short}. + */ + public static Short valueOf(String s, int radix) + throws NumberFormatException { + return valueOf(parseShort(s, radix)); + } + + /** + * Returns a {@code Short} object holding the + * value given by the specified {@code String}. The argument + * is interpreted as representing a signed decimal + * {@code short}, exactly as if the argument were given to + * the {@link #parseShort(java.lang.String)} method. The result is + * a {@code Short} object that represents the + * {@code short} value specified by the string. + * + *

In other words, this method returns a {@code Short} object + * equal to the value of: + * + *

+ * {@code new Short(Short.parseShort(s))} + *
+ * + * @param s the string to be parsed + * @return a {@code Short} object holding the value + * represented by the string argument + * @throws NumberFormatException If the {@code String} does + * not contain a parsable {@code short}. + */ + public static Short valueOf(String s) throws NumberFormatException { + return valueOf(s, 10); + } + + private static class ShortCache { + private ShortCache(){} + + static final Short cache[] = new Short[-(-128) + 127 + 1]; + + static { + for(int i = 0; i < cache.length; i++) + cache[i] = new Short((short)(i - 128)); + } + } + + /** + * Returns a {@code Short} instance representing the specified + * {@code short} value. + * If a new {@code Short} instance is not required, this method + * should generally be used in preference to the constructor + * {@link #Short(short)}, as this method is likely to yield + * significantly better space and time performance by caching + * frequently requested values. + * + * This method will always cache values in the range -128 to 127, + * inclusive, and may cache other values outside of this range. + * + * @param s a short value. + * @return a {@code Short} instance representing {@code s}. + * @since 1.5 + */ + public static Short valueOf(short s) { + final int offset = 128; + int sAsInt = s; + if (sAsInt >= -128 && sAsInt <= 127) { // must cache + return ShortCache.cache[sAsInt + offset]; + } + return new Short(s); + } + + /** + * Decodes a {@code String} into a {@code Short}. + * Accepts decimal, hexadecimal, and octal numbers given by + * the following grammar: + * + *
+ *
+ *
DecodableString: + *
Signopt DecimalNumeral + *
Signopt {@code 0x} HexDigits + *
Signopt {@code 0X} HexDigits + *
Signopt {@code #} HexDigits + *
Signopt {@code 0} OctalDigits + *

+ *

Sign: + *
{@code -} + *
{@code +} + *
+ *
+ * + * DecimalNumeral, HexDigits, and OctalDigits + * are as defined in section 3.10.1 of + * The Java™ Language Specification, + * except that underscores are not accepted between digits. + * + *

The sequence of characters following an optional + * sign and/or radix specifier ("{@code 0x}", "{@code 0X}", + * "{@code #}", or leading zero) is parsed as by the {@code + * Short.parseShort} method with the indicated radix (10, 16, or + * 8). This sequence of characters must represent a positive + * value or a {@link NumberFormatException} will be thrown. The + * result is negated if first character of the specified {@code + * String} is the minus sign. No whitespace characters are + * permitted in the {@code String}. + * + * @param nm the {@code String} to decode. + * @return a {@code Short} object holding the {@code short} + * value represented by {@code nm} + * @throws NumberFormatException if the {@code String} does not + * contain a parsable {@code short}. + * @see java.lang.Short#parseShort(java.lang.String, int) + */ + public static Short decode(String nm) throws NumberFormatException { + int i = Integer.decode(nm); + if (i < MIN_VALUE || i > MAX_VALUE) + throw new NumberFormatException( + "Value " + i + " out of range from input " + nm); + return valueOf((short)i); + } + + /** + * The value of the {@code Short}. + * + * @serial + */ + private final short value; + + /** + * Constructs a newly allocated {@code Short} object that + * represents the specified {@code short} value. + * + * @param value the value to be represented by the + * {@code Short}. + */ + public Short(short value) { + this.value = value; + } + + /** + * Constructs a newly allocated {@code Short} object that + * represents the {@code short} value indicated by the + * {@code String} parameter. The string is converted to a + * {@code short} value in exactly the manner used by the + * {@code parseShort} method for radix 10. + * + * @param s the {@code String} to be converted to a + * {@code Short} + * @throws NumberFormatException If the {@code String} + * does not contain a parsable {@code short}. + * @see java.lang.Short#parseShort(java.lang.String, int) + */ + public Short(String s) throws NumberFormatException { + this.value = parseShort(s, 10); + } + + /** + * Returns the value of this {@code Short} as a + * {@code byte}. + */ + public byte byteValue() { + return (byte)value; + } + + /** + * Returns the value of this {@code Short} as a + * {@code short}. + */ + public short shortValue() { + return value; + } + + /** + * Returns the value of this {@code Short} as an + * {@code int}. + */ + public int intValue() { + return (int)value; + } + + /** + * Returns the value of this {@code Short} as a + * {@code long}. + */ + public long longValue() { + return (long)value; + } + + /** + * Returns the value of this {@code Short} as a + * {@code float}. + */ + public float floatValue() { + return (float)value; + } + + /** + * Returns the value of this {@code Short} as a + * {@code double}. + */ + public double doubleValue() { + return (double)value; + } + + /** + * Returns a {@code String} object representing this + * {@code Short}'s value. The value is converted to signed + * decimal representation and returned as a string, exactly as if + * the {@code short} value were given as an argument to the + * {@link java.lang.Short#toString(short)} method. + * + * @return a string representation of the value of this object in + * base 10. + */ + public String toString() { + return Integer.toString((int)value); + } + + /** + * Returns a hash code for this {@code Short}; equal to the result + * of invoking {@code intValue()}. + * + * @return a hash code value for this {@code Short} + */ + public int hashCode() { + return (int)value; + } + + /** + * Compares this object to the specified object. The result is + * {@code true} if and only if the argument is not + * {@code null} and is a {@code Short} object that + * contains the same {@code short} value as this object. + * + * @param obj the object to compare with + * @return {@code true} if the objects are the same; + * {@code false} otherwise. + */ + public boolean equals(Object obj) { + if (obj instanceof Short) { + return value == ((Short)obj).shortValue(); + } + return false; + } + + /** + * Compares two {@code Short} objects numerically. + * + * @param anotherShort the {@code Short} to be compared. + * @return the value {@code 0} if this {@code Short} is + * equal to the argument {@code Short}; a value less than + * {@code 0} if this {@code Short} is numerically less + * than the argument {@code Short}; and a value greater than + * {@code 0} if this {@code Short} is numerically + * greater than the argument {@code Short} (signed + * comparison). + * @since 1.2 + */ + public int compareTo(Short anotherShort) { + return compare(this.value, anotherShort.value); + } + + /** + * Compares two {@code short} values numerically. + * The value returned is identical to what would be returned by: + *

+     *    Short.valueOf(x).compareTo(Short.valueOf(y))
+     * 
+ * + * @param x the first {@code short} to compare + * @param y the second {@code short} to compare + * @return the value {@code 0} if {@code x == y}; + * a value less than {@code 0} if {@code x < y}; and + * a value greater than {@code 0} if {@code x > y} + * @since 1.7 + */ + public static int compare(short x, short y) { + return x - y; + } + + /** + * The number of bits used to represent a {@code short} value in two's + * complement binary form. + * @since 1.5 + */ + public static final int SIZE = 16; + + /** + * Returns the value obtained by reversing the order of the bytes in the + * two's complement representation of the specified {@code short} value. + * + * @return the value obtained by reversing (or, equivalently, swapping) + * the bytes in the specified {@code short} value. + * @since 1.5 + */ + public static short reverseBytes(short i) { + return (short) (((i & 0xFF00) >> 8) | (i << 8)); + } + + /** use serialVersionUID from JDK 1.1. for interoperability */ + private static final long serialVersionUID = 7515723908773894738L; +}