# HG changeset patch # User Jaroslav Tulach # Date 1348911466 -7200 # Node ID e4d7540b796aa33ededa5ad17527341c8a951afd # Parent a2924470187b3f2b4463d2e3913ef0cc83b48586 Adding also strict math diff -r a2924470187b -r e4d7540b796a emul/src/main/java/java/lang/StrictMath.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/emul/src/main/java/java/lang/StrictMath.java Sat Sep 29 11:37:46 2012 +0200 @@ -0,0 +1,1468 @@ +/* + * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang; +import java.util.Random; +import sun.misc.FpUtils; +import sun.misc.DoubleConsts; + +/** + * The class {@code StrictMath} contains methods for performing basic + * numeric operations such as the elementary exponential, logarithm, + * square root, and trigonometric functions. + * + *

To help ensure portability of Java programs, the definitions of + * some of the numeric functions in this package require that they + * produce the same results as certain published algorithms. These + * algorithms are available from the well-known network library + * {@code netlib} as the package "Freely Distributable Math + * Library," {@code fdlibm}. These + * algorithms, which are written in the C programming language, are + * then to be understood as executed with all floating-point + * operations following the rules of Java floating-point arithmetic. + * + *

The Java math library is defined with respect to + * {@code fdlibm} version 5.3. Where {@code fdlibm} provides + * more than one definition for a function (such as + * {@code acos}), use the "IEEE 754 core function" version + * (residing in a file whose name begins with the letter + * {@code e}). The methods which require {@code fdlibm} + * semantics are {@code sin}, {@code cos}, {@code tan}, + * {@code asin}, {@code acos}, {@code atan}, + * {@code exp}, {@code log}, {@code log10}, + * {@code cbrt}, {@code atan2}, {@code pow}, + * {@code sinh}, {@code cosh}, {@code tanh}, + * {@code hypot}, {@code expm1}, and {@code log1p}. + * + * @author unascribed + * @author Joseph D. Darcy + * @since 1.3 + */ + +public final class StrictMath { + + /** + * Don't let anyone instantiate this class. + */ + private StrictMath() {} + + /** + * The {@code double} value that is closer than any other to + * e, the base of the natural logarithms. + */ + public static final double E = 2.7182818284590452354; + + /** + * The {@code double} value that is closer than any other to + * pi, the ratio of the circumference of a circle to its + * diameter. + */ + public static final double PI = 3.14159265358979323846; + + /** + * Returns the trigonometric sine of an angle. Special cases: + *

+ * + * @param a an angle, in radians. + * @return the sine of the argument. + */ + public static native double sin(double a); + + /** + * Returns the trigonometric cosine of an angle. Special cases: + * + * + * @param a an angle, in radians. + * @return the cosine of the argument. + */ + public static native double cos(double a); + + /** + * Returns the trigonometric tangent of an angle. Special cases: + * + * + * @param a an angle, in radians. + * @return the tangent of the argument. + */ + public static native double tan(double a); + + /** + * Returns the arc sine of a value; the returned angle is in the + * range -pi/2 through pi/2. Special cases: + * + * + * @param a the value whose arc sine is to be returned. + * @return the arc sine of the argument. + */ + public static native double asin(double a); + + /** + * Returns the arc cosine of a value; the returned angle is in the + * range 0.0 through pi. Special case: + * + * + * @param a the value whose arc cosine is to be returned. + * @return the arc cosine of the argument. + */ + public static native double acos(double a); + + /** + * Returns the arc tangent of a value; the returned angle is in the + * range -pi/2 through pi/2. Special cases: + * + * + * @param a the value whose arc tangent is to be returned. + * @return the arc tangent of the argument. + */ + public static native double atan(double a); + + /** + * Converts an angle measured in degrees to an approximately + * equivalent angle measured in radians. The conversion from + * degrees to radians is generally inexact. + * + * @param angdeg an angle, in degrees + * @return the measurement of the angle {@code angdeg} + * in radians. + */ + public static strictfp double toRadians(double angdeg) { + return angdeg / 180.0 * PI; + } + + /** + * Converts an angle measured in radians to an approximately + * equivalent angle measured in degrees. The conversion from + * radians to degrees is generally inexact; users should + * not expect {@code cos(toRadians(90.0))} to exactly + * equal {@code 0.0}. + * + * @param angrad an angle, in radians + * @return the measurement of the angle {@code angrad} + * in degrees. + */ + public static strictfp double toDegrees(double angrad) { + return angrad * 180.0 / PI; + } + + /** + * Returns Euler's number e raised to the power of a + * {@code double} value. Special cases: + * + * + * @param a the exponent to raise e to. + * @return the value e{@code a}, + * where e is the base of the natural logarithms. + */ + public static native double exp(double a); + + /** + * Returns the natural logarithm (base e) of a {@code double} + * value. Special cases: + * + * + * @param a a value + * @return the value ln {@code a}, the natural logarithm of + * {@code a}. + */ + public static native double log(double a); + + + /** + * Returns the base 10 logarithm of a {@code double} value. + * Special cases: + * + * + * + * @param a a value + * @return the base 10 logarithm of {@code a}. + * @since 1.5 + */ + public static native double log10(double a); + + /** + * Returns the correctly rounded positive square root of a + * {@code double} value. + * Special cases: + * + * Otherwise, the result is the {@code double} value closest to + * the true mathematical square root of the argument value. + * + * @param a a value. + * @return the positive square root of {@code a}. + */ + public static native double sqrt(double a); + + /** + * Returns the cube root of a {@code double} value. For + * positive finite {@code x}, {@code cbrt(-x) == + * -cbrt(x)}; that is, the cube root of a negative value is + * the negative of the cube root of that value's magnitude. + * Special cases: + * + * + * + * @param a a value. + * @return the cube root of {@code a}. + * @since 1.5 + */ + public static native double cbrt(double a); + + /** + * Computes the remainder operation on two arguments as prescribed + * by the IEEE 754 standard. + * The remainder value is mathematically equal to + * f1 - f2 × n, + * where n is the mathematical integer closest to the exact + * mathematical value of the quotient {@code f1/f2}, and if two + * mathematical integers are equally close to {@code f1/f2}, + * then n is the integer that is even. If the remainder is + * zero, its sign is the same as the sign of the first argument. + * Special cases: + * + * + * @param f1 the dividend. + * @param f2 the divisor. + * @return the remainder when {@code f1} is divided by + * {@code f2}. + */ + public static native double IEEEremainder(double f1, double f2); + + /** + * Returns the smallest (closest to negative infinity) + * {@code double} value that is greater than or equal to the + * argument and is equal to a mathematical integer. Special cases: + * Note + * that the value of {@code StrictMath.ceil(x)} is exactly the + * value of {@code -StrictMath.floor(-x)}. + * + * @param a a value. + * @return the smallest (closest to negative infinity) + * floating-point value that is greater than or equal to + * the argument and is equal to a mathematical integer. + */ + public static double ceil(double a) { + return floorOrCeil(a, -0.0, 1.0, 1.0); + } + + /** + * Returns the largest (closest to positive infinity) + * {@code double} value that is less than or equal to the + * argument and is equal to a mathematical integer. Special cases: + * + * + * @param a a value. + * @return the largest (closest to positive infinity) + * floating-point value that less than or equal to the argument + * and is equal to a mathematical integer. + */ + public static double floor(double a) { + return floorOrCeil(a, -1.0, 0.0, -1.0); + } + + /** + * Internal method to share logic between floor and ceil. + * + * @param a the value to be floored or ceiled + * @param negativeBoundary result for values in (-1, 0) + * @param positiveBoundary result for values in (0, 1) + * @param increment value to add when the argument is non-integral + */ + private static double floorOrCeil(double a, + double negativeBoundary, + double positiveBoundary, + double sign) { + int exponent = Math.getExponent(a); + + if (exponent < 0) { + /* + * Absolute value of argument is less than 1. + * floorOrceil(-0.0) => -0.0 + * floorOrceil(+0.0) => +0.0 + */ + return ((a == 0.0) ? a : + ( (a < 0.0) ? negativeBoundary : positiveBoundary) ); + } else if (exponent >= 52) { + /* + * Infinity, NaN, or a value so large it must be integral. + */ + return a; + } + // Else the argument is either an integral value already XOR it + // has to be rounded to one. + assert exponent >= 0 && exponent <= 51; + + long doppel = Double.doubleToRawLongBits(a); + long mask = DoubleConsts.SIGNIF_BIT_MASK >> exponent; + + if ( (mask & doppel) == 0L ) + return a; // integral value + else { + double result = Double.longBitsToDouble(doppel & (~mask)); + if (sign*a > 0.0) + result = result + sign; + return result; + } + } + + /** + * Returns the {@code double} value that is closest in value + * to the argument and is equal to a mathematical integer. If two + * {@code double} values that are mathematical integers are + * equally close to the value of the argument, the result is the + * integer value that is even. Special cases: + * + * + * @param a a value. + * @return the closest floating-point value to {@code a} that is + * equal to a mathematical integer. + * @author Joseph D. Darcy + */ + public static double rint(double a) { + /* + * If the absolute value of a is not less than 2^52, it + * is either a finite integer (the double format does not have + * enough significand bits for a number that large to have any + * fractional portion), an infinity, or a NaN. In any of + * these cases, rint of the argument is the argument. + * + * Otherwise, the sum (twoToThe52 + a ) will properly round + * away any fractional portion of a since ulp(twoToThe52) == + * 1.0; subtracting out twoToThe52 from this sum will then be + * exact and leave the rounded integer portion of a. + * + * This method does *not* need to be declared strictfp to get + * fully reproducible results. Whether or not a method is + * declared strictfp can only make a difference in the + * returned result if some operation would overflow or + * underflow with strictfp semantics. The operation + * (twoToThe52 + a ) cannot overflow since large values of a + * are screened out; the add cannot underflow since twoToThe52 + * is too large. The subtraction ((twoToThe52 + a ) - + * twoToThe52) will be exact as discussed above and thus + * cannot overflow or meaningfully underflow. Finally, the + * last multiply in the return statement is by plus or minus + * 1.0, which is exact too. + */ + double twoToThe52 = (double)(1L << 52); // 2^52 + double sign = FpUtils.rawCopySign(1.0, a); // preserve sign info + a = Math.abs(a); + + if (a < twoToThe52) { // E_min <= ilogb(a) <= 51 + a = ((twoToThe52 + a ) - twoToThe52); + } + + return sign * a; // restore original sign + } + + /** + * Returns the angle theta from the conversion of rectangular + * coordinates ({@code x}, {@code y}) to polar + * coordinates (r, theta). + * This method computes the phase theta by computing an arc tangent + * of {@code y/x} in the range of -pi to pi. Special + * cases: + * + * + * @param y the ordinate coordinate + * @param x the abscissa coordinate + * @return the theta component of the point + * (rtheta) + * in polar coordinates that corresponds to the point + * (xy) in Cartesian coordinates. + */ + public static native double atan2(double y, double x); + + + /** + * Returns the value of the first argument raised to the power of the + * second argument. Special cases: + * + * + * + *

(In the foregoing descriptions, a floating-point value is + * considered to be an integer if and only if it is finite and a + * fixed point of the method {@link #ceil ceil} or, + * equivalently, a fixed point of the method {@link #floor + * floor}. A value is a fixed point of a one-argument + * method if and only if the result of applying the method to the + * value is equal to the value.) + * + * @param a base. + * @param b the exponent. + * @return the value {@code a}{@code b}. + */ + public static native double pow(double a, double b); + + /** + * Returns the closest {@code int} to the argument, with ties + * rounding up. + * + *

Special cases: + *

+ * + * @param a a floating-point value to be rounded to an integer. + * @return the value of the argument rounded to the nearest + * {@code int} value. + * @see java.lang.Integer#MAX_VALUE + * @see java.lang.Integer#MIN_VALUE + */ + public static int round(float a) { + return Math.round(a); + } + + /** + * Returns the closest {@code long} to the argument, with ties + * rounding up. + * + *

Special cases: + *

+ * + * @param a a floating-point value to be rounded to a + * {@code long}. + * @return the value of the argument rounded to the nearest + * {@code long} value. + * @see java.lang.Long#MAX_VALUE + * @see java.lang.Long#MIN_VALUE + */ + public static long round(double a) { + return Math.round(a); + } + + private static Random randomNumberGenerator; + + private static synchronized Random initRNG() { + Random rnd = randomNumberGenerator; + return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd; + } + + /** + * Returns a {@code double} value with a positive sign, greater + * than or equal to {@code 0.0} and less than {@code 1.0}. + * Returned values are chosen pseudorandomly with (approximately) + * uniform distribution from that range. + * + *

When this method is first called, it creates a single new + * pseudorandom-number generator, exactly as if by the expression + * + *

{@code new java.util.Random()}
+ * + * This new pseudorandom-number generator is used thereafter for + * all calls to this method and is used nowhere else. + * + *

This method is properly synchronized to allow correct use by + * more than one thread. However, if many threads need to generate + * pseudorandom numbers at a great rate, it may reduce contention + * for each thread to have its own pseudorandom number generator. + * + * @return a pseudorandom {@code double} greater than or equal + * to {@code 0.0} and less than {@code 1.0}. + * @see Random#nextDouble() + */ + public static double random() { + Random rnd = randomNumberGenerator; + if (rnd == null) rnd = initRNG(); + return rnd.nextDouble(); + } + + /** + * Returns the absolute value of an {@code int} value.. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * + *

Note that if the argument is equal to the value of + * {@link Integer#MIN_VALUE}, the most negative representable + * {@code int} value, the result is that same value, which is + * negative. + * + * @param a the argument whose absolute value is to be determined. + * @return the absolute value of the argument. + */ + public static int abs(int a) { + return (a < 0) ? -a : a; + } + + /** + * Returns the absolute value of a {@code long} value. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * + *

Note that if the argument is equal to the value of + * {@link Long#MIN_VALUE}, the most negative representable + * {@code long} value, the result is that same value, which + * is negative. + * + * @param a the argument whose absolute value is to be determined. + * @return the absolute value of the argument. + */ + public static long abs(long a) { + return (a < 0) ? -a : a; + } + + /** + * Returns the absolute value of a {@code float} value. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * Special cases: + *

+ * In other words, the result is the same as the value of the expression: + *

{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))} + * + * @param a the argument whose absolute value is to be determined + * @return the absolute value of the argument. + */ + public static float abs(float a) { + return (a <= 0.0F) ? 0.0F - a : a; + } + + /** + * Returns the absolute value of a {@code double} value. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * Special cases: + *

+ * In other words, the result is the same as the value of the expression: + *

{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)} + * + * @param a the argument whose absolute value is to be determined + * @return the absolute value of the argument. + */ + public static double abs(double a) { + return (a <= 0.0D) ? 0.0D - a : a; + } + + /** + * Returns the greater of two {@code int} values. That is, the + * result is the argument closer to the value of + * {@link Integer#MAX_VALUE}. If the arguments have the same value, + * the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + public static int max(int a, int b) { + return (a >= b) ? a : b; + } + + /** + * Returns the greater of two {@code long} values. That is, the + * result is the argument closer to the value of + * {@link Long#MAX_VALUE}. If the arguments have the same value, + * the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + public static long max(long a, long b) { + return (a >= b) ? a : b; + } + + // Use raw bit-wise conversions on guaranteed non-NaN arguments. + private static long negativeZeroFloatBits = Float.floatToRawIntBits(-0.0f); + private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d); + + /** + * Returns the greater of two {@code float} values. That is, + * the result is the argument closer to positive infinity. If the + * arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If one + * argument is positive zero and the other negative zero, the + * result is positive zero. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + public static float max(float a, float b) { + if (a != a) + return a; // a is NaN + if ((a == 0.0f) && + (b == 0.0f) && + (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) { + // Raw conversion ok since NaN can't map to -0.0. + return b; + } + return (a >= b) ? a : b; + } + + /** + * Returns the greater of two {@code double} values. That + * is, the result is the argument closer to positive infinity. If + * the arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If one + * argument is positive zero and the other negative zero, the + * result is positive zero. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + public static double max(double a, double b) { + if (a != a) + return a; // a is NaN + if ((a == 0.0d) && + (b == 0.0d) && + (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) { + // Raw conversion ok since NaN can't map to -0.0. + return b; + } + return (a >= b) ? a : b; + } + + /** + * Returns the smaller of two {@code int} values. That is, + * the result the argument closer to the value of + * {@link Integer#MIN_VALUE}. If the arguments have the same + * value, the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b}. + */ + public static int min(int a, int b) { + return (a <= b) ? a : b; + } + + /** + * Returns the smaller of two {@code long} values. That is, + * the result is the argument closer to the value of + * {@link Long#MIN_VALUE}. If the arguments have the same + * value, the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b}. + */ + public static long min(long a, long b) { + return (a <= b) ? a : b; + } + + /** + * Returns the smaller of two {@code float} values. That is, + * the result is the value closer to negative infinity. If the + * arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If + * one argument is positive zero and the other is negative zero, + * the result is negative zero. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b.} + */ + public static float min(float a, float b) { + if (a != a) + return a; // a is NaN + if ((a == 0.0f) && + (b == 0.0f) && + (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) { + // Raw conversion ok since NaN can't map to -0.0. + return b; + } + return (a <= b) ? a : b; + } + + /** + * Returns the smaller of two {@code double} values. That + * is, the result is the value closer to negative infinity. If the + * arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If one + * argument is positive zero and the other is negative zero, the + * result is negative zero. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b}. + */ + public static double min(double a, double b) { + if (a != a) + return a; // a is NaN + if ((a == 0.0d) && + (b == 0.0d) && + (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) { + // Raw conversion ok since NaN can't map to -0.0. + return b; + } + return (a <= b) ? a : b; + } + + /** + * Returns the size of an ulp of the argument. An ulp of a + * {@code double} value is the positive distance between this + * floating-point value and the {@code double} value next + * larger in magnitude. Note that for non-NaN x, + * ulp(-x) == ulp(x). + * + *

Special Cases: + *

+ * + * @param d the floating-point value whose ulp is to be returned + * @return the size of an ulp of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ + public static double ulp(double d) { + return sun.misc.FpUtils.ulp(d); + } + + /** + * Returns the size of an ulp of the argument. An ulp of a + * {@code float} value is the positive distance between this + * floating-point value and the {@code float} value next + * larger in magnitude. Note that for non-NaN x, + * ulp(-x) == ulp(x). + * + *

Special Cases: + *

+ * + * @param f the floating-point value whose ulp is to be returned + * @return the size of an ulp of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ + public static float ulp(float f) { + return sun.misc.FpUtils.ulp(f); + } + + /** + * Returns the signum function of the argument; zero if the argument + * is zero, 1.0 if the argument is greater than zero, -1.0 if the + * argument is less than zero. + * + *

Special Cases: + *

+ * + * @param d the floating-point value whose signum is to be returned + * @return the signum function of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ + public static double signum(double d) { + return sun.misc.FpUtils.signum(d); + } + + /** + * Returns the signum function of the argument; zero if the argument + * is zero, 1.0f if the argument is greater than zero, -1.0f if the + * argument is less than zero. + * + *

Special Cases: + *

+ * + * @param f the floating-point value whose signum is to be returned + * @return the signum function of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ + public static float signum(float f) { + return sun.misc.FpUtils.signum(f); + } + + /** + * Returns the hyperbolic sine of a {@code double} value. + * The hyperbolic sine of x is defined to be + * (ex - e-x)/2 + * where e is {@linkplain Math#E Euler's number}. + * + *

Special cases: + *

+ * + * @param x The number whose hyperbolic sine is to be returned. + * @return The hyperbolic sine of {@code x}. + * @since 1.5 + */ + public static native double sinh(double x); + + /** + * Returns the hyperbolic cosine of a {@code double} value. + * The hyperbolic cosine of x is defined to be + * (ex + e-x)/2 + * where e is {@linkplain Math#E Euler's number}. + * + *

Special cases: + *

+ * + * @param x The number whose hyperbolic cosine is to be returned. + * @return The hyperbolic cosine of {@code x}. + * @since 1.5 + */ + public static native double cosh(double x); + + /** + * Returns the hyperbolic tangent of a {@code double} value. + * The hyperbolic tangent of x is defined to be + * (ex - e-x)/(ex + e-x), + * in other words, {@linkplain Math#sinh + * sinh(x)}/{@linkplain Math#cosh cosh(x)}. Note + * that the absolute value of the exact tanh is always less than + * 1. + * + *

Special cases: + *

+ * + * @param x The number whose hyperbolic tangent is to be returned. + * @return The hyperbolic tangent of {@code x}. + * @since 1.5 + */ + public static native double tanh(double x); + + /** + * Returns sqrt(x2 +y2) + * without intermediate overflow or underflow. + * + *

Special cases: + *

+ * + * @param x a value + * @param y a value + * @return sqrt(x2 +y2) + * without intermediate overflow or underflow + * @since 1.5 + */ + public static native double hypot(double x, double y); + + /** + * Returns ex -1. Note that for values of + * x near 0, the exact sum of + * {@code expm1(x)} + 1 is much closer to the true + * result of ex than {@code exp(x)}. + * + *

Special cases: + *

+ * + * @param x the exponent to raise e to in the computation of + * e{@code x} -1. + * @return the value e{@code x} - 1. + * @since 1.5 + */ + public static native double expm1(double x); + + /** + * Returns the natural logarithm of the sum of the argument and 1. + * Note that for small values {@code x}, the result of + * {@code log1p(x)} is much closer to the true result of ln(1 + * + {@code x}) than the floating-point evaluation of + * {@code log(1.0+x)}. + * + *

Special cases: + *

+ * + * @param x a value + * @return the value ln({@code x} + 1), the natural + * log of {@code x} + 1 + * @since 1.5 + */ + public static native double log1p(double x); + + /** + * Returns the first floating-point argument with the sign of the + * second floating-point argument. For this method, a NaN + * {@code sign} argument is always treated as if it were + * positive. + * + * @param magnitude the parameter providing the magnitude of the result + * @param sign the parameter providing the sign of the result + * @return a value with the magnitude of {@code magnitude} + * and the sign of {@code sign}. + * @since 1.6 + */ + public static double copySign(double magnitude, double sign) { + return sun.misc.FpUtils.copySign(magnitude, sign); + } + + /** + * Returns the first floating-point argument with the sign of the + * second floating-point argument. For this method, a NaN + * {@code sign} argument is always treated as if it were + * positive. + * + * @param magnitude the parameter providing the magnitude of the result + * @param sign the parameter providing the sign of the result + * @return a value with the magnitude of {@code magnitude} + * and the sign of {@code sign}. + * @since 1.6 + */ + public static float copySign(float magnitude, float sign) { + return sun.misc.FpUtils.copySign(magnitude, sign); + } + /** + * Returns the unbiased exponent used in the representation of a + * {@code float}. Special cases: + * + * + * @param f a {@code float} value + * @since 1.6 + */ + public static int getExponent(float f) { + return sun.misc.FpUtils.getExponent(f); + } + + /** + * Returns the unbiased exponent used in the representation of a + * {@code double}. Special cases: + * + * + * @param d a {@code double} value + * @since 1.6 + */ + public static int getExponent(double d) { + return sun.misc.FpUtils.getExponent(d); + } + + /** + * Returns the floating-point number adjacent to the first + * argument in the direction of the second argument. If both + * arguments compare as equal the second argument is returned. + * + *

Special cases: + *

+ * + * @param start starting floating-point value + * @param direction value indicating which of + * {@code start}'s neighbors or {@code start} should + * be returned + * @return The floating-point number adjacent to {@code start} in the + * direction of {@code direction}. + * @since 1.6 + */ + public static double nextAfter(double start, double direction) { + return sun.misc.FpUtils.nextAfter(start, direction); + } + + /** + * Returns the floating-point number adjacent to the first + * argument in the direction of the second argument. If both + * arguments compare as equal a value equivalent to the second argument + * is returned. + * + *

Special cases: + *

+ * + * @param start starting floating-point value + * @param direction value indicating which of + * {@code start}'s neighbors or {@code start} should + * be returned + * @return The floating-point number adjacent to {@code start} in the + * direction of {@code direction}. + * @since 1.6 + */ + public static float nextAfter(float start, double direction) { + return sun.misc.FpUtils.nextAfter(start, direction); + } + + /** + * Returns the floating-point value adjacent to {@code d} in + * the direction of positive infinity. This method is + * semantically equivalent to {@code nextAfter(d, + * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} + * implementation may run faster than its equivalent + * {@code nextAfter} call. + * + *

Special Cases: + *

+ * + * @param d starting floating-point value + * @return The adjacent floating-point value closer to positive + * infinity. + * @since 1.6 + */ + public static double nextUp(double d) { + return sun.misc.FpUtils.nextUp(d); + } + + /** + * Returns the floating-point value adjacent to {@code f} in + * the direction of positive infinity. This method is + * semantically equivalent to {@code nextAfter(f, + * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} + * implementation may run faster than its equivalent + * {@code nextAfter} call. + * + *

Special Cases: + *

+ * + * @param f starting floating-point value + * @return The adjacent floating-point value closer to positive + * infinity. + * @since 1.6 + */ + public static float nextUp(float f) { + return sun.misc.FpUtils.nextUp(f); + } + + + /** + * Return {@code d} × + * 2{@code scaleFactor} rounded as if performed + * by a single correctly rounded floating-point multiply to a + * member of the double value set. See the Java + * Language Specification for a discussion of floating-point + * value sets. If the exponent of the result is between {@link + * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the + * answer is calculated exactly. If the exponent of the result + * would be larger than {@code Double.MAX_EXPONENT}, an + * infinity is returned. Note that if the result is subnormal, + * precision may be lost; that is, when {@code scalb(x, n)} + * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal + * x. When the result is non-NaN, the result has the same + * sign as {@code d}. + * + *

Special cases: + *

+ * + * @param d number to be scaled by a power of two. + * @param scaleFactor power of 2 used to scale {@code d} + * @return {@code d} × 2{@code scaleFactor} + * @since 1.6 + */ + public static double scalb(double d, int scaleFactor) { + return sun.misc.FpUtils.scalb(d, scaleFactor); + } + + /** + * Return {@code f} × + * 2{@code scaleFactor} rounded as if performed + * by a single correctly rounded floating-point multiply to a + * member of the float value set. See the Java + * Language Specification for a discussion of floating-point + * value sets. If the exponent of the result is between {@link + * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the + * answer is calculated exactly. If the exponent of the result + * would be larger than {@code Float.MAX_EXPONENT}, an + * infinity is returned. Note that if the result is subnormal, + * precision may be lost; that is, when {@code scalb(x, n)} + * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal + * x. When the result is non-NaN, the result has the same + * sign as {@code f}. + * + *

Special cases: + *

+ * + * @param f number to be scaled by a power of two. + * @param scaleFactor power of 2 used to scale {@code f} + * @return {@code f} × 2{@code scaleFactor} + * @since 1.6 + */ + public static float scalb(float f, int scaleFactor) { + return sun.misc.FpUtils.scalb(f, scaleFactor); + } +}