emul/compact/src/main/java/java/util/PriorityQueue.java
branchjdk7-b147
changeset 633 bc6f3be91306
child 635 e5cc7edead25
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/emul/compact/src/main/java/java/util/PriorityQueue.java	Fri Feb 01 16:10:10 2013 +0100
     1.3 @@ -0,0 +1,775 @@
     1.4 +/*
     1.5 + * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.util;
    1.30 +
    1.31 +/**
    1.32 + * An unbounded priority {@linkplain Queue queue} based on a priority heap.
    1.33 + * The elements of the priority queue are ordered according to their
    1.34 + * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
    1.35 + * provided at queue construction time, depending on which constructor is
    1.36 + * used.  A priority queue does not permit {@code null} elements.
    1.37 + * A priority queue relying on natural ordering also does not permit
    1.38 + * insertion of non-comparable objects (doing so may result in
    1.39 + * {@code ClassCastException}).
    1.40 + *
    1.41 + * <p>The <em>head</em> of this queue is the <em>least</em> element
    1.42 + * with respect to the specified ordering.  If multiple elements are
    1.43 + * tied for least value, the head is one of those elements -- ties are
    1.44 + * broken arbitrarily.  The queue retrieval operations {@code poll},
    1.45 + * {@code remove}, {@code peek}, and {@code element} access the
    1.46 + * element at the head of the queue.
    1.47 + *
    1.48 + * <p>A priority queue is unbounded, but has an internal
    1.49 + * <i>capacity</i> governing the size of an array used to store the
    1.50 + * elements on the queue.  It is always at least as large as the queue
    1.51 + * size.  As elements are added to a priority queue, its capacity
    1.52 + * grows automatically.  The details of the growth policy are not
    1.53 + * specified.
    1.54 + *
    1.55 + * <p>This class and its iterator implement all of the
    1.56 + * <em>optional</em> methods of the {@link Collection} and {@link
    1.57 + * Iterator} interfaces.  The Iterator provided in method {@link
    1.58 + * #iterator()} is <em>not</em> guaranteed to traverse the elements of
    1.59 + * the priority queue in any particular order. If you need ordered
    1.60 + * traversal, consider using {@code Arrays.sort(pq.toArray())}.
    1.61 + *
    1.62 + * <p> <strong>Note that this implementation is not synchronized.</strong>
    1.63 + * Multiple threads should not access a {@code PriorityQueue}
    1.64 + * instance concurrently if any of the threads modifies the queue.
    1.65 + * Instead, use the thread-safe {@link
    1.66 + * java.util.concurrent.PriorityBlockingQueue} class.
    1.67 + *
    1.68 + * <p>Implementation note: this implementation provides
    1.69 + * O(log(n)) time for the enqueing and dequeing methods
    1.70 + * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
    1.71 + * linear time for the {@code remove(Object)} and {@code contains(Object)}
    1.72 + * methods; and constant time for the retrieval methods
    1.73 + * ({@code peek}, {@code element}, and {@code size}).
    1.74 + *
    1.75 + * <p>This class is a member of the
    1.76 + * <a href="{@docRoot}/../technotes/guides/collections/index.html">
    1.77 + * Java Collections Framework</a>.
    1.78 + *
    1.79 + * @since 1.5
    1.80 + * @author Josh Bloch, Doug Lea
    1.81 + * @param <E> the type of elements held in this collection
    1.82 + */
    1.83 +public class PriorityQueue<E> extends AbstractQueue<E>
    1.84 +    implements java.io.Serializable {
    1.85 +
    1.86 +    private static final long serialVersionUID = -7720805057305804111L;
    1.87 +
    1.88 +    private static final int DEFAULT_INITIAL_CAPACITY = 11;
    1.89 +
    1.90 +    /**
    1.91 +     * Priority queue represented as a balanced binary heap: the two
    1.92 +     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
    1.93 +     * priority queue is ordered by comparator, or by the elements'
    1.94 +     * natural ordering, if comparator is null: For each node n in the
    1.95 +     * heap and each descendant d of n, n <= d.  The element with the
    1.96 +     * lowest value is in queue[0], assuming the queue is nonempty.
    1.97 +     */
    1.98 +    private transient Object[] queue;
    1.99 +
   1.100 +    /**
   1.101 +     * The number of elements in the priority queue.
   1.102 +     */
   1.103 +    private int size = 0;
   1.104 +
   1.105 +    /**
   1.106 +     * The comparator, or null if priority queue uses elements'
   1.107 +     * natural ordering.
   1.108 +     */
   1.109 +    private final Comparator<? super E> comparator;
   1.110 +
   1.111 +    /**
   1.112 +     * The number of times this priority queue has been
   1.113 +     * <i>structurally modified</i>.  See AbstractList for gory details.
   1.114 +     */
   1.115 +    private transient int modCount = 0;
   1.116 +
   1.117 +    /**
   1.118 +     * Creates a {@code PriorityQueue} with the default initial
   1.119 +     * capacity (11) that orders its elements according to their
   1.120 +     * {@linkplain Comparable natural ordering}.
   1.121 +     */
   1.122 +    public PriorityQueue() {
   1.123 +        this(DEFAULT_INITIAL_CAPACITY, null);
   1.124 +    }
   1.125 +
   1.126 +    /**
   1.127 +     * Creates a {@code PriorityQueue} with the specified initial
   1.128 +     * capacity that orders its elements according to their
   1.129 +     * {@linkplain Comparable natural ordering}.
   1.130 +     *
   1.131 +     * @param initialCapacity the initial capacity for this priority queue
   1.132 +     * @throws IllegalArgumentException if {@code initialCapacity} is less
   1.133 +     *         than 1
   1.134 +     */
   1.135 +    public PriorityQueue(int initialCapacity) {
   1.136 +        this(initialCapacity, null);
   1.137 +    }
   1.138 +
   1.139 +    /**
   1.140 +     * Creates a {@code PriorityQueue} with the specified initial capacity
   1.141 +     * that orders its elements according to the specified comparator.
   1.142 +     *
   1.143 +     * @param  initialCapacity the initial capacity for this priority queue
   1.144 +     * @param  comparator the comparator that will be used to order this
   1.145 +     *         priority queue.  If {@code null}, the {@linkplain Comparable
   1.146 +     *         natural ordering} of the elements will be used.
   1.147 +     * @throws IllegalArgumentException if {@code initialCapacity} is
   1.148 +     *         less than 1
   1.149 +     */
   1.150 +    public PriorityQueue(int initialCapacity,
   1.151 +                         Comparator<? super E> comparator) {
   1.152 +        // Note: This restriction of at least one is not actually needed,
   1.153 +        // but continues for 1.5 compatibility
   1.154 +        if (initialCapacity < 1)
   1.155 +            throw new IllegalArgumentException();
   1.156 +        this.queue = new Object[initialCapacity];
   1.157 +        this.comparator = comparator;
   1.158 +    }
   1.159 +
   1.160 +    /**
   1.161 +     * Creates a {@code PriorityQueue} containing the elements in the
   1.162 +     * specified collection.  If the specified collection is an instance of
   1.163 +     * a {@link SortedSet} or is another {@code PriorityQueue}, this
   1.164 +     * priority queue will be ordered according to the same ordering.
   1.165 +     * Otherwise, this priority queue will be ordered according to the
   1.166 +     * {@linkplain Comparable natural ordering} of its elements.
   1.167 +     *
   1.168 +     * @param  c the collection whose elements are to be placed
   1.169 +     *         into this priority queue
   1.170 +     * @throws ClassCastException if elements of the specified collection
   1.171 +     *         cannot be compared to one another according to the priority
   1.172 +     *         queue's ordering
   1.173 +     * @throws NullPointerException if the specified collection or any
   1.174 +     *         of its elements are null
   1.175 +     */
   1.176 +    @SuppressWarnings("unchecked")
   1.177 +    public PriorityQueue(Collection<? extends E> c) {
   1.178 +        if (c instanceof SortedSet<?>) {
   1.179 +            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
   1.180 +            this.comparator = (Comparator<? super E>) ss.comparator();
   1.181 +            initElementsFromCollection(ss);
   1.182 +        }
   1.183 +        else if (c instanceof PriorityQueue<?>) {
   1.184 +            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
   1.185 +            this.comparator = (Comparator<? super E>) pq.comparator();
   1.186 +            initFromPriorityQueue(pq);
   1.187 +        }
   1.188 +        else {
   1.189 +            this.comparator = null;
   1.190 +            initFromCollection(c);
   1.191 +        }
   1.192 +    }
   1.193 +
   1.194 +    /**
   1.195 +     * Creates a {@code PriorityQueue} containing the elements in the
   1.196 +     * specified priority queue.  This priority queue will be
   1.197 +     * ordered according to the same ordering as the given priority
   1.198 +     * queue.
   1.199 +     *
   1.200 +     * @param  c the priority queue whose elements are to be placed
   1.201 +     *         into this priority queue
   1.202 +     * @throws ClassCastException if elements of {@code c} cannot be
   1.203 +     *         compared to one another according to {@code c}'s
   1.204 +     *         ordering
   1.205 +     * @throws NullPointerException if the specified priority queue or any
   1.206 +     *         of its elements are null
   1.207 +     */
   1.208 +    @SuppressWarnings("unchecked")
   1.209 +    public PriorityQueue(PriorityQueue<? extends E> c) {
   1.210 +        this.comparator = (Comparator<? super E>) c.comparator();
   1.211 +        initFromPriorityQueue(c);
   1.212 +    }
   1.213 +
   1.214 +    /**
   1.215 +     * Creates a {@code PriorityQueue} containing the elements in the
   1.216 +     * specified sorted set.   This priority queue will be ordered
   1.217 +     * according to the same ordering as the given sorted set.
   1.218 +     *
   1.219 +     * @param  c the sorted set whose elements are to be placed
   1.220 +     *         into this priority queue
   1.221 +     * @throws ClassCastException if elements of the specified sorted
   1.222 +     *         set cannot be compared to one another according to the
   1.223 +     *         sorted set's ordering
   1.224 +     * @throws NullPointerException if the specified sorted set or any
   1.225 +     *         of its elements are null
   1.226 +     */
   1.227 +    @SuppressWarnings("unchecked")
   1.228 +    public PriorityQueue(SortedSet<? extends E> c) {
   1.229 +        this.comparator = (Comparator<? super E>) c.comparator();
   1.230 +        initElementsFromCollection(c);
   1.231 +    }
   1.232 +
   1.233 +    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
   1.234 +        if (c.getClass() == PriorityQueue.class) {
   1.235 +            this.queue = c.toArray();
   1.236 +            this.size = c.size();
   1.237 +        } else {
   1.238 +            initFromCollection(c);
   1.239 +        }
   1.240 +    }
   1.241 +
   1.242 +    private void initElementsFromCollection(Collection<? extends E> c) {
   1.243 +        Object[] a = c.toArray();
   1.244 +        // If c.toArray incorrectly doesn't return Object[], copy it.
   1.245 +        if (a.getClass() != Object[].class)
   1.246 +            a = Arrays.copyOf(a, a.length, Object[].class);
   1.247 +        int len = a.length;
   1.248 +        if (len == 1 || this.comparator != null)
   1.249 +            for (int i = 0; i < len; i++)
   1.250 +                if (a[i] == null)
   1.251 +                    throw new NullPointerException();
   1.252 +        this.queue = a;
   1.253 +        this.size = a.length;
   1.254 +    }
   1.255 +
   1.256 +    /**
   1.257 +     * Initializes queue array with elements from the given Collection.
   1.258 +     *
   1.259 +     * @param c the collection
   1.260 +     */
   1.261 +    private void initFromCollection(Collection<? extends E> c) {
   1.262 +        initElementsFromCollection(c);
   1.263 +        heapify();
   1.264 +    }
   1.265 +
   1.266 +    /**
   1.267 +     * The maximum size of array to allocate.
   1.268 +     * Some VMs reserve some header words in an array.
   1.269 +     * Attempts to allocate larger arrays may result in
   1.270 +     * OutOfMemoryError: Requested array size exceeds VM limit
   1.271 +     */
   1.272 +    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
   1.273 +
   1.274 +    /**
   1.275 +     * Increases the capacity of the array.
   1.276 +     *
   1.277 +     * @param minCapacity the desired minimum capacity
   1.278 +     */
   1.279 +    private void grow(int minCapacity) {
   1.280 +        int oldCapacity = queue.length;
   1.281 +        // Double size if small; else grow by 50%
   1.282 +        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
   1.283 +                                         (oldCapacity + 2) :
   1.284 +                                         (oldCapacity >> 1));
   1.285 +        // overflow-conscious code
   1.286 +        if (newCapacity - MAX_ARRAY_SIZE > 0)
   1.287 +            newCapacity = hugeCapacity(minCapacity);
   1.288 +        queue = Arrays.copyOf(queue, newCapacity);
   1.289 +    }
   1.290 +
   1.291 +    private static int hugeCapacity(int minCapacity) {
   1.292 +        if (minCapacity < 0) // overflow
   1.293 +            throw new OutOfMemoryError();
   1.294 +        return (minCapacity > MAX_ARRAY_SIZE) ?
   1.295 +            Integer.MAX_VALUE :
   1.296 +            MAX_ARRAY_SIZE;
   1.297 +    }
   1.298 +
   1.299 +    /**
   1.300 +     * Inserts the specified element into this priority queue.
   1.301 +     *
   1.302 +     * @return {@code true} (as specified by {@link Collection#add})
   1.303 +     * @throws ClassCastException if the specified element cannot be
   1.304 +     *         compared with elements currently in this priority queue
   1.305 +     *         according to the priority queue's ordering
   1.306 +     * @throws NullPointerException if the specified element is null
   1.307 +     */
   1.308 +    public boolean add(E e) {
   1.309 +        return offer(e);
   1.310 +    }
   1.311 +
   1.312 +    /**
   1.313 +     * Inserts the specified element into this priority queue.
   1.314 +     *
   1.315 +     * @return {@code true} (as specified by {@link Queue#offer})
   1.316 +     * @throws ClassCastException if the specified element cannot be
   1.317 +     *         compared with elements currently in this priority queue
   1.318 +     *         according to the priority queue's ordering
   1.319 +     * @throws NullPointerException if the specified element is null
   1.320 +     */
   1.321 +    public boolean offer(E e) {
   1.322 +        if (e == null)
   1.323 +            throw new NullPointerException();
   1.324 +        modCount++;
   1.325 +        int i = size;
   1.326 +        if (i >= queue.length)
   1.327 +            grow(i + 1);
   1.328 +        size = i + 1;
   1.329 +        if (i == 0)
   1.330 +            queue[0] = e;
   1.331 +        else
   1.332 +            siftUp(i, e);
   1.333 +        return true;
   1.334 +    }
   1.335 +
   1.336 +    public E peek() {
   1.337 +        if (size == 0)
   1.338 +            return null;
   1.339 +        return (E) queue[0];
   1.340 +    }
   1.341 +
   1.342 +    private int indexOf(Object o) {
   1.343 +        if (o != null) {
   1.344 +            for (int i = 0; i < size; i++)
   1.345 +                if (o.equals(queue[i]))
   1.346 +                    return i;
   1.347 +        }
   1.348 +        return -1;
   1.349 +    }
   1.350 +
   1.351 +    /**
   1.352 +     * Removes a single instance of the specified element from this queue,
   1.353 +     * if it is present.  More formally, removes an element {@code e} such
   1.354 +     * that {@code o.equals(e)}, if this queue contains one or more such
   1.355 +     * elements.  Returns {@code true} if and only if this queue contained
   1.356 +     * the specified element (or equivalently, if this queue changed as a
   1.357 +     * result of the call).
   1.358 +     *
   1.359 +     * @param o element to be removed from this queue, if present
   1.360 +     * @return {@code true} if this queue changed as a result of the call
   1.361 +     */
   1.362 +    public boolean remove(Object o) {
   1.363 +        int i = indexOf(o);
   1.364 +        if (i == -1)
   1.365 +            return false;
   1.366 +        else {
   1.367 +            removeAt(i);
   1.368 +            return true;
   1.369 +        }
   1.370 +    }
   1.371 +
   1.372 +    /**
   1.373 +     * Version of remove using reference equality, not equals.
   1.374 +     * Needed by iterator.remove.
   1.375 +     *
   1.376 +     * @param o element to be removed from this queue, if present
   1.377 +     * @return {@code true} if removed
   1.378 +     */
   1.379 +    boolean removeEq(Object o) {
   1.380 +        for (int i = 0; i < size; i++) {
   1.381 +            if (o == queue[i]) {
   1.382 +                removeAt(i);
   1.383 +                return true;
   1.384 +            }
   1.385 +        }
   1.386 +        return false;
   1.387 +    }
   1.388 +
   1.389 +    /**
   1.390 +     * Returns {@code true} if this queue contains the specified element.
   1.391 +     * More formally, returns {@code true} if and only if this queue contains
   1.392 +     * at least one element {@code e} such that {@code o.equals(e)}.
   1.393 +     *
   1.394 +     * @param o object to be checked for containment in this queue
   1.395 +     * @return {@code true} if this queue contains the specified element
   1.396 +     */
   1.397 +    public boolean contains(Object o) {
   1.398 +        return indexOf(o) != -1;
   1.399 +    }
   1.400 +
   1.401 +    /**
   1.402 +     * Returns an array containing all of the elements in this queue.
   1.403 +     * The elements are in no particular order.
   1.404 +     *
   1.405 +     * <p>The returned array will be "safe" in that no references to it are
   1.406 +     * maintained by this queue.  (In other words, this method must allocate
   1.407 +     * a new array).  The caller is thus free to modify the returned array.
   1.408 +     *
   1.409 +     * <p>This method acts as bridge between array-based and collection-based
   1.410 +     * APIs.
   1.411 +     *
   1.412 +     * @return an array containing all of the elements in this queue
   1.413 +     */
   1.414 +    public Object[] toArray() {
   1.415 +        return Arrays.copyOf(queue, size);
   1.416 +    }
   1.417 +
   1.418 +    /**
   1.419 +     * Returns an array containing all of the elements in this queue; the
   1.420 +     * runtime type of the returned array is that of the specified array.
   1.421 +     * The returned array elements are in no particular order.
   1.422 +     * If the queue fits in the specified array, it is returned therein.
   1.423 +     * Otherwise, a new array is allocated with the runtime type of the
   1.424 +     * specified array and the size of this queue.
   1.425 +     *
   1.426 +     * <p>If the queue fits in the specified array with room to spare
   1.427 +     * (i.e., the array has more elements than the queue), the element in
   1.428 +     * the array immediately following the end of the collection is set to
   1.429 +     * {@code null}.
   1.430 +     *
   1.431 +     * <p>Like the {@link #toArray()} method, this method acts as bridge between
   1.432 +     * array-based and collection-based APIs.  Further, this method allows
   1.433 +     * precise control over the runtime type of the output array, and may,
   1.434 +     * under certain circumstances, be used to save allocation costs.
   1.435 +     *
   1.436 +     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
   1.437 +     * The following code can be used to dump the queue into a newly
   1.438 +     * allocated array of <tt>String</tt>:
   1.439 +     *
   1.440 +     * <pre>
   1.441 +     *     String[] y = x.toArray(new String[0]);</pre>
   1.442 +     *
   1.443 +     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
   1.444 +     * <tt>toArray()</tt>.
   1.445 +     *
   1.446 +     * @param a the array into which the elements of the queue are to
   1.447 +     *          be stored, if it is big enough; otherwise, a new array of the
   1.448 +     *          same runtime type is allocated for this purpose.
   1.449 +     * @return an array containing all of the elements in this queue
   1.450 +     * @throws ArrayStoreException if the runtime type of the specified array
   1.451 +     *         is not a supertype of the runtime type of every element in
   1.452 +     *         this queue
   1.453 +     * @throws NullPointerException if the specified array is null
   1.454 +     */
   1.455 +    public <T> T[] toArray(T[] a) {
   1.456 +        if (a.length < size)
   1.457 +            // Make a new array of a's runtime type, but my contents:
   1.458 +            return (T[]) Arrays.copyOf(queue, size, a.getClass());
   1.459 +        System.arraycopy(queue, 0, a, 0, size);
   1.460 +        if (a.length > size)
   1.461 +            a[size] = null;
   1.462 +        return a;
   1.463 +    }
   1.464 +
   1.465 +    /**
   1.466 +     * Returns an iterator over the elements in this queue. The iterator
   1.467 +     * does not return the elements in any particular order.
   1.468 +     *
   1.469 +     * @return an iterator over the elements in this queue
   1.470 +     */
   1.471 +    public Iterator<E> iterator() {
   1.472 +        return new Itr();
   1.473 +    }
   1.474 +
   1.475 +    private final class Itr implements Iterator<E> {
   1.476 +        /**
   1.477 +         * Index (into queue array) of element to be returned by
   1.478 +         * subsequent call to next.
   1.479 +         */
   1.480 +        private int cursor = 0;
   1.481 +
   1.482 +        /**
   1.483 +         * Index of element returned by most recent call to next,
   1.484 +         * unless that element came from the forgetMeNot list.
   1.485 +         * Set to -1 if element is deleted by a call to remove.
   1.486 +         */
   1.487 +        private int lastRet = -1;
   1.488 +
   1.489 +        /**
   1.490 +         * A queue of elements that were moved from the unvisited portion of
   1.491 +         * the heap into the visited portion as a result of "unlucky" element
   1.492 +         * removals during the iteration.  (Unlucky element removals are those
   1.493 +         * that require a siftup instead of a siftdown.)  We must visit all of
   1.494 +         * the elements in this list to complete the iteration.  We do this
   1.495 +         * after we've completed the "normal" iteration.
   1.496 +         *
   1.497 +         * We expect that most iterations, even those involving removals,
   1.498 +         * will not need to store elements in this field.
   1.499 +         */
   1.500 +        private ArrayDeque<E> forgetMeNot = null;
   1.501 +
   1.502 +        /**
   1.503 +         * Element returned by the most recent call to next iff that
   1.504 +         * element was drawn from the forgetMeNot list.
   1.505 +         */
   1.506 +        private E lastRetElt = null;
   1.507 +
   1.508 +        /**
   1.509 +         * The modCount value that the iterator believes that the backing
   1.510 +         * Queue should have.  If this expectation is violated, the iterator
   1.511 +         * has detected concurrent modification.
   1.512 +         */
   1.513 +        private int expectedModCount = modCount;
   1.514 +
   1.515 +        public boolean hasNext() {
   1.516 +            return cursor < size ||
   1.517 +                (forgetMeNot != null && !forgetMeNot.isEmpty());
   1.518 +        }
   1.519 +
   1.520 +        public E next() {
   1.521 +            if (expectedModCount != modCount)
   1.522 +                throw new ConcurrentModificationException();
   1.523 +            if (cursor < size)
   1.524 +                return (E) queue[lastRet = cursor++];
   1.525 +            if (forgetMeNot != null) {
   1.526 +                lastRet = -1;
   1.527 +                lastRetElt = forgetMeNot.poll();
   1.528 +                if (lastRetElt != null)
   1.529 +                    return lastRetElt;
   1.530 +            }
   1.531 +            throw new NoSuchElementException();
   1.532 +        }
   1.533 +
   1.534 +        public void remove() {
   1.535 +            if (expectedModCount != modCount)
   1.536 +                throw new ConcurrentModificationException();
   1.537 +            if (lastRet != -1) {
   1.538 +                E moved = PriorityQueue.this.removeAt(lastRet);
   1.539 +                lastRet = -1;
   1.540 +                if (moved == null)
   1.541 +                    cursor--;
   1.542 +                else {
   1.543 +                    if (forgetMeNot == null)
   1.544 +                        forgetMeNot = new ArrayDeque<>();
   1.545 +                    forgetMeNot.add(moved);
   1.546 +                }
   1.547 +            } else if (lastRetElt != null) {
   1.548 +                PriorityQueue.this.removeEq(lastRetElt);
   1.549 +                lastRetElt = null;
   1.550 +            } else {
   1.551 +                throw new IllegalStateException();
   1.552 +            }
   1.553 +            expectedModCount = modCount;
   1.554 +        }
   1.555 +    }
   1.556 +
   1.557 +    public int size() {
   1.558 +        return size;
   1.559 +    }
   1.560 +
   1.561 +    /**
   1.562 +     * Removes all of the elements from this priority queue.
   1.563 +     * The queue will be empty after this call returns.
   1.564 +     */
   1.565 +    public void clear() {
   1.566 +        modCount++;
   1.567 +        for (int i = 0; i < size; i++)
   1.568 +            queue[i] = null;
   1.569 +        size = 0;
   1.570 +    }
   1.571 +
   1.572 +    public E poll() {
   1.573 +        if (size == 0)
   1.574 +            return null;
   1.575 +        int s = --size;
   1.576 +        modCount++;
   1.577 +        E result = (E) queue[0];
   1.578 +        E x = (E) queue[s];
   1.579 +        queue[s] = null;
   1.580 +        if (s != 0)
   1.581 +            siftDown(0, x);
   1.582 +        return result;
   1.583 +    }
   1.584 +
   1.585 +    /**
   1.586 +     * Removes the ith element from queue.
   1.587 +     *
   1.588 +     * Normally this method leaves the elements at up to i-1,
   1.589 +     * inclusive, untouched.  Under these circumstances, it returns
   1.590 +     * null.  Occasionally, in order to maintain the heap invariant,
   1.591 +     * it must swap a later element of the list with one earlier than
   1.592 +     * i.  Under these circumstances, this method returns the element
   1.593 +     * that was previously at the end of the list and is now at some
   1.594 +     * position before i. This fact is used by iterator.remove so as to
   1.595 +     * avoid missing traversing elements.
   1.596 +     */
   1.597 +    private E removeAt(int i) {
   1.598 +        assert i >= 0 && i < size;
   1.599 +        modCount++;
   1.600 +        int s = --size;
   1.601 +        if (s == i) // removed last element
   1.602 +            queue[i] = null;
   1.603 +        else {
   1.604 +            E moved = (E) queue[s];
   1.605 +            queue[s] = null;
   1.606 +            siftDown(i, moved);
   1.607 +            if (queue[i] == moved) {
   1.608 +                siftUp(i, moved);
   1.609 +                if (queue[i] != moved)
   1.610 +                    return moved;
   1.611 +            }
   1.612 +        }
   1.613 +        return null;
   1.614 +    }
   1.615 +
   1.616 +    /**
   1.617 +     * Inserts item x at position k, maintaining heap invariant by
   1.618 +     * promoting x up the tree until it is greater than or equal to
   1.619 +     * its parent, or is the root.
   1.620 +     *
   1.621 +     * To simplify and speed up coercions and comparisons. the
   1.622 +     * Comparable and Comparator versions are separated into different
   1.623 +     * methods that are otherwise identical. (Similarly for siftDown.)
   1.624 +     *
   1.625 +     * @param k the position to fill
   1.626 +     * @param x the item to insert
   1.627 +     */
   1.628 +    private void siftUp(int k, E x) {
   1.629 +        if (comparator != null)
   1.630 +            siftUpUsingComparator(k, x);
   1.631 +        else
   1.632 +            siftUpComparable(k, x);
   1.633 +    }
   1.634 +
   1.635 +    private void siftUpComparable(int k, E x) {
   1.636 +        Comparable<? super E> key = (Comparable<? super E>) x;
   1.637 +        while (k > 0) {
   1.638 +            int parent = (k - 1) >>> 1;
   1.639 +            Object e = queue[parent];
   1.640 +            if (key.compareTo((E) e) >= 0)
   1.641 +                break;
   1.642 +            queue[k] = e;
   1.643 +            k = parent;
   1.644 +        }
   1.645 +        queue[k] = key;
   1.646 +    }
   1.647 +
   1.648 +    private void siftUpUsingComparator(int k, E x) {
   1.649 +        while (k > 0) {
   1.650 +            int parent = (k - 1) >>> 1;
   1.651 +            Object e = queue[parent];
   1.652 +            if (comparator.compare(x, (E) e) >= 0)
   1.653 +                break;
   1.654 +            queue[k] = e;
   1.655 +            k = parent;
   1.656 +        }
   1.657 +        queue[k] = x;
   1.658 +    }
   1.659 +
   1.660 +    /**
   1.661 +     * Inserts item x at position k, maintaining heap invariant by
   1.662 +     * demoting x down the tree repeatedly until it is less than or
   1.663 +     * equal to its children or is a leaf.
   1.664 +     *
   1.665 +     * @param k the position to fill
   1.666 +     * @param x the item to insert
   1.667 +     */
   1.668 +    private void siftDown(int k, E x) {
   1.669 +        if (comparator != null)
   1.670 +            siftDownUsingComparator(k, x);
   1.671 +        else
   1.672 +            siftDownComparable(k, x);
   1.673 +    }
   1.674 +
   1.675 +    private void siftDownComparable(int k, E x) {
   1.676 +        Comparable<? super E> key = (Comparable<? super E>)x;
   1.677 +        int half = size >>> 1;        // loop while a non-leaf
   1.678 +        while (k < half) {
   1.679 +            int child = (k << 1) + 1; // assume left child is least
   1.680 +            Object c = queue[child];
   1.681 +            int right = child + 1;
   1.682 +            if (right < size &&
   1.683 +                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
   1.684 +                c = queue[child = right];
   1.685 +            if (key.compareTo((E) c) <= 0)
   1.686 +                break;
   1.687 +            queue[k] = c;
   1.688 +            k = child;
   1.689 +        }
   1.690 +        queue[k] = key;
   1.691 +    }
   1.692 +
   1.693 +    private void siftDownUsingComparator(int k, E x) {
   1.694 +        int half = size >>> 1;
   1.695 +        while (k < half) {
   1.696 +            int child = (k << 1) + 1;
   1.697 +            Object c = queue[child];
   1.698 +            int right = child + 1;
   1.699 +            if (right < size &&
   1.700 +                comparator.compare((E) c, (E) queue[right]) > 0)
   1.701 +                c = queue[child = right];
   1.702 +            if (comparator.compare(x, (E) c) <= 0)
   1.703 +                break;
   1.704 +            queue[k] = c;
   1.705 +            k = child;
   1.706 +        }
   1.707 +        queue[k] = x;
   1.708 +    }
   1.709 +
   1.710 +    /**
   1.711 +     * Establishes the heap invariant (described above) in the entire tree,
   1.712 +     * assuming nothing about the order of the elements prior to the call.
   1.713 +     */
   1.714 +    private void heapify() {
   1.715 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
   1.716 +            siftDown(i, (E) queue[i]);
   1.717 +    }
   1.718 +
   1.719 +    /**
   1.720 +     * Returns the comparator used to order the elements in this
   1.721 +     * queue, or {@code null} if this queue is sorted according to
   1.722 +     * the {@linkplain Comparable natural ordering} of its elements.
   1.723 +     *
   1.724 +     * @return the comparator used to order this queue, or
   1.725 +     *         {@code null} if this queue is sorted according to the
   1.726 +     *         natural ordering of its elements
   1.727 +     */
   1.728 +    public Comparator<? super E> comparator() {
   1.729 +        return comparator;
   1.730 +    }
   1.731 +
   1.732 +    /**
   1.733 +     * Saves the state of the instance to a stream (that
   1.734 +     * is, serializes it).
   1.735 +     *
   1.736 +     * @serialData The length of the array backing the instance is
   1.737 +     *             emitted (int), followed by all of its elements
   1.738 +     *             (each an {@code Object}) in the proper order.
   1.739 +     * @param s the stream
   1.740 +     */
   1.741 +    private void writeObject(java.io.ObjectOutputStream s)
   1.742 +        throws java.io.IOException{
   1.743 +        // Write out element count, and any hidden stuff
   1.744 +        s.defaultWriteObject();
   1.745 +
   1.746 +        // Write out array length, for compatibility with 1.5 version
   1.747 +        s.writeInt(Math.max(2, size + 1));
   1.748 +
   1.749 +        // Write out all elements in the "proper order".
   1.750 +        for (int i = 0; i < size; i++)
   1.751 +            s.writeObject(queue[i]);
   1.752 +    }
   1.753 +
   1.754 +    /**
   1.755 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
   1.756 +     * (that is, deserializes it).
   1.757 +     *
   1.758 +     * @param s the stream
   1.759 +     */
   1.760 +    private void readObject(java.io.ObjectInputStream s)
   1.761 +        throws java.io.IOException, ClassNotFoundException {
   1.762 +        // Read in size, and any hidden stuff
   1.763 +        s.defaultReadObject();
   1.764 +
   1.765 +        // Read in (and discard) array length
   1.766 +        s.readInt();
   1.767 +
   1.768 +        queue = new Object[size];
   1.769 +
   1.770 +        // Read in all elements.
   1.771 +        for (int i = 0; i < size; i++)
   1.772 +            queue[i] = s.readObject();
   1.773 +
   1.774 +        // Elements are guaranteed to be in "proper order", but the
   1.775 +        // spec has never explained what that might be.
   1.776 +        heapify();
   1.777 +    }
   1.778 +}