emul/compact/src/main/java/java/util/PriorityQueue.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Fri, 01 Feb 2013 16:10:10 +0100
branchjdk7-b147
changeset 633 bc6f3be91306
child 635 e5cc7edead25
permissions -rw-r--r--
More classes needed by David
     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.util;
    27 
    28 /**
    29  * An unbounded priority {@linkplain Queue queue} based on a priority heap.
    30  * The elements of the priority queue are ordered according to their
    31  * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
    32  * provided at queue construction time, depending on which constructor is
    33  * used.  A priority queue does not permit {@code null} elements.
    34  * A priority queue relying on natural ordering also does not permit
    35  * insertion of non-comparable objects (doing so may result in
    36  * {@code ClassCastException}).
    37  *
    38  * <p>The <em>head</em> of this queue is the <em>least</em> element
    39  * with respect to the specified ordering.  If multiple elements are
    40  * tied for least value, the head is one of those elements -- ties are
    41  * broken arbitrarily.  The queue retrieval operations {@code poll},
    42  * {@code remove}, {@code peek}, and {@code element} access the
    43  * element at the head of the queue.
    44  *
    45  * <p>A priority queue is unbounded, but has an internal
    46  * <i>capacity</i> governing the size of an array used to store the
    47  * elements on the queue.  It is always at least as large as the queue
    48  * size.  As elements are added to a priority queue, its capacity
    49  * grows automatically.  The details of the growth policy are not
    50  * specified.
    51  *
    52  * <p>This class and its iterator implement all of the
    53  * <em>optional</em> methods of the {@link Collection} and {@link
    54  * Iterator} interfaces.  The Iterator provided in method {@link
    55  * #iterator()} is <em>not</em> guaranteed to traverse the elements of
    56  * the priority queue in any particular order. If you need ordered
    57  * traversal, consider using {@code Arrays.sort(pq.toArray())}.
    58  *
    59  * <p> <strong>Note that this implementation is not synchronized.</strong>
    60  * Multiple threads should not access a {@code PriorityQueue}
    61  * instance concurrently if any of the threads modifies the queue.
    62  * Instead, use the thread-safe {@link
    63  * java.util.concurrent.PriorityBlockingQueue} class.
    64  *
    65  * <p>Implementation note: this implementation provides
    66  * O(log(n)) time for the enqueing and dequeing methods
    67  * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
    68  * linear time for the {@code remove(Object)} and {@code contains(Object)}
    69  * methods; and constant time for the retrieval methods
    70  * ({@code peek}, {@code element}, and {@code size}).
    71  *
    72  * <p>This class is a member of the
    73  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
    74  * Java Collections Framework</a>.
    75  *
    76  * @since 1.5
    77  * @author Josh Bloch, Doug Lea
    78  * @param <E> the type of elements held in this collection
    79  */
    80 public class PriorityQueue<E> extends AbstractQueue<E>
    81     implements java.io.Serializable {
    82 
    83     private static final long serialVersionUID = -7720805057305804111L;
    84 
    85     private static final int DEFAULT_INITIAL_CAPACITY = 11;
    86 
    87     /**
    88      * Priority queue represented as a balanced binary heap: the two
    89      * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
    90      * priority queue is ordered by comparator, or by the elements'
    91      * natural ordering, if comparator is null: For each node n in the
    92      * heap and each descendant d of n, n <= d.  The element with the
    93      * lowest value is in queue[0], assuming the queue is nonempty.
    94      */
    95     private transient Object[] queue;
    96 
    97     /**
    98      * The number of elements in the priority queue.
    99      */
   100     private int size = 0;
   101 
   102     /**
   103      * The comparator, or null if priority queue uses elements'
   104      * natural ordering.
   105      */
   106     private final Comparator<? super E> comparator;
   107 
   108     /**
   109      * The number of times this priority queue has been
   110      * <i>structurally modified</i>.  See AbstractList for gory details.
   111      */
   112     private transient int modCount = 0;
   113 
   114     /**
   115      * Creates a {@code PriorityQueue} with the default initial
   116      * capacity (11) that orders its elements according to their
   117      * {@linkplain Comparable natural ordering}.
   118      */
   119     public PriorityQueue() {
   120         this(DEFAULT_INITIAL_CAPACITY, null);
   121     }
   122 
   123     /**
   124      * Creates a {@code PriorityQueue} with the specified initial
   125      * capacity that orders its elements according to their
   126      * {@linkplain Comparable natural ordering}.
   127      *
   128      * @param initialCapacity the initial capacity for this priority queue
   129      * @throws IllegalArgumentException if {@code initialCapacity} is less
   130      *         than 1
   131      */
   132     public PriorityQueue(int initialCapacity) {
   133         this(initialCapacity, null);
   134     }
   135 
   136     /**
   137      * Creates a {@code PriorityQueue} with the specified initial capacity
   138      * that orders its elements according to the specified comparator.
   139      *
   140      * @param  initialCapacity the initial capacity for this priority queue
   141      * @param  comparator the comparator that will be used to order this
   142      *         priority queue.  If {@code null}, the {@linkplain Comparable
   143      *         natural ordering} of the elements will be used.
   144      * @throws IllegalArgumentException if {@code initialCapacity} is
   145      *         less than 1
   146      */
   147     public PriorityQueue(int initialCapacity,
   148                          Comparator<? super E> comparator) {
   149         // Note: This restriction of at least one is not actually needed,
   150         // but continues for 1.5 compatibility
   151         if (initialCapacity < 1)
   152             throw new IllegalArgumentException();
   153         this.queue = new Object[initialCapacity];
   154         this.comparator = comparator;
   155     }
   156 
   157     /**
   158      * Creates a {@code PriorityQueue} containing the elements in the
   159      * specified collection.  If the specified collection is an instance of
   160      * a {@link SortedSet} or is another {@code PriorityQueue}, this
   161      * priority queue will be ordered according to the same ordering.
   162      * Otherwise, this priority queue will be ordered according to the
   163      * {@linkplain Comparable natural ordering} of its elements.
   164      *
   165      * @param  c the collection whose elements are to be placed
   166      *         into this priority queue
   167      * @throws ClassCastException if elements of the specified collection
   168      *         cannot be compared to one another according to the priority
   169      *         queue's ordering
   170      * @throws NullPointerException if the specified collection or any
   171      *         of its elements are null
   172      */
   173     @SuppressWarnings("unchecked")
   174     public PriorityQueue(Collection<? extends E> c) {
   175         if (c instanceof SortedSet<?>) {
   176             SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
   177             this.comparator = (Comparator<? super E>) ss.comparator();
   178             initElementsFromCollection(ss);
   179         }
   180         else if (c instanceof PriorityQueue<?>) {
   181             PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
   182             this.comparator = (Comparator<? super E>) pq.comparator();
   183             initFromPriorityQueue(pq);
   184         }
   185         else {
   186             this.comparator = null;
   187             initFromCollection(c);
   188         }
   189     }
   190 
   191     /**
   192      * Creates a {@code PriorityQueue} containing the elements in the
   193      * specified priority queue.  This priority queue will be
   194      * ordered according to the same ordering as the given priority
   195      * queue.
   196      *
   197      * @param  c the priority queue whose elements are to be placed
   198      *         into this priority queue
   199      * @throws ClassCastException if elements of {@code c} cannot be
   200      *         compared to one another according to {@code c}'s
   201      *         ordering
   202      * @throws NullPointerException if the specified priority queue or any
   203      *         of its elements are null
   204      */
   205     @SuppressWarnings("unchecked")
   206     public PriorityQueue(PriorityQueue<? extends E> c) {
   207         this.comparator = (Comparator<? super E>) c.comparator();
   208         initFromPriorityQueue(c);
   209     }
   210 
   211     /**
   212      * Creates a {@code PriorityQueue} containing the elements in the
   213      * specified sorted set.   This priority queue will be ordered
   214      * according to the same ordering as the given sorted set.
   215      *
   216      * @param  c the sorted set whose elements are to be placed
   217      *         into this priority queue
   218      * @throws ClassCastException if elements of the specified sorted
   219      *         set cannot be compared to one another according to the
   220      *         sorted set's ordering
   221      * @throws NullPointerException if the specified sorted set or any
   222      *         of its elements are null
   223      */
   224     @SuppressWarnings("unchecked")
   225     public PriorityQueue(SortedSet<? extends E> c) {
   226         this.comparator = (Comparator<? super E>) c.comparator();
   227         initElementsFromCollection(c);
   228     }
   229 
   230     private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
   231         if (c.getClass() == PriorityQueue.class) {
   232             this.queue = c.toArray();
   233             this.size = c.size();
   234         } else {
   235             initFromCollection(c);
   236         }
   237     }
   238 
   239     private void initElementsFromCollection(Collection<? extends E> c) {
   240         Object[] a = c.toArray();
   241         // If c.toArray incorrectly doesn't return Object[], copy it.
   242         if (a.getClass() != Object[].class)
   243             a = Arrays.copyOf(a, a.length, Object[].class);
   244         int len = a.length;
   245         if (len == 1 || this.comparator != null)
   246             for (int i = 0; i < len; i++)
   247                 if (a[i] == null)
   248                     throw new NullPointerException();
   249         this.queue = a;
   250         this.size = a.length;
   251     }
   252 
   253     /**
   254      * Initializes queue array with elements from the given Collection.
   255      *
   256      * @param c the collection
   257      */
   258     private void initFromCollection(Collection<? extends E> c) {
   259         initElementsFromCollection(c);
   260         heapify();
   261     }
   262 
   263     /**
   264      * The maximum size of array to allocate.
   265      * Some VMs reserve some header words in an array.
   266      * Attempts to allocate larger arrays may result in
   267      * OutOfMemoryError: Requested array size exceeds VM limit
   268      */
   269     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
   270 
   271     /**
   272      * Increases the capacity of the array.
   273      *
   274      * @param minCapacity the desired minimum capacity
   275      */
   276     private void grow(int minCapacity) {
   277         int oldCapacity = queue.length;
   278         // Double size if small; else grow by 50%
   279         int newCapacity = oldCapacity + ((oldCapacity < 64) ?
   280                                          (oldCapacity + 2) :
   281                                          (oldCapacity >> 1));
   282         // overflow-conscious code
   283         if (newCapacity - MAX_ARRAY_SIZE > 0)
   284             newCapacity = hugeCapacity(minCapacity);
   285         queue = Arrays.copyOf(queue, newCapacity);
   286     }
   287 
   288     private static int hugeCapacity(int minCapacity) {
   289         if (minCapacity < 0) // overflow
   290             throw new OutOfMemoryError();
   291         return (minCapacity > MAX_ARRAY_SIZE) ?
   292             Integer.MAX_VALUE :
   293             MAX_ARRAY_SIZE;
   294     }
   295 
   296     /**
   297      * Inserts the specified element into this priority queue.
   298      *
   299      * @return {@code true} (as specified by {@link Collection#add})
   300      * @throws ClassCastException if the specified element cannot be
   301      *         compared with elements currently in this priority queue
   302      *         according to the priority queue's ordering
   303      * @throws NullPointerException if the specified element is null
   304      */
   305     public boolean add(E e) {
   306         return offer(e);
   307     }
   308 
   309     /**
   310      * Inserts the specified element into this priority queue.
   311      *
   312      * @return {@code true} (as specified by {@link Queue#offer})
   313      * @throws ClassCastException if the specified element cannot be
   314      *         compared with elements currently in this priority queue
   315      *         according to the priority queue's ordering
   316      * @throws NullPointerException if the specified element is null
   317      */
   318     public boolean offer(E e) {
   319         if (e == null)
   320             throw new NullPointerException();
   321         modCount++;
   322         int i = size;
   323         if (i >= queue.length)
   324             grow(i + 1);
   325         size = i + 1;
   326         if (i == 0)
   327             queue[0] = e;
   328         else
   329             siftUp(i, e);
   330         return true;
   331     }
   332 
   333     public E peek() {
   334         if (size == 0)
   335             return null;
   336         return (E) queue[0];
   337     }
   338 
   339     private int indexOf(Object o) {
   340         if (o != null) {
   341             for (int i = 0; i < size; i++)
   342                 if (o.equals(queue[i]))
   343                     return i;
   344         }
   345         return -1;
   346     }
   347 
   348     /**
   349      * Removes a single instance of the specified element from this queue,
   350      * if it is present.  More formally, removes an element {@code e} such
   351      * that {@code o.equals(e)}, if this queue contains one or more such
   352      * elements.  Returns {@code true} if and only if this queue contained
   353      * the specified element (or equivalently, if this queue changed as a
   354      * result of the call).
   355      *
   356      * @param o element to be removed from this queue, if present
   357      * @return {@code true} if this queue changed as a result of the call
   358      */
   359     public boolean remove(Object o) {
   360         int i = indexOf(o);
   361         if (i == -1)
   362             return false;
   363         else {
   364             removeAt(i);
   365             return true;
   366         }
   367     }
   368 
   369     /**
   370      * Version of remove using reference equality, not equals.
   371      * Needed by iterator.remove.
   372      *
   373      * @param o element to be removed from this queue, if present
   374      * @return {@code true} if removed
   375      */
   376     boolean removeEq(Object o) {
   377         for (int i = 0; i < size; i++) {
   378             if (o == queue[i]) {
   379                 removeAt(i);
   380                 return true;
   381             }
   382         }
   383         return false;
   384     }
   385 
   386     /**
   387      * Returns {@code true} if this queue contains the specified element.
   388      * More formally, returns {@code true} if and only if this queue contains
   389      * at least one element {@code e} such that {@code o.equals(e)}.
   390      *
   391      * @param o object to be checked for containment in this queue
   392      * @return {@code true} if this queue contains the specified element
   393      */
   394     public boolean contains(Object o) {
   395         return indexOf(o) != -1;
   396     }
   397 
   398     /**
   399      * Returns an array containing all of the elements in this queue.
   400      * The elements are in no particular order.
   401      *
   402      * <p>The returned array will be "safe" in that no references to it are
   403      * maintained by this queue.  (In other words, this method must allocate
   404      * a new array).  The caller is thus free to modify the returned array.
   405      *
   406      * <p>This method acts as bridge between array-based and collection-based
   407      * APIs.
   408      *
   409      * @return an array containing all of the elements in this queue
   410      */
   411     public Object[] toArray() {
   412         return Arrays.copyOf(queue, size);
   413     }
   414 
   415     /**
   416      * Returns an array containing all of the elements in this queue; the
   417      * runtime type of the returned array is that of the specified array.
   418      * The returned array elements are in no particular order.
   419      * If the queue fits in the specified array, it is returned therein.
   420      * Otherwise, a new array is allocated with the runtime type of the
   421      * specified array and the size of this queue.
   422      *
   423      * <p>If the queue fits in the specified array with room to spare
   424      * (i.e., the array has more elements than the queue), the element in
   425      * the array immediately following the end of the collection is set to
   426      * {@code null}.
   427      *
   428      * <p>Like the {@link #toArray()} method, this method acts as bridge between
   429      * array-based and collection-based APIs.  Further, this method allows
   430      * precise control over the runtime type of the output array, and may,
   431      * under certain circumstances, be used to save allocation costs.
   432      *
   433      * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
   434      * The following code can be used to dump the queue into a newly
   435      * allocated array of <tt>String</tt>:
   436      *
   437      * <pre>
   438      *     String[] y = x.toArray(new String[0]);</pre>
   439      *
   440      * Note that <tt>toArray(new Object[0])</tt> is identical in function to
   441      * <tt>toArray()</tt>.
   442      *
   443      * @param a the array into which the elements of the queue are to
   444      *          be stored, if it is big enough; otherwise, a new array of the
   445      *          same runtime type is allocated for this purpose.
   446      * @return an array containing all of the elements in this queue
   447      * @throws ArrayStoreException if the runtime type of the specified array
   448      *         is not a supertype of the runtime type of every element in
   449      *         this queue
   450      * @throws NullPointerException if the specified array is null
   451      */
   452     public <T> T[] toArray(T[] a) {
   453         if (a.length < size)
   454             // Make a new array of a's runtime type, but my contents:
   455             return (T[]) Arrays.copyOf(queue, size, a.getClass());
   456         System.arraycopy(queue, 0, a, 0, size);
   457         if (a.length > size)
   458             a[size] = null;
   459         return a;
   460     }
   461 
   462     /**
   463      * Returns an iterator over the elements in this queue. The iterator
   464      * does not return the elements in any particular order.
   465      *
   466      * @return an iterator over the elements in this queue
   467      */
   468     public Iterator<E> iterator() {
   469         return new Itr();
   470     }
   471 
   472     private final class Itr implements Iterator<E> {
   473         /**
   474          * Index (into queue array) of element to be returned by
   475          * subsequent call to next.
   476          */
   477         private int cursor = 0;
   478 
   479         /**
   480          * Index of element returned by most recent call to next,
   481          * unless that element came from the forgetMeNot list.
   482          * Set to -1 if element is deleted by a call to remove.
   483          */
   484         private int lastRet = -1;
   485 
   486         /**
   487          * A queue of elements that were moved from the unvisited portion of
   488          * the heap into the visited portion as a result of "unlucky" element
   489          * removals during the iteration.  (Unlucky element removals are those
   490          * that require a siftup instead of a siftdown.)  We must visit all of
   491          * the elements in this list to complete the iteration.  We do this
   492          * after we've completed the "normal" iteration.
   493          *
   494          * We expect that most iterations, even those involving removals,
   495          * will not need to store elements in this field.
   496          */
   497         private ArrayDeque<E> forgetMeNot = null;
   498 
   499         /**
   500          * Element returned by the most recent call to next iff that
   501          * element was drawn from the forgetMeNot list.
   502          */
   503         private E lastRetElt = null;
   504 
   505         /**
   506          * The modCount value that the iterator believes that the backing
   507          * Queue should have.  If this expectation is violated, the iterator
   508          * has detected concurrent modification.
   509          */
   510         private int expectedModCount = modCount;
   511 
   512         public boolean hasNext() {
   513             return cursor < size ||
   514                 (forgetMeNot != null && !forgetMeNot.isEmpty());
   515         }
   516 
   517         public E next() {
   518             if (expectedModCount != modCount)
   519                 throw new ConcurrentModificationException();
   520             if (cursor < size)
   521                 return (E) queue[lastRet = cursor++];
   522             if (forgetMeNot != null) {
   523                 lastRet = -1;
   524                 lastRetElt = forgetMeNot.poll();
   525                 if (lastRetElt != null)
   526                     return lastRetElt;
   527             }
   528             throw new NoSuchElementException();
   529         }
   530 
   531         public void remove() {
   532             if (expectedModCount != modCount)
   533                 throw new ConcurrentModificationException();
   534             if (lastRet != -1) {
   535                 E moved = PriorityQueue.this.removeAt(lastRet);
   536                 lastRet = -1;
   537                 if (moved == null)
   538                     cursor--;
   539                 else {
   540                     if (forgetMeNot == null)
   541                         forgetMeNot = new ArrayDeque<>();
   542                     forgetMeNot.add(moved);
   543                 }
   544             } else if (lastRetElt != null) {
   545                 PriorityQueue.this.removeEq(lastRetElt);
   546                 lastRetElt = null;
   547             } else {
   548                 throw new IllegalStateException();
   549             }
   550             expectedModCount = modCount;
   551         }
   552     }
   553 
   554     public int size() {
   555         return size;
   556     }
   557 
   558     /**
   559      * Removes all of the elements from this priority queue.
   560      * The queue will be empty after this call returns.
   561      */
   562     public void clear() {
   563         modCount++;
   564         for (int i = 0; i < size; i++)
   565             queue[i] = null;
   566         size = 0;
   567     }
   568 
   569     public E poll() {
   570         if (size == 0)
   571             return null;
   572         int s = --size;
   573         modCount++;
   574         E result = (E) queue[0];
   575         E x = (E) queue[s];
   576         queue[s] = null;
   577         if (s != 0)
   578             siftDown(0, x);
   579         return result;
   580     }
   581 
   582     /**
   583      * Removes the ith element from queue.
   584      *
   585      * Normally this method leaves the elements at up to i-1,
   586      * inclusive, untouched.  Under these circumstances, it returns
   587      * null.  Occasionally, in order to maintain the heap invariant,
   588      * it must swap a later element of the list with one earlier than
   589      * i.  Under these circumstances, this method returns the element
   590      * that was previously at the end of the list and is now at some
   591      * position before i. This fact is used by iterator.remove so as to
   592      * avoid missing traversing elements.
   593      */
   594     private E removeAt(int i) {
   595         assert i >= 0 && i < size;
   596         modCount++;
   597         int s = --size;
   598         if (s == i) // removed last element
   599             queue[i] = null;
   600         else {
   601             E moved = (E) queue[s];
   602             queue[s] = null;
   603             siftDown(i, moved);
   604             if (queue[i] == moved) {
   605                 siftUp(i, moved);
   606                 if (queue[i] != moved)
   607                     return moved;
   608             }
   609         }
   610         return null;
   611     }
   612 
   613     /**
   614      * Inserts item x at position k, maintaining heap invariant by
   615      * promoting x up the tree until it is greater than or equal to
   616      * its parent, or is the root.
   617      *
   618      * To simplify and speed up coercions and comparisons. the
   619      * Comparable and Comparator versions are separated into different
   620      * methods that are otherwise identical. (Similarly for siftDown.)
   621      *
   622      * @param k the position to fill
   623      * @param x the item to insert
   624      */
   625     private void siftUp(int k, E x) {
   626         if (comparator != null)
   627             siftUpUsingComparator(k, x);
   628         else
   629             siftUpComparable(k, x);
   630     }
   631 
   632     private void siftUpComparable(int k, E x) {
   633         Comparable<? super E> key = (Comparable<? super E>) x;
   634         while (k > 0) {
   635             int parent = (k - 1) >>> 1;
   636             Object e = queue[parent];
   637             if (key.compareTo((E) e) >= 0)
   638                 break;
   639             queue[k] = e;
   640             k = parent;
   641         }
   642         queue[k] = key;
   643     }
   644 
   645     private void siftUpUsingComparator(int k, E x) {
   646         while (k > 0) {
   647             int parent = (k - 1) >>> 1;
   648             Object e = queue[parent];
   649             if (comparator.compare(x, (E) e) >= 0)
   650                 break;
   651             queue[k] = e;
   652             k = parent;
   653         }
   654         queue[k] = x;
   655     }
   656 
   657     /**
   658      * Inserts item x at position k, maintaining heap invariant by
   659      * demoting x down the tree repeatedly until it is less than or
   660      * equal to its children or is a leaf.
   661      *
   662      * @param k the position to fill
   663      * @param x the item to insert
   664      */
   665     private void siftDown(int k, E x) {
   666         if (comparator != null)
   667             siftDownUsingComparator(k, x);
   668         else
   669             siftDownComparable(k, x);
   670     }
   671 
   672     private void siftDownComparable(int k, E x) {
   673         Comparable<? super E> key = (Comparable<? super E>)x;
   674         int half = size >>> 1;        // loop while a non-leaf
   675         while (k < half) {
   676             int child = (k << 1) + 1; // assume left child is least
   677             Object c = queue[child];
   678             int right = child + 1;
   679             if (right < size &&
   680                 ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
   681                 c = queue[child = right];
   682             if (key.compareTo((E) c) <= 0)
   683                 break;
   684             queue[k] = c;
   685             k = child;
   686         }
   687         queue[k] = key;
   688     }
   689 
   690     private void siftDownUsingComparator(int k, E x) {
   691         int half = size >>> 1;
   692         while (k < half) {
   693             int child = (k << 1) + 1;
   694             Object c = queue[child];
   695             int right = child + 1;
   696             if (right < size &&
   697                 comparator.compare((E) c, (E) queue[right]) > 0)
   698                 c = queue[child = right];
   699             if (comparator.compare(x, (E) c) <= 0)
   700                 break;
   701             queue[k] = c;
   702             k = child;
   703         }
   704         queue[k] = x;
   705     }
   706 
   707     /**
   708      * Establishes the heap invariant (described above) in the entire tree,
   709      * assuming nothing about the order of the elements prior to the call.
   710      */
   711     private void heapify() {
   712         for (int i = (size >>> 1) - 1; i >= 0; i--)
   713             siftDown(i, (E) queue[i]);
   714     }
   715 
   716     /**
   717      * Returns the comparator used to order the elements in this
   718      * queue, or {@code null} if this queue is sorted according to
   719      * the {@linkplain Comparable natural ordering} of its elements.
   720      *
   721      * @return the comparator used to order this queue, or
   722      *         {@code null} if this queue is sorted according to the
   723      *         natural ordering of its elements
   724      */
   725     public Comparator<? super E> comparator() {
   726         return comparator;
   727     }
   728 
   729     /**
   730      * Saves the state of the instance to a stream (that
   731      * is, serializes it).
   732      *
   733      * @serialData The length of the array backing the instance is
   734      *             emitted (int), followed by all of its elements
   735      *             (each an {@code Object}) in the proper order.
   736      * @param s the stream
   737      */
   738     private void writeObject(java.io.ObjectOutputStream s)
   739         throws java.io.IOException{
   740         // Write out element count, and any hidden stuff
   741         s.defaultWriteObject();
   742 
   743         // Write out array length, for compatibility with 1.5 version
   744         s.writeInt(Math.max(2, size + 1));
   745 
   746         // Write out all elements in the "proper order".
   747         for (int i = 0; i < size; i++)
   748             s.writeObject(queue[i]);
   749     }
   750 
   751     /**
   752      * Reconstitutes the {@code PriorityQueue} instance from a stream
   753      * (that is, deserializes it).
   754      *
   755      * @param s the stream
   756      */
   757     private void readObject(java.io.ObjectInputStream s)
   758         throws java.io.IOException, ClassNotFoundException {
   759         // Read in size, and any hidden stuff
   760         s.defaultReadObject();
   761 
   762         // Read in (and discard) array length
   763         s.readInt();
   764 
   765         queue = new Object[size];
   766 
   767         // Read in all elements.
   768         for (int i = 0; i < size; i++)
   769             queue[i] = s.readObject();
   770 
   771         // Elements are guaranteed to be in "proper order", but the
   772         // spec has never explained what that might be.
   773         heapify();
   774     }
   775 }