emul/src/main/java/java/lang/String.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sat, 29 Sep 2012 08:13:32 +0200
branchemul
changeset 61 4b334950499d
parent 54 e7160b348c34
child 64 55745bf6696c
permissions -rw-r--r--
Removing references to classes that would create too big transitive dependencies
     1 /*
     2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 
    28 import java.io.ObjectStreamField;
    29 import java.io.UnsupportedEncodingException;
    30 import java.util.Comparator;
    31 import java.util.regex.Matcher;
    32 import java.util.regex.Pattern;
    33 import java.util.regex.PatternSyntaxException;
    34 
    35 /**
    36  * The <code>String</code> class represents character strings. All
    37  * string literals in Java programs, such as <code>"abc"</code>, are
    38  * implemented as instances of this class.
    39  * <p>
    40  * Strings are constant; their values cannot be changed after they
    41  * are created. String buffers support mutable strings.
    42  * Because String objects are immutable they can be shared. For example:
    43  * <p><blockquote><pre>
    44  *     String str = "abc";
    45  * </pre></blockquote><p>
    46  * is equivalent to:
    47  * <p><blockquote><pre>
    48  *     char data[] = {'a', 'b', 'c'};
    49  *     String str = new String(data);
    50  * </pre></blockquote><p>
    51  * Here are some more examples of how strings can be used:
    52  * <p><blockquote><pre>
    53  *     System.out.println("abc");
    54  *     String cde = "cde";
    55  *     System.out.println("abc" + cde);
    56  *     String c = "abc".substring(2,3);
    57  *     String d = cde.substring(1, 2);
    58  * </pre></blockquote>
    59  * <p>
    60  * The class <code>String</code> includes methods for examining
    61  * individual characters of the sequence, for comparing strings, for
    62  * searching strings, for extracting substrings, and for creating a
    63  * copy of a string with all characters translated to uppercase or to
    64  * lowercase. Case mapping is based on the Unicode Standard version
    65  * specified by the {@link java.lang.Character Character} class.
    66  * <p>
    67  * The Java language provides special support for the string
    68  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
    69  * other objects to strings. String concatenation is implemented
    70  * through the <code>StringBuilder</code>(or <code>StringBuffer</code>)
    71  * class and its <code>append</code> method.
    72  * String conversions are implemented through the method
    73  * <code>toString</code>, defined by <code>Object</code> and
    74  * inherited by all classes in Java. For additional information on
    75  * string concatenation and conversion, see Gosling, Joy, and Steele,
    76  * <i>The Java Language Specification</i>.
    77  *
    78  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
    79  * or method in this class will cause a {@link NullPointerException} to be
    80  * thrown.
    81  *
    82  * <p>A <code>String</code> represents a string in the UTF-16 format
    83  * in which <em>supplementary characters</em> are represented by <em>surrogate
    84  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
    85  * Character Representations</a> in the <code>Character</code> class for
    86  * more information).
    87  * Index values refer to <code>char</code> code units, so a supplementary
    88  * character uses two positions in a <code>String</code>.
    89  * <p>The <code>String</code> class provides methods for dealing with
    90  * Unicode code points (i.e., characters), in addition to those for
    91  * dealing with Unicode code units (i.e., <code>char</code> values).
    92  *
    93  * @author  Lee Boynton
    94  * @author  Arthur van Hoff
    95  * @author  Martin Buchholz
    96  * @author  Ulf Zibis
    97  * @see     java.lang.Object#toString()
    98  * @see     java.lang.StringBuffer
    99  * @see     java.lang.StringBuilder
   100  * @see     java.nio.charset.Charset
   101  * @since   JDK1.0
   102  */
   103 
   104 public final class String
   105     implements java.io.Serializable, Comparable<String>, CharSequence
   106 {
   107     /** The value is used for character storage. */
   108     private final char value[];
   109 
   110     /** The offset is the first index of the storage that is used. */
   111     private final int offset;
   112 
   113     /** The count is the number of characters in the String. */
   114     private final int count;
   115 
   116     /** Cache the hash code for the string */
   117     private int hash; // Default to 0
   118 
   119     /** use serialVersionUID from JDK 1.0.2 for interoperability */
   120     private static final long serialVersionUID = -6849794470754667710L;
   121 
   122     /**
   123      * Class String is special cased within the Serialization Stream Protocol.
   124      *
   125      * A String instance is written initially into an ObjectOutputStream in the
   126      * following format:
   127      * <pre>
   128      *      <code>TC_STRING</code> (utf String)
   129      * </pre>
   130      * The String is written by method <code>DataOutput.writeUTF</code>.
   131      * A new handle is generated to  refer to all future references to the
   132      * string instance within the stream.
   133      */
   134     private static final ObjectStreamField[] serialPersistentFields =
   135         new ObjectStreamField[0];
   136 
   137     /**
   138      * Initializes a newly created {@code String} object so that it represents
   139      * an empty character sequence.  Note that use of this constructor is
   140      * unnecessary since Strings are immutable.
   141      */
   142     public String() {
   143         this.offset = 0;
   144         this.count = 0;
   145         this.value = new char[0];
   146     }
   147 
   148     /**
   149      * Initializes a newly created {@code String} object so that it represents
   150      * the same sequence of characters as the argument; in other words, the
   151      * newly created string is a copy of the argument string. Unless an
   152      * explicit copy of {@code original} is needed, use of this constructor is
   153      * unnecessary since Strings are immutable.
   154      *
   155      * @param  original
   156      *         A {@code String}
   157      */
   158     public String(String original) {
   159         int size = original.count;
   160         char[] originalValue = original.value;
   161         char[] v;
   162         if (originalValue.length > size) {
   163             // The array representing the String is bigger than the new
   164             // String itself.  Perhaps this constructor is being called
   165             // in order to trim the baggage, so make a copy of the array.
   166             int off = original.offset;
   167             v = copyOfRange(originalValue, off, off+size);
   168         } else {
   169             // The array representing the String is the same
   170             // size as the String, so no point in making a copy.
   171             v = originalValue;
   172         }
   173         this.offset = 0;
   174         this.count = size;
   175         this.value = v;
   176     }
   177 
   178     /**
   179      * Allocates a new {@code String} so that it represents the sequence of
   180      * characters currently contained in the character array argument. The
   181      * contents of the character array are copied; subsequent modification of
   182      * the character array does not affect the newly created string.
   183      *
   184      * @param  value
   185      *         The initial value of the string
   186      */
   187     public String(char value[]) {
   188         int size = value.length;
   189         this.offset = 0;
   190         this.count = size;
   191         this.value = copyOf(value, size);
   192     }
   193 
   194     /**
   195      * Allocates a new {@code String} that contains characters from a subarray
   196      * of the character array argument. The {@code offset} argument is the
   197      * index of the first character of the subarray and the {@code count}
   198      * argument specifies the length of the subarray. The contents of the
   199      * subarray are copied; subsequent modification of the character array does
   200      * not affect the newly created string.
   201      *
   202      * @param  value
   203      *         Array that is the source of characters
   204      *
   205      * @param  offset
   206      *         The initial offset
   207      *
   208      * @param  count
   209      *         The length
   210      *
   211      * @throws  IndexOutOfBoundsException
   212      *          If the {@code offset} and {@code count} arguments index
   213      *          characters outside the bounds of the {@code value} array
   214      */
   215     public String(char value[], int offset, int count) {
   216         if (offset < 0) {
   217             throw new StringIndexOutOfBoundsException(offset);
   218         }
   219         if (count < 0) {
   220             throw new StringIndexOutOfBoundsException(count);
   221         }
   222         // Note: offset or count might be near -1>>>1.
   223         if (offset > value.length - count) {
   224             throw new StringIndexOutOfBoundsException(offset + count);
   225         }
   226         this.offset = 0;
   227         this.count = count;
   228         this.value = copyOfRange(value, offset, offset+count);
   229     }
   230 
   231     /**
   232      * Allocates a new {@code String} that contains characters from a subarray
   233      * of the <a href="Character.html#unicode">Unicode code point</a> array
   234      * argument.  The {@code offset} argument is the index of the first code
   235      * point of the subarray and the {@code count} argument specifies the
   236      * length of the subarray.  The contents of the subarray are converted to
   237      * {@code char}s; subsequent modification of the {@code int} array does not
   238      * affect the newly created string.
   239      *
   240      * @param  codePoints
   241      *         Array that is the source of Unicode code points
   242      *
   243      * @param  offset
   244      *         The initial offset
   245      *
   246      * @param  count
   247      *         The length
   248      *
   249      * @throws  IllegalArgumentException
   250      *          If any invalid Unicode code point is found in {@code
   251      *          codePoints}
   252      *
   253      * @throws  IndexOutOfBoundsException
   254      *          If the {@code offset} and {@code count} arguments index
   255      *          characters outside the bounds of the {@code codePoints} array
   256      *
   257      * @since  1.5
   258      */
   259     public String(int[] codePoints, int offset, int count) {
   260         if (offset < 0) {
   261             throw new StringIndexOutOfBoundsException(offset);
   262         }
   263         if (count < 0) {
   264             throw new StringIndexOutOfBoundsException(count);
   265         }
   266         // Note: offset or count might be near -1>>>1.
   267         if (offset > codePoints.length - count) {
   268             throw new StringIndexOutOfBoundsException(offset + count);
   269         }
   270 
   271         final int end = offset + count;
   272 
   273         // Pass 1: Compute precise size of char[]
   274         int n = count;
   275         for (int i = offset; i < end; i++) {
   276             int c = codePoints[i];
   277             if (Character.isBmpCodePoint(c))
   278                 continue;
   279             else if (Character.isValidCodePoint(c))
   280                 n++;
   281             else throw new IllegalArgumentException(Integer.toString(c));
   282         }
   283 
   284         // Pass 2: Allocate and fill in char[]
   285         final char[] v = new char[n];
   286 
   287         for (int i = offset, j = 0; i < end; i++, j++) {
   288             int c = codePoints[i];
   289             if (Character.isBmpCodePoint(c))
   290                 v[j] = (char) c;
   291             else
   292                 Character.toSurrogates(c, v, j++);
   293         }
   294 
   295         this.value  = v;
   296         this.count  = n;
   297         this.offset = 0;
   298     }
   299 
   300     /**
   301      * Allocates a new {@code String} constructed from a subarray of an array
   302      * of 8-bit integer values.
   303      *
   304      * <p> The {@code offset} argument is the index of the first byte of the
   305      * subarray, and the {@code count} argument specifies the length of the
   306      * subarray.
   307      *
   308      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
   309      * specified in the method above.
   310      *
   311      * @deprecated This method does not properly convert bytes into characters.
   312      * As of JDK&nbsp;1.1, the preferred way to do this is via the
   313      * {@code String} constructors that take a {@link
   314      * java.nio.charset.Charset}, charset name, or that use the platform's
   315      * default charset.
   316      *
   317      * @param  ascii
   318      *         The bytes to be converted to characters
   319      *
   320      * @param  hibyte
   321      *         The top 8 bits of each 16-bit Unicode code unit
   322      *
   323      * @param  offset
   324      *         The initial offset
   325      * @param  count
   326      *         The length
   327      *
   328      * @throws  IndexOutOfBoundsException
   329      *          If the {@code offset} or {@code count} argument is invalid
   330      *
   331      * @see  #String(byte[], int)
   332      * @see  #String(byte[], int, int, java.lang.String)
   333      * @see  #String(byte[], int, int, java.nio.charset.Charset)
   334      * @see  #String(byte[], int, int)
   335      * @see  #String(byte[], java.lang.String)
   336      * @see  #String(byte[], java.nio.charset.Charset)
   337      * @see  #String(byte[])
   338      */
   339     @Deprecated
   340     public String(byte ascii[], int hibyte, int offset, int count) {
   341         checkBounds(ascii, offset, count);
   342         char value[] = new char[count];
   343 
   344         if (hibyte == 0) {
   345             for (int i = count ; i-- > 0 ;) {
   346                 value[i] = (char) (ascii[i + offset] & 0xff);
   347             }
   348         } else {
   349             hibyte <<= 8;
   350             for (int i = count ; i-- > 0 ;) {
   351                 value[i] = (char) (hibyte | (ascii[i + offset] & 0xff));
   352             }
   353         }
   354         this.offset = 0;
   355         this.count = count;
   356         this.value = value;
   357     }
   358 
   359     /**
   360      * Allocates a new {@code String} containing characters constructed from
   361      * an array of 8-bit integer values. Each character <i>c</i>in the
   362      * resulting string is constructed from the corresponding component
   363      * <i>b</i> in the byte array such that:
   364      *
   365      * <blockquote><pre>
   366      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
   367      *                         | (<b><i>b</i></b> &amp; 0xff))
   368      * </pre></blockquote>
   369      *
   370      * @deprecated  This method does not properly convert bytes into
   371      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
   372      * {@code String} constructors that take a {@link
   373      * java.nio.charset.Charset}, charset name, or that use the platform's
   374      * default charset.
   375      *
   376      * @param  ascii
   377      *         The bytes to be converted to characters
   378      *
   379      * @param  hibyte
   380      *         The top 8 bits of each 16-bit Unicode code unit
   381      *
   382      * @see  #String(byte[], int, int, java.lang.String)
   383      * @see  #String(byte[], int, int, java.nio.charset.Charset)
   384      * @see  #String(byte[], int, int)
   385      * @see  #String(byte[], java.lang.String)
   386      * @see  #String(byte[], java.nio.charset.Charset)
   387      * @see  #String(byte[])
   388      */
   389     @Deprecated
   390     public String(byte ascii[], int hibyte) {
   391         this(ascii, hibyte, 0, ascii.length);
   392     }
   393 
   394     /* Common private utility method used to bounds check the byte array
   395      * and requested offset & length values used by the String(byte[],..)
   396      * constructors.
   397      */
   398     private static void checkBounds(byte[] bytes, int offset, int length) {
   399         if (length < 0)
   400             throw new StringIndexOutOfBoundsException(length);
   401         if (offset < 0)
   402             throw new StringIndexOutOfBoundsException(offset);
   403         if (offset > bytes.length - length)
   404             throw new StringIndexOutOfBoundsException(offset + length);
   405     }
   406 
   407     /**
   408      * Constructs a new {@code String} by decoding the specified subarray of
   409      * bytes using the specified charset.  The length of the new {@code String}
   410      * is a function of the charset, and hence may not be equal to the length
   411      * of the subarray.
   412      *
   413      * <p> The behavior of this constructor when the given bytes are not valid
   414      * in the given charset is unspecified.  The {@link
   415      * java.nio.charset.CharsetDecoder} class should be used when more control
   416      * over the decoding process is required.
   417      *
   418      * @param  bytes
   419      *         The bytes to be decoded into characters
   420      *
   421      * @param  offset
   422      *         The index of the first byte to decode
   423      *
   424      * @param  length
   425      *         The number of bytes to decode
   426 
   427      * @param  charsetName
   428      *         The name of a supported {@linkplain java.nio.charset.Charset
   429      *         charset}
   430      *
   431      * @throws  UnsupportedEncodingException
   432      *          If the named charset is not supported
   433      *
   434      * @throws  IndexOutOfBoundsException
   435      *          If the {@code offset} and {@code length} arguments index
   436      *          characters outside the bounds of the {@code bytes} array
   437      *
   438      * @since  JDK1.1
   439      */
   440     public String(byte bytes[], int offset, int length, String charsetName)
   441         throws UnsupportedEncodingException
   442     {
   443         if (charsetName == null)
   444             throw new NullPointerException("charsetName");
   445         checkBounds(bytes, offset, length);
   446         char[] v = StringCoding.decode(charsetName, bytes, offset, length);
   447         this.offset = 0;
   448         this.count = v.length;
   449         this.value = v;
   450     }
   451 
   452     /**
   453      * Constructs a new {@code String} by decoding the specified subarray of
   454      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
   455      * The length of the new {@code String} is a function of the charset, and
   456      * hence may not be equal to the length of the subarray.
   457      *
   458      * <p> This method always replaces malformed-input and unmappable-character
   459      * sequences with this charset's default replacement string.  The {@link
   460      * java.nio.charset.CharsetDecoder} class should be used when more control
   461      * over the decoding process is required.
   462      *
   463      * @param  bytes
   464      *         The bytes to be decoded into characters
   465      *
   466      * @param  offset
   467      *         The index of the first byte to decode
   468      *
   469      * @param  length
   470      *         The number of bytes to decode
   471      *
   472      * @param  charset
   473      *         The {@linkplain java.nio.charset.Charset charset} to be used to
   474      *         decode the {@code bytes}
   475      *
   476      * @throws  IndexOutOfBoundsException
   477      *          If the {@code offset} and {@code length} arguments index
   478      *          characters outside the bounds of the {@code bytes} array
   479      *
   480      * @since  1.6
   481      */
   482     /* don't want dependnecy on Charset
   483     public String(byte bytes[], int offset, int length, Charset charset) {
   484         if (charset == null)
   485             throw new NullPointerException("charset");
   486         checkBounds(bytes, offset, length);
   487         char[] v = StringCoding.decode(charset, bytes, offset, length);
   488         this.offset = 0;
   489         this.count = v.length;
   490         this.value = v;
   491     }
   492     */
   493 
   494     /**
   495      * Constructs a new {@code String} by decoding the specified array of bytes
   496      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
   497      * length of the new {@code String} is a function of the charset, and hence
   498      * may not be equal to the length of the byte array.
   499      *
   500      * <p> The behavior of this constructor when the given bytes are not valid
   501      * in the given charset is unspecified.  The {@link
   502      * java.nio.charset.CharsetDecoder} class should be used when more control
   503      * over the decoding process is required.
   504      *
   505      * @param  bytes
   506      *         The bytes to be decoded into characters
   507      *
   508      * @param  charsetName
   509      *         The name of a supported {@linkplain java.nio.charset.Charset
   510      *         charset}
   511      *
   512      * @throws  UnsupportedEncodingException
   513      *          If the named charset is not supported
   514      *
   515      * @since  JDK1.1
   516      */
   517     public String(byte bytes[], String charsetName)
   518         throws UnsupportedEncodingException
   519     {
   520         this(bytes, 0, bytes.length, charsetName);
   521     }
   522 
   523     /**
   524      * Constructs a new {@code String} by decoding the specified array of
   525      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
   526      * The length of the new {@code String} is a function of the charset, and
   527      * hence may not be equal to the length of the byte array.
   528      *
   529      * <p> This method always replaces malformed-input and unmappable-character
   530      * sequences with this charset's default replacement string.  The {@link
   531      * java.nio.charset.CharsetDecoder} class should be used when more control
   532      * over the decoding process is required.
   533      *
   534      * @param  bytes
   535      *         The bytes to be decoded into characters
   536      *
   537      * @param  charset
   538      *         The {@linkplain java.nio.charset.Charset charset} to be used to
   539      *         decode the {@code bytes}
   540      *
   541      * @since  1.6
   542      */
   543     /* don't want dep on Charset
   544     public String(byte bytes[], Charset charset) {
   545         this(bytes, 0, bytes.length, charset);
   546     }
   547     */
   548 
   549     /**
   550      * Constructs a new {@code String} by decoding the specified subarray of
   551      * bytes using the platform's default charset.  The length of the new
   552      * {@code String} is a function of the charset, and hence may not be equal
   553      * to the length of the subarray.
   554      *
   555      * <p> The behavior of this constructor when the given bytes are not valid
   556      * in the default charset is unspecified.  The {@link
   557      * java.nio.charset.CharsetDecoder} class should be used when more control
   558      * over the decoding process is required.
   559      *
   560      * @param  bytes
   561      *         The bytes to be decoded into characters
   562      *
   563      * @param  offset
   564      *         The index of the first byte to decode
   565      *
   566      * @param  length
   567      *         The number of bytes to decode
   568      *
   569      * @throws  IndexOutOfBoundsException
   570      *          If the {@code offset} and the {@code length} arguments index
   571      *          characters outside the bounds of the {@code bytes} array
   572      *
   573      * @since  JDK1.1
   574      */
   575     public String(byte bytes[], int offset, int length) {
   576         checkBounds(bytes, offset, length);
   577         char[] v  = StringCoding.decode(bytes, offset, length);
   578         this.offset = 0;
   579         this.count = v.length;
   580         this.value = v;
   581     }
   582 
   583     /**
   584      * Constructs a new {@code String} by decoding the specified array of bytes
   585      * using the platform's default charset.  The length of the new {@code
   586      * String} is a function of the charset, and hence may not be equal to the
   587      * length of the byte array.
   588      *
   589      * <p> The behavior of this constructor when the given bytes are not valid
   590      * in the default charset is unspecified.  The {@link
   591      * java.nio.charset.CharsetDecoder} class should be used when more control
   592      * over the decoding process is required.
   593      *
   594      * @param  bytes
   595      *         The bytes to be decoded into characters
   596      *
   597      * @since  JDK1.1
   598      */
   599     public String(byte bytes[]) {
   600         this(bytes, 0, bytes.length);
   601     }
   602 
   603     /**
   604      * Allocates a new string that contains the sequence of characters
   605      * currently contained in the string buffer argument. The contents of the
   606      * string buffer are copied; subsequent modification of the string buffer
   607      * does not affect the newly created string.
   608      *
   609      * @param  buffer
   610      *         A {@code StringBuffer}
   611      */
   612     public String(StringBuffer buffer) {
   613         String result = buffer.toString();
   614         this.value = result.value;
   615         this.count = result.count;
   616         this.offset = result.offset;
   617     }
   618 
   619     /**
   620      * Allocates a new string that contains the sequence of characters
   621      * currently contained in the string builder argument. The contents of the
   622      * string builder are copied; subsequent modification of the string builder
   623      * does not affect the newly created string.
   624      *
   625      * <p> This constructor is provided to ease migration to {@code
   626      * StringBuilder}. Obtaining a string from a string builder via the {@code
   627      * toString} method is likely to run faster and is generally preferred.
   628      *
   629      * @param   builder
   630      *          A {@code StringBuilder}
   631      *
   632      * @since  1.5
   633      */
   634     public String(StringBuilder builder) {
   635         String result = builder.toString();
   636         this.value = result.value;
   637         this.count = result.count;
   638         this.offset = result.offset;
   639     }
   640 
   641 
   642     // Package private constructor which shares value array for speed.
   643     String(int offset, int count, char value[]) {
   644         this.value = value;
   645         this.offset = offset;
   646         this.count = count;
   647     }
   648 
   649     /**
   650      * Returns the length of this string.
   651      * The length is equal to the number of <a href="Character.html#unicode">Unicode
   652      * code units</a> in the string.
   653      *
   654      * @return  the length of the sequence of characters represented by this
   655      *          object.
   656      */
   657     public int length() {
   658         return count;
   659     }
   660 
   661     /**
   662      * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.
   663      *
   664      * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise
   665      * <tt>false</tt>
   666      *
   667      * @since 1.6
   668      */
   669     public boolean isEmpty() {
   670         return count == 0;
   671     }
   672 
   673     /**
   674      * Returns the <code>char</code> value at the
   675      * specified index. An index ranges from <code>0</code> to
   676      * <code>length() - 1</code>. The first <code>char</code> value of the sequence
   677      * is at index <code>0</code>, the next at index <code>1</code>,
   678      * and so on, as for array indexing.
   679      *
   680      * <p>If the <code>char</code> value specified by the index is a
   681      * <a href="Character.html#unicode">surrogate</a>, the surrogate
   682      * value is returned.
   683      *
   684      * @param      index   the index of the <code>char</code> value.
   685      * @return     the <code>char</code> value at the specified index of this string.
   686      *             The first <code>char</code> value is at index <code>0</code>.
   687      * @exception  IndexOutOfBoundsException  if the <code>index</code>
   688      *             argument is negative or not less than the length of this
   689      *             string.
   690      */
   691     public char charAt(int index) {
   692         if ((index < 0) || (index >= count)) {
   693             throw new StringIndexOutOfBoundsException(index);
   694         }
   695         return value[index + offset];
   696     }
   697 
   698     /**
   699      * Returns the character (Unicode code point) at the specified
   700      * index. The index refers to <code>char</code> values
   701      * (Unicode code units) and ranges from <code>0</code> to
   702      * {@link #length()}<code> - 1</code>.
   703      *
   704      * <p> If the <code>char</code> value specified at the given index
   705      * is in the high-surrogate range, the following index is less
   706      * than the length of this <code>String</code>, and the
   707      * <code>char</code> value at the following index is in the
   708      * low-surrogate range, then the supplementary code point
   709      * corresponding to this surrogate pair is returned. Otherwise,
   710      * the <code>char</code> value at the given index is returned.
   711      *
   712      * @param      index the index to the <code>char</code> values
   713      * @return     the code point value of the character at the
   714      *             <code>index</code>
   715      * @exception  IndexOutOfBoundsException  if the <code>index</code>
   716      *             argument is negative or not less than the length of this
   717      *             string.
   718      * @since      1.5
   719      */
   720     public int codePointAt(int index) {
   721         if ((index < 0) || (index >= count)) {
   722             throw new StringIndexOutOfBoundsException(index);
   723         }
   724         return Character.codePointAtImpl(value, offset + index, offset + count);
   725     }
   726 
   727     /**
   728      * Returns the character (Unicode code point) before the specified
   729      * index. The index refers to <code>char</code> values
   730      * (Unicode code units) and ranges from <code>1</code> to {@link
   731      * CharSequence#length() length}.
   732      *
   733      * <p> If the <code>char</code> value at <code>(index - 1)</code>
   734      * is in the low-surrogate range, <code>(index - 2)</code> is not
   735      * negative, and the <code>char</code> value at <code>(index -
   736      * 2)</code> is in the high-surrogate range, then the
   737      * supplementary code point value of the surrogate pair is
   738      * returned. If the <code>char</code> value at <code>index -
   739      * 1</code> is an unpaired low-surrogate or a high-surrogate, the
   740      * surrogate value is returned.
   741      *
   742      * @param     index the index following the code point that should be returned
   743      * @return    the Unicode code point value before the given index.
   744      * @exception IndexOutOfBoundsException if the <code>index</code>
   745      *            argument is less than 1 or greater than the length
   746      *            of this string.
   747      * @since     1.5
   748      */
   749     public int codePointBefore(int index) {
   750         int i = index - 1;
   751         if ((i < 0) || (i >= count)) {
   752             throw new StringIndexOutOfBoundsException(index);
   753         }
   754         return Character.codePointBeforeImpl(value, offset + index, offset);
   755     }
   756 
   757     /**
   758      * Returns the number of Unicode code points in the specified text
   759      * range of this <code>String</code>. The text range begins at the
   760      * specified <code>beginIndex</code> and extends to the
   761      * <code>char</code> at index <code>endIndex - 1</code>. Thus the
   762      * length (in <code>char</code>s) of the text range is
   763      * <code>endIndex-beginIndex</code>. Unpaired surrogates within
   764      * the text range count as one code point each.
   765      *
   766      * @param beginIndex the index to the first <code>char</code> of
   767      * the text range.
   768      * @param endIndex the index after the last <code>char</code> of
   769      * the text range.
   770      * @return the number of Unicode code points in the specified text
   771      * range
   772      * @exception IndexOutOfBoundsException if the
   773      * <code>beginIndex</code> is negative, or <code>endIndex</code>
   774      * is larger than the length of this <code>String</code>, or
   775      * <code>beginIndex</code> is larger than <code>endIndex</code>.
   776      * @since  1.5
   777      */
   778     public int codePointCount(int beginIndex, int endIndex) {
   779         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
   780             throw new IndexOutOfBoundsException();
   781         }
   782         return Character.codePointCountImpl(value, offset+beginIndex, endIndex-beginIndex);
   783     }
   784 
   785     /**
   786      * Returns the index within this <code>String</code> that is
   787      * offset from the given <code>index</code> by
   788      * <code>codePointOffset</code> code points. Unpaired surrogates
   789      * within the text range given by <code>index</code> and
   790      * <code>codePointOffset</code> count as one code point each.
   791      *
   792      * @param index the index to be offset
   793      * @param codePointOffset the offset in code points
   794      * @return the index within this <code>String</code>
   795      * @exception IndexOutOfBoundsException if <code>index</code>
   796      *   is negative or larger then the length of this
   797      *   <code>String</code>, or if <code>codePointOffset</code> is positive
   798      *   and the substring starting with <code>index</code> has fewer
   799      *   than <code>codePointOffset</code> code points,
   800      *   or if <code>codePointOffset</code> is negative and the substring
   801      *   before <code>index</code> has fewer than the absolute value
   802      *   of <code>codePointOffset</code> code points.
   803      * @since 1.5
   804      */
   805     public int offsetByCodePoints(int index, int codePointOffset) {
   806         if (index < 0 || index > count) {
   807             throw new IndexOutOfBoundsException();
   808         }
   809         return Character.offsetByCodePointsImpl(value, offset, count,
   810                                                 offset+index, codePointOffset) - offset;
   811     }
   812 
   813     /**
   814      * Copy characters from this string into dst starting at dstBegin.
   815      * This method doesn't perform any range checking.
   816      */
   817     void getChars(char dst[], int dstBegin) {
   818         System.arraycopy(value, offset, dst, dstBegin, count);
   819     }
   820 
   821     /**
   822      * Copies characters from this string into the destination character
   823      * array.
   824      * <p>
   825      * The first character to be copied is at index <code>srcBegin</code>;
   826      * the last character to be copied is at index <code>srcEnd-1</code>
   827      * (thus the total number of characters to be copied is
   828      * <code>srcEnd-srcBegin</code>). The characters are copied into the
   829      * subarray of <code>dst</code> starting at index <code>dstBegin</code>
   830      * and ending at index:
   831      * <p><blockquote><pre>
   832      *     dstbegin + (srcEnd-srcBegin) - 1
   833      * </pre></blockquote>
   834      *
   835      * @param      srcBegin   index of the first character in the string
   836      *                        to copy.
   837      * @param      srcEnd     index after the last character in the string
   838      *                        to copy.
   839      * @param      dst        the destination array.
   840      * @param      dstBegin   the start offset in the destination array.
   841      * @exception IndexOutOfBoundsException If any of the following
   842      *            is true:
   843      *            <ul><li><code>srcBegin</code> is negative.
   844      *            <li><code>srcBegin</code> is greater than <code>srcEnd</code>
   845      *            <li><code>srcEnd</code> is greater than the length of this
   846      *                string
   847      *            <li><code>dstBegin</code> is negative
   848      *            <li><code>dstBegin+(srcEnd-srcBegin)</code> is larger than
   849      *                <code>dst.length</code></ul>
   850      */
   851     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
   852         if (srcBegin < 0) {
   853             throw new StringIndexOutOfBoundsException(srcBegin);
   854         }
   855         if (srcEnd > count) {
   856             throw new StringIndexOutOfBoundsException(srcEnd);
   857         }
   858         if (srcBegin > srcEnd) {
   859             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
   860         }
   861         System.arraycopy(value, offset + srcBegin, dst, dstBegin,
   862              srcEnd - srcBegin);
   863     }
   864 
   865     /**
   866      * Copies characters from this string into the destination byte array. Each
   867      * byte receives the 8 low-order bits of the corresponding character. The
   868      * eight high-order bits of each character are not copied and do not
   869      * participate in the transfer in any way.
   870      *
   871      * <p> The first character to be copied is at index {@code srcBegin}; the
   872      * last character to be copied is at index {@code srcEnd-1}.  The total
   873      * number of characters to be copied is {@code srcEnd-srcBegin}. The
   874      * characters, converted to bytes, are copied into the subarray of {@code
   875      * dst} starting at index {@code dstBegin} and ending at index:
   876      *
   877      * <blockquote><pre>
   878      *     dstbegin + (srcEnd-srcBegin) - 1
   879      * </pre></blockquote>
   880      *
   881      * @deprecated  This method does not properly convert characters into
   882      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
   883      * {@link #getBytes()} method, which uses the platform's default charset.
   884      *
   885      * @param  srcBegin
   886      *         Index of the first character in the string to copy
   887      *
   888      * @param  srcEnd
   889      *         Index after the last character in the string to copy
   890      *
   891      * @param  dst
   892      *         The destination array
   893      *
   894      * @param  dstBegin
   895      *         The start offset in the destination array
   896      *
   897      * @throws  IndexOutOfBoundsException
   898      *          If any of the following is true:
   899      *          <ul>
   900      *            <li> {@code srcBegin} is negative
   901      *            <li> {@code srcBegin} is greater than {@code srcEnd}
   902      *            <li> {@code srcEnd} is greater than the length of this String
   903      *            <li> {@code dstBegin} is negative
   904      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
   905      *                 dst.length}
   906      *          </ul>
   907      */
   908     @Deprecated
   909     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
   910         if (srcBegin < 0) {
   911             throw new StringIndexOutOfBoundsException(srcBegin);
   912         }
   913         if (srcEnd > count) {
   914             throw new StringIndexOutOfBoundsException(srcEnd);
   915         }
   916         if (srcBegin > srcEnd) {
   917             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
   918         }
   919         int j = dstBegin;
   920         int n = offset + srcEnd;
   921         int i = offset + srcBegin;
   922         char[] val = value;   /* avoid getfield opcode */
   923 
   924         while (i < n) {
   925             dst[j++] = (byte)val[i++];
   926         }
   927     }
   928 
   929     /**
   930      * Encodes this {@code String} into a sequence of bytes using the named
   931      * charset, storing the result into a new byte array.
   932      *
   933      * <p> The behavior of this method when this string cannot be encoded in
   934      * the given charset is unspecified.  The {@link
   935      * java.nio.charset.CharsetEncoder} class should be used when more control
   936      * over the encoding process is required.
   937      *
   938      * @param  charsetName
   939      *         The name of a supported {@linkplain java.nio.charset.Charset
   940      *         charset}
   941      *
   942      * @return  The resultant byte array
   943      *
   944      * @throws  UnsupportedEncodingException
   945      *          If the named charset is not supported
   946      *
   947      * @since  JDK1.1
   948      */
   949     public byte[] getBytes(String charsetName)
   950         throws UnsupportedEncodingException
   951     {
   952         if (charsetName == null) throw new NullPointerException();
   953         return StringCoding.encode(charsetName, value, offset, count);
   954     }
   955 
   956     /**
   957      * Encodes this {@code String} into a sequence of bytes using the given
   958      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
   959      * new byte array.
   960      *
   961      * <p> This method always replaces malformed-input and unmappable-character
   962      * sequences with this charset's default replacement byte array.  The
   963      * {@link java.nio.charset.CharsetEncoder} class should be used when more
   964      * control over the encoding process is required.
   965      *
   966      * @param  charset
   967      *         The {@linkplain java.nio.charset.Charset} to be used to encode
   968      *         the {@code String}
   969      *
   970      * @return  The resultant byte array
   971      *
   972      * @since  1.6
   973      */
   974     /* don't want dep on Charset
   975     public byte[] getBytes(Charset charset) {
   976         if (charset == null) throw new NullPointerException();
   977         return StringCoding.encode(charset, value, offset, count);
   978     }
   979     */
   980 
   981     /**
   982      * Encodes this {@code String} into a sequence of bytes using the
   983      * platform's default charset, storing the result into a new byte array.
   984      *
   985      * <p> The behavior of this method when this string cannot be encoded in
   986      * the default charset is unspecified.  The {@link
   987      * java.nio.charset.CharsetEncoder} class should be used when more control
   988      * over the encoding process is required.
   989      *
   990      * @return  The resultant byte array
   991      *
   992      * @since      JDK1.1
   993      */
   994     public byte[] getBytes() {
   995         return StringCoding.encode(value, offset, count);
   996     }
   997 
   998     /**
   999      * Compares this string to the specified object.  The result is {@code
  1000      * true} if and only if the argument is not {@code null} and is a {@code
  1001      * String} object that represents the same sequence of characters as this
  1002      * object.
  1003      *
  1004      * @param  anObject
  1005      *         The object to compare this {@code String} against
  1006      *
  1007      * @return  {@code true} if the given object represents a {@code String}
  1008      *          equivalent to this string, {@code false} otherwise
  1009      *
  1010      * @see  #compareTo(String)
  1011      * @see  #equalsIgnoreCase(String)
  1012      */
  1013     public boolean equals(Object anObject) {
  1014         if (this == anObject) {
  1015             return true;
  1016         }
  1017         if (anObject instanceof String) {
  1018             String anotherString = (String)anObject;
  1019             int n = count;
  1020             if (n == anotherString.count) {
  1021                 char v1[] = value;
  1022                 char v2[] = anotherString.value;
  1023                 int i = offset;
  1024                 int j = anotherString.offset;
  1025                 while (n-- != 0) {
  1026                     if (v1[i++] != v2[j++])
  1027                         return false;
  1028                 }
  1029                 return true;
  1030             }
  1031         }
  1032         return false;
  1033     }
  1034 
  1035     /**
  1036      * Compares this string to the specified {@code StringBuffer}.  The result
  1037      * is {@code true} if and only if this {@code String} represents the same
  1038      * sequence of characters as the specified {@code StringBuffer}.
  1039      *
  1040      * @param  sb
  1041      *         The {@code StringBuffer} to compare this {@code String} against
  1042      *
  1043      * @return  {@code true} if this {@code String} represents the same
  1044      *          sequence of characters as the specified {@code StringBuffer},
  1045      *          {@code false} otherwise
  1046      *
  1047      * @since  1.4
  1048      */
  1049     public boolean contentEquals(StringBuffer sb) {
  1050         synchronized(sb) {
  1051             return contentEquals((CharSequence)sb);
  1052         }
  1053     }
  1054 
  1055     /**
  1056      * Compares this string to the specified {@code CharSequence}.  The result
  1057      * is {@code true} if and only if this {@code String} represents the same
  1058      * sequence of char values as the specified sequence.
  1059      *
  1060      * @param  cs
  1061      *         The sequence to compare this {@code String} against
  1062      *
  1063      * @return  {@code true} if this {@code String} represents the same
  1064      *          sequence of char values as the specified sequence, {@code
  1065      *          false} otherwise
  1066      *
  1067      * @since  1.5
  1068      */
  1069     public boolean contentEquals(CharSequence cs) {
  1070         if (count != cs.length())
  1071             return false;
  1072         // Argument is a StringBuffer, StringBuilder
  1073         if (cs instanceof AbstractStringBuilder) {
  1074             char v1[] = value;
  1075             char v2[] = ((AbstractStringBuilder)cs).getValue();
  1076             int i = offset;
  1077             int j = 0;
  1078             int n = count;
  1079             while (n-- != 0) {
  1080                 if (v1[i++] != v2[j++])
  1081                     return false;
  1082             }
  1083             return true;
  1084         }
  1085         // Argument is a String
  1086         if (cs.equals(this))
  1087             return true;
  1088         // Argument is a generic CharSequence
  1089         char v1[] = value;
  1090         int i = offset;
  1091         int j = 0;
  1092         int n = count;
  1093         while (n-- != 0) {
  1094             if (v1[i++] != cs.charAt(j++))
  1095                 return false;
  1096         }
  1097         return true;
  1098     }
  1099 
  1100     /**
  1101      * Compares this {@code String} to another {@code String}, ignoring case
  1102      * considerations.  Two strings are considered equal ignoring case if they
  1103      * are of the same length and corresponding characters in the two strings
  1104      * are equal ignoring case.
  1105      *
  1106      * <p> Two characters {@code c1} and {@code c2} are considered the same
  1107      * ignoring case if at least one of the following is true:
  1108      * <ul>
  1109      *   <li> The two characters are the same (as compared by the
  1110      *        {@code ==} operator)
  1111      *   <li> Applying the method {@link
  1112      *        java.lang.Character#toUpperCase(char)} to each character
  1113      *        produces the same result
  1114      *   <li> Applying the method {@link
  1115      *        java.lang.Character#toLowerCase(char)} to each character
  1116      *        produces the same result
  1117      * </ul>
  1118      *
  1119      * @param  anotherString
  1120      *         The {@code String} to compare this {@code String} against
  1121      *
  1122      * @return  {@code true} if the argument is not {@code null} and it
  1123      *          represents an equivalent {@code String} ignoring case; {@code
  1124      *          false} otherwise
  1125      *
  1126      * @see  #equals(Object)
  1127      */
  1128     public boolean equalsIgnoreCase(String anotherString) {
  1129         return (this == anotherString) ? true :
  1130                (anotherString != null) && (anotherString.count == count) &&
  1131                regionMatches(true, 0, anotherString, 0, count);
  1132     }
  1133 
  1134     /**
  1135      * Compares two strings lexicographically.
  1136      * The comparison is based on the Unicode value of each character in
  1137      * the strings. The character sequence represented by this
  1138      * <code>String</code> object is compared lexicographically to the
  1139      * character sequence represented by the argument string. The result is
  1140      * a negative integer if this <code>String</code> object
  1141      * lexicographically precedes the argument string. The result is a
  1142      * positive integer if this <code>String</code> object lexicographically
  1143      * follows the argument string. The result is zero if the strings
  1144      * are equal; <code>compareTo</code> returns <code>0</code> exactly when
  1145      * the {@link #equals(Object)} method would return <code>true</code>.
  1146      * <p>
  1147      * This is the definition of lexicographic ordering. If two strings are
  1148      * different, then either they have different characters at some index
  1149      * that is a valid index for both strings, or their lengths are different,
  1150      * or both. If they have different characters at one or more index
  1151      * positions, let <i>k</i> be the smallest such index; then the string
  1152      * whose character at position <i>k</i> has the smaller value, as
  1153      * determined by using the &lt; operator, lexicographically precedes the
  1154      * other string. In this case, <code>compareTo</code> returns the
  1155      * difference of the two character values at position <code>k</code> in
  1156      * the two string -- that is, the value:
  1157      * <blockquote><pre>
  1158      * this.charAt(k)-anotherString.charAt(k)
  1159      * </pre></blockquote>
  1160      * If there is no index position at which they differ, then the shorter
  1161      * string lexicographically precedes the longer string. In this case,
  1162      * <code>compareTo</code> returns the difference of the lengths of the
  1163      * strings -- that is, the value:
  1164      * <blockquote><pre>
  1165      * this.length()-anotherString.length()
  1166      * </pre></blockquote>
  1167      *
  1168      * @param   anotherString   the <code>String</code> to be compared.
  1169      * @return  the value <code>0</code> if the argument string is equal to
  1170      *          this string; a value less than <code>0</code> if this string
  1171      *          is lexicographically less than the string argument; and a
  1172      *          value greater than <code>0</code> if this string is
  1173      *          lexicographically greater than the string argument.
  1174      */
  1175     public int compareTo(String anotherString) {
  1176         int len1 = count;
  1177         int len2 = anotherString.count;
  1178         int n = Math.min(len1, len2);
  1179         char v1[] = value;
  1180         char v2[] = anotherString.value;
  1181         int i = offset;
  1182         int j = anotherString.offset;
  1183 
  1184         if (i == j) {
  1185             int k = i;
  1186             int lim = n + i;
  1187             while (k < lim) {
  1188                 char c1 = v1[k];
  1189                 char c2 = v2[k];
  1190                 if (c1 != c2) {
  1191                     return c1 - c2;
  1192                 }
  1193                 k++;
  1194             }
  1195         } else {
  1196             while (n-- != 0) {
  1197                 char c1 = v1[i++];
  1198                 char c2 = v2[j++];
  1199                 if (c1 != c2) {
  1200                     return c1 - c2;
  1201                 }
  1202             }
  1203         }
  1204         return len1 - len2;
  1205     }
  1206 
  1207     /**
  1208      * A Comparator that orders <code>String</code> objects as by
  1209      * <code>compareToIgnoreCase</code>. This comparator is serializable.
  1210      * <p>
  1211      * Note that this Comparator does <em>not</em> take locale into account,
  1212      * and will result in an unsatisfactory ordering for certain locales.
  1213      * The java.text package provides <em>Collators</em> to allow
  1214      * locale-sensitive ordering.
  1215      *
  1216      * @see     java.text.Collator#compare(String, String)
  1217      * @since   1.2
  1218      */
  1219     public static final Comparator<String> CASE_INSENSITIVE_ORDER
  1220                                          = new CaseInsensitiveComparator();
  1221     private static class CaseInsensitiveComparator
  1222                          implements Comparator<String>, java.io.Serializable {
  1223         // use serialVersionUID from JDK 1.2.2 for interoperability
  1224         private static final long serialVersionUID = 8575799808933029326L;
  1225 
  1226         public int compare(String s1, String s2) {
  1227             int n1 = s1.length();
  1228             int n2 = s2.length();
  1229             int min = Math.min(n1, n2);
  1230             for (int i = 0; i < min; i++) {
  1231                 char c1 = s1.charAt(i);
  1232                 char c2 = s2.charAt(i);
  1233                 if (c1 != c2) {
  1234                     c1 = Character.toUpperCase(c1);
  1235                     c2 = Character.toUpperCase(c2);
  1236                     if (c1 != c2) {
  1237                         c1 = Character.toLowerCase(c1);
  1238                         c2 = Character.toLowerCase(c2);
  1239                         if (c1 != c2) {
  1240                             // No overflow because of numeric promotion
  1241                             return c1 - c2;
  1242                         }
  1243                     }
  1244                 }
  1245             }
  1246             return n1 - n2;
  1247         }
  1248     }
  1249 
  1250     /**
  1251      * Compares two strings lexicographically, ignoring case
  1252      * differences. This method returns an integer whose sign is that of
  1253      * calling <code>compareTo</code> with normalized versions of the strings
  1254      * where case differences have been eliminated by calling
  1255      * <code>Character.toLowerCase(Character.toUpperCase(character))</code> on
  1256      * each character.
  1257      * <p>
  1258      * Note that this method does <em>not</em> take locale into account,
  1259      * and will result in an unsatisfactory ordering for certain locales.
  1260      * The java.text package provides <em>collators</em> to allow
  1261      * locale-sensitive ordering.
  1262      *
  1263      * @param   str   the <code>String</code> to be compared.
  1264      * @return  a negative integer, zero, or a positive integer as the
  1265      *          specified String is greater than, equal to, or less
  1266      *          than this String, ignoring case considerations.
  1267      * @see     java.text.Collator#compare(String, String)
  1268      * @since   1.2
  1269      */
  1270     public int compareToIgnoreCase(String str) {
  1271         return CASE_INSENSITIVE_ORDER.compare(this, str);
  1272     }
  1273 
  1274     /**
  1275      * Tests if two string regions are equal.
  1276      * <p>
  1277      * A substring of this <tt>String</tt> object is compared to a substring
  1278      * of the argument other. The result is true if these substrings
  1279      * represent identical character sequences. The substring of this
  1280      * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>
  1281      * and has length <tt>len</tt>. The substring of other to be compared
  1282      * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The
  1283      * result is <tt>false</tt> if and only if at least one of the following
  1284      * is true:
  1285      * <ul><li><tt>toffset</tt> is negative.
  1286      * <li><tt>ooffset</tt> is negative.
  1287      * <li><tt>toffset+len</tt> is greater than the length of this
  1288      * <tt>String</tt> object.
  1289      * <li><tt>ooffset+len</tt> is greater than the length of the other
  1290      * argument.
  1291      * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>
  1292      * such that:
  1293      * <tt>this.charAt(toffset+<i>k</i>)&nbsp;!=&nbsp;other.charAt(ooffset+<i>k</i>)</tt>
  1294      * </ul>
  1295      *
  1296      * @param   toffset   the starting offset of the subregion in this string.
  1297      * @param   other     the string argument.
  1298      * @param   ooffset   the starting offset of the subregion in the string
  1299      *                    argument.
  1300      * @param   len       the number of characters to compare.
  1301      * @return  <code>true</code> if the specified subregion of this string
  1302      *          exactly matches the specified subregion of the string argument;
  1303      *          <code>false</code> otherwise.
  1304      */
  1305     public boolean regionMatches(int toffset, String other, int ooffset,
  1306                                  int len) {
  1307         char ta[] = value;
  1308         int to = offset + toffset;
  1309         char pa[] = other.value;
  1310         int po = other.offset + ooffset;
  1311         // Note: toffset, ooffset, or len might be near -1>>>1.
  1312         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len)
  1313             || (ooffset > (long)other.count - len)) {
  1314             return false;
  1315         }
  1316         while (len-- > 0) {
  1317             if (ta[to++] != pa[po++]) {
  1318                 return false;
  1319             }
  1320         }
  1321         return true;
  1322     }
  1323 
  1324     /**
  1325      * Tests if two string regions are equal.
  1326      * <p>
  1327      * A substring of this <tt>String</tt> object is compared to a substring
  1328      * of the argument <tt>other</tt>. The result is <tt>true</tt> if these
  1329      * substrings represent character sequences that are the same, ignoring
  1330      * case if and only if <tt>ignoreCase</tt> is true. The substring of
  1331      * this <tt>String</tt> object to be compared begins at index
  1332      * <tt>toffset</tt> and has length <tt>len</tt>. The substring of
  1333      * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and
  1334      * has length <tt>len</tt>. The result is <tt>false</tt> if and only if
  1335      * at least one of the following is true:
  1336      * <ul><li><tt>toffset</tt> is negative.
  1337      * <li><tt>ooffset</tt> is negative.
  1338      * <li><tt>toffset+len</tt> is greater than the length of this
  1339      * <tt>String</tt> object.
  1340      * <li><tt>ooffset+len</tt> is greater than the length of the other
  1341      * argument.
  1342      * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative
  1343      * integer <i>k</i> less than <tt>len</tt> such that:
  1344      * <blockquote><pre>
  1345      * this.charAt(toffset+k) != other.charAt(ooffset+k)
  1346      * </pre></blockquote>
  1347      * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative
  1348      * integer <i>k</i> less than <tt>len</tt> such that:
  1349      * <blockquote><pre>
  1350      * Character.toLowerCase(this.charAt(toffset+k)) !=
  1351                Character.toLowerCase(other.charAt(ooffset+k))
  1352      * </pre></blockquote>
  1353      * and:
  1354      * <blockquote><pre>
  1355      * Character.toUpperCase(this.charAt(toffset+k)) !=
  1356      *         Character.toUpperCase(other.charAt(ooffset+k))
  1357      * </pre></blockquote>
  1358      * </ul>
  1359      *
  1360      * @param   ignoreCase   if <code>true</code>, ignore case when comparing
  1361      *                       characters.
  1362      * @param   toffset      the starting offset of the subregion in this
  1363      *                       string.
  1364      * @param   other        the string argument.
  1365      * @param   ooffset      the starting offset of the subregion in the string
  1366      *                       argument.
  1367      * @param   len          the number of characters to compare.
  1368      * @return  <code>true</code> if the specified subregion of this string
  1369      *          matches the specified subregion of the string argument;
  1370      *          <code>false</code> otherwise. Whether the matching is exact
  1371      *          or case insensitive depends on the <code>ignoreCase</code>
  1372      *          argument.
  1373      */
  1374     public boolean regionMatches(boolean ignoreCase, int toffset,
  1375                            String other, int ooffset, int len) {
  1376         char ta[] = value;
  1377         int to = offset + toffset;
  1378         char pa[] = other.value;
  1379         int po = other.offset + ooffset;
  1380         // Note: toffset, ooffset, or len might be near -1>>>1.
  1381         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len) ||
  1382                 (ooffset > (long)other.count - len)) {
  1383             return false;
  1384         }
  1385         while (len-- > 0) {
  1386             char c1 = ta[to++];
  1387             char c2 = pa[po++];
  1388             if (c1 == c2) {
  1389                 continue;
  1390             }
  1391             if (ignoreCase) {
  1392                 // If characters don't match but case may be ignored,
  1393                 // try converting both characters to uppercase.
  1394                 // If the results match, then the comparison scan should
  1395                 // continue.
  1396                 char u1 = Character.toUpperCase(c1);
  1397                 char u2 = Character.toUpperCase(c2);
  1398                 if (u1 == u2) {
  1399                     continue;
  1400                 }
  1401                 // Unfortunately, conversion to uppercase does not work properly
  1402                 // for the Georgian alphabet, which has strange rules about case
  1403                 // conversion.  So we need to make one last check before
  1404                 // exiting.
  1405                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
  1406                     continue;
  1407                 }
  1408             }
  1409             return false;
  1410         }
  1411         return true;
  1412     }
  1413 
  1414     /**
  1415      * Tests if the substring of this string beginning at the
  1416      * specified index starts with the specified prefix.
  1417      *
  1418      * @param   prefix    the prefix.
  1419      * @param   toffset   where to begin looking in this string.
  1420      * @return  <code>true</code> if the character sequence represented by the
  1421      *          argument is a prefix of the substring of this object starting
  1422      *          at index <code>toffset</code>; <code>false</code> otherwise.
  1423      *          The result is <code>false</code> if <code>toffset</code> is
  1424      *          negative or greater than the length of this
  1425      *          <code>String</code> object; otherwise the result is the same
  1426      *          as the result of the expression
  1427      *          <pre>
  1428      *          this.substring(toffset).startsWith(prefix)
  1429      *          </pre>
  1430      */
  1431     public boolean startsWith(String prefix, int toffset) {
  1432         char ta[] = value;
  1433         int to = offset + toffset;
  1434         char pa[] = prefix.value;
  1435         int po = prefix.offset;
  1436         int pc = prefix.count;
  1437         // Note: toffset might be near -1>>>1.
  1438         if ((toffset < 0) || (toffset > count - pc)) {
  1439             return false;
  1440         }
  1441         while (--pc >= 0) {
  1442             if (ta[to++] != pa[po++]) {
  1443                 return false;
  1444             }
  1445         }
  1446         return true;
  1447     }
  1448 
  1449     /**
  1450      * Tests if this string starts with the specified prefix.
  1451      *
  1452      * @param   prefix   the prefix.
  1453      * @return  <code>true</code> if the character sequence represented by the
  1454      *          argument is a prefix of the character sequence represented by
  1455      *          this string; <code>false</code> otherwise.
  1456      *          Note also that <code>true</code> will be returned if the
  1457      *          argument is an empty string or is equal to this
  1458      *          <code>String</code> object as determined by the
  1459      *          {@link #equals(Object)} method.
  1460      * @since   1. 0
  1461      */
  1462     public boolean startsWith(String prefix) {
  1463         return startsWith(prefix, 0);
  1464     }
  1465 
  1466     /**
  1467      * Tests if this string ends with the specified suffix.
  1468      *
  1469      * @param   suffix   the suffix.
  1470      * @return  <code>true</code> if the character sequence represented by the
  1471      *          argument is a suffix of the character sequence represented by
  1472      *          this object; <code>false</code> otherwise. Note that the
  1473      *          result will be <code>true</code> if the argument is the
  1474      *          empty string or is equal to this <code>String</code> object
  1475      *          as determined by the {@link #equals(Object)} method.
  1476      */
  1477     public boolean endsWith(String suffix) {
  1478         return startsWith(suffix, count - suffix.count);
  1479     }
  1480 
  1481     /**
  1482      * Returns a hash code for this string. The hash code for a
  1483      * <code>String</code> object is computed as
  1484      * <blockquote><pre>
  1485      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
  1486      * </pre></blockquote>
  1487      * using <code>int</code> arithmetic, where <code>s[i]</code> is the
  1488      * <i>i</i>th character of the string, <code>n</code> is the length of
  1489      * the string, and <code>^</code> indicates exponentiation.
  1490      * (The hash value of the empty string is zero.)
  1491      *
  1492      * @return  a hash code value for this object.
  1493      */
  1494     public int hashCode() {
  1495         int h = hash;
  1496         if (h == 0 && count > 0) {
  1497             int off = offset;
  1498             char val[] = value;
  1499             int len = count;
  1500 
  1501             for (int i = 0; i < len; i++) {
  1502                 h = 31*h + val[off++];
  1503             }
  1504             hash = h;
  1505         }
  1506         return h;
  1507     }
  1508 
  1509     /**
  1510      * Returns the index within this string of the first occurrence of
  1511      * the specified character. If a character with value
  1512      * <code>ch</code> occurs in the character sequence represented by
  1513      * this <code>String</code> object, then the index (in Unicode
  1514      * code units) of the first such occurrence is returned. For
  1515      * values of <code>ch</code> in the range from 0 to 0xFFFF
  1516      * (inclusive), this is the smallest value <i>k</i> such that:
  1517      * <blockquote><pre>
  1518      * this.charAt(<i>k</i>) == ch
  1519      * </pre></blockquote>
  1520      * is true. For other values of <code>ch</code>, it is the
  1521      * smallest value <i>k</i> such that:
  1522      * <blockquote><pre>
  1523      * this.codePointAt(<i>k</i>) == ch
  1524      * </pre></blockquote>
  1525      * is true. In either case, if no such character occurs in this
  1526      * string, then <code>-1</code> is returned.
  1527      *
  1528      * @param   ch   a character (Unicode code point).
  1529      * @return  the index of the first occurrence of the character in the
  1530      *          character sequence represented by this object, or
  1531      *          <code>-1</code> if the character does not occur.
  1532      */
  1533     public int indexOf(int ch) {
  1534         return indexOf(ch, 0);
  1535     }
  1536 
  1537     /**
  1538      * Returns the index within this string of the first occurrence of the
  1539      * specified character, starting the search at the specified index.
  1540      * <p>
  1541      * If a character with value <code>ch</code> occurs in the
  1542      * character sequence represented by this <code>String</code>
  1543      * object at an index no smaller than <code>fromIndex</code>, then
  1544      * the index of the first such occurrence is returned. For values
  1545      * of <code>ch</code> in the range from 0 to 0xFFFF (inclusive),
  1546      * this is the smallest value <i>k</i> such that:
  1547      * <blockquote><pre>
  1548      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
  1549      * </pre></blockquote>
  1550      * is true. For other values of <code>ch</code>, it is the
  1551      * smallest value <i>k</i> such that:
  1552      * <blockquote><pre>
  1553      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
  1554      * </pre></blockquote>
  1555      * is true. In either case, if no such character occurs in this
  1556      * string at or after position <code>fromIndex</code>, then
  1557      * <code>-1</code> is returned.
  1558      *
  1559      * <p>
  1560      * There is no restriction on the value of <code>fromIndex</code>. If it
  1561      * is negative, it has the same effect as if it were zero: this entire
  1562      * string may be searched. If it is greater than the length of this
  1563      * string, it has the same effect as if it were equal to the length of
  1564      * this string: <code>-1</code> is returned.
  1565      *
  1566      * <p>All indices are specified in <code>char</code> values
  1567      * (Unicode code units).
  1568      *
  1569      * @param   ch          a character (Unicode code point).
  1570      * @param   fromIndex   the index to start the search from.
  1571      * @return  the index of the first occurrence of the character in the
  1572      *          character sequence represented by this object that is greater
  1573      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
  1574      *          if the character does not occur.
  1575      */
  1576     public int indexOf(int ch, int fromIndex) {
  1577         if (fromIndex < 0) {
  1578             fromIndex = 0;
  1579         } else if (fromIndex >= count) {
  1580             // Note: fromIndex might be near -1>>>1.
  1581             return -1;
  1582         }
  1583 
  1584         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
  1585             // handle most cases here (ch is a BMP code point or a
  1586             // negative value (invalid code point))
  1587             final char[] value = this.value;
  1588             final int offset = this.offset;
  1589             final int max = offset + count;
  1590             for (int i = offset + fromIndex; i < max ; i++) {
  1591                 if (value[i] == ch) {
  1592                     return i - offset;
  1593                 }
  1594             }
  1595             return -1;
  1596         } else {
  1597             return indexOfSupplementary(ch, fromIndex);
  1598         }
  1599     }
  1600 
  1601     /**
  1602      * Handles (rare) calls of indexOf with a supplementary character.
  1603      */
  1604     private int indexOfSupplementary(int ch, int fromIndex) {
  1605         if (Character.isValidCodePoint(ch)) {
  1606             final char[] value = this.value;
  1607             final int offset = this.offset;
  1608             final char hi = Character.highSurrogate(ch);
  1609             final char lo = Character.lowSurrogate(ch);
  1610             final int max = offset + count - 1;
  1611             for (int i = offset + fromIndex; i < max; i++) {
  1612                 if (value[i] == hi && value[i+1] == lo) {
  1613                     return i - offset;
  1614                 }
  1615             }
  1616         }
  1617         return -1;
  1618     }
  1619 
  1620     /**
  1621      * Returns the index within this string of the last occurrence of
  1622      * the specified character. For values of <code>ch</code> in the
  1623      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
  1624      * units) returned is the largest value <i>k</i> such that:
  1625      * <blockquote><pre>
  1626      * this.charAt(<i>k</i>) == ch
  1627      * </pre></blockquote>
  1628      * is true. For other values of <code>ch</code>, it is the
  1629      * largest value <i>k</i> such that:
  1630      * <blockquote><pre>
  1631      * this.codePointAt(<i>k</i>) == ch
  1632      * </pre></blockquote>
  1633      * is true.  In either case, if no such character occurs in this
  1634      * string, then <code>-1</code> is returned.  The
  1635      * <code>String</code> is searched backwards starting at the last
  1636      * character.
  1637      *
  1638      * @param   ch   a character (Unicode code point).
  1639      * @return  the index of the last occurrence of the character in the
  1640      *          character sequence represented by this object, or
  1641      *          <code>-1</code> if the character does not occur.
  1642      */
  1643     public int lastIndexOf(int ch) {
  1644         return lastIndexOf(ch, count - 1);
  1645     }
  1646 
  1647     /**
  1648      * Returns the index within this string of the last occurrence of
  1649      * the specified character, searching backward starting at the
  1650      * specified index. For values of <code>ch</code> in the range
  1651      * from 0 to 0xFFFF (inclusive), the index returned is the largest
  1652      * value <i>k</i> such that:
  1653      * <blockquote><pre>
  1654      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
  1655      * </pre></blockquote>
  1656      * is true. For other values of <code>ch</code>, it is the
  1657      * largest value <i>k</i> such that:
  1658      * <blockquote><pre>
  1659      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
  1660      * </pre></blockquote>
  1661      * is true. In either case, if no such character occurs in this
  1662      * string at or before position <code>fromIndex</code>, then
  1663      * <code>-1</code> is returned.
  1664      *
  1665      * <p>All indices are specified in <code>char</code> values
  1666      * (Unicode code units).
  1667      *
  1668      * @param   ch          a character (Unicode code point).
  1669      * @param   fromIndex   the index to start the search from. There is no
  1670      *          restriction on the value of <code>fromIndex</code>. If it is
  1671      *          greater than or equal to the length of this string, it has
  1672      *          the same effect as if it were equal to one less than the
  1673      *          length of this string: this entire string may be searched.
  1674      *          If it is negative, it has the same effect as if it were -1:
  1675      *          -1 is returned.
  1676      * @return  the index of the last occurrence of the character in the
  1677      *          character sequence represented by this object that is less
  1678      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
  1679      *          if the character does not occur before that point.
  1680      */
  1681     public int lastIndexOf(int ch, int fromIndex) {
  1682         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
  1683             // handle most cases here (ch is a BMP code point or a
  1684             // negative value (invalid code point))
  1685             final char[] value = this.value;
  1686             final int offset = this.offset;
  1687             int i = offset + Math.min(fromIndex, count - 1);
  1688             for (; i >= offset ; i--) {
  1689                 if (value[i] == ch) {
  1690                     return i - offset;
  1691                 }
  1692             }
  1693             return -1;
  1694         } else {
  1695             return lastIndexOfSupplementary(ch, fromIndex);
  1696         }
  1697     }
  1698 
  1699     /**
  1700      * Handles (rare) calls of lastIndexOf with a supplementary character.
  1701      */
  1702     private int lastIndexOfSupplementary(int ch, int fromIndex) {
  1703         if (Character.isValidCodePoint(ch)) {
  1704             final char[] value = this.value;
  1705             final int offset = this.offset;
  1706             char hi = Character.highSurrogate(ch);
  1707             char lo = Character.lowSurrogate(ch);
  1708             int i = offset + Math.min(fromIndex, count - 2);
  1709             for (; i >= offset; i--) {
  1710                 if (value[i] == hi && value[i+1] == lo) {
  1711                     return i - offset;
  1712                 }
  1713             }
  1714         }
  1715         return -1;
  1716     }
  1717 
  1718     /**
  1719      * Returns the index within this string of the first occurrence of the
  1720      * specified substring.
  1721      *
  1722      * <p>The returned index is the smallest value <i>k</i> for which:
  1723      * <blockquote><pre>
  1724      * this.startsWith(str, <i>k</i>)
  1725      * </pre></blockquote>
  1726      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1727      *
  1728      * @param   str   the substring to search for.
  1729      * @return  the index of the first occurrence of the specified substring,
  1730      *          or {@code -1} if there is no such occurrence.
  1731      */
  1732     public int indexOf(String str) {
  1733         return indexOf(str, 0);
  1734     }
  1735 
  1736     /**
  1737      * Returns the index within this string of the first occurrence of the
  1738      * specified substring, starting at the specified index.
  1739      *
  1740      * <p>The returned index is the smallest value <i>k</i> for which:
  1741      * <blockquote><pre>
  1742      * <i>k</i> &gt;= fromIndex && this.startsWith(str, <i>k</i>)
  1743      * </pre></blockquote>
  1744      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1745      *
  1746      * @param   str         the substring to search for.
  1747      * @param   fromIndex   the index from which to start the search.
  1748      * @return  the index of the first occurrence of the specified substring,
  1749      *          starting at the specified index,
  1750      *          or {@code -1} if there is no such occurrence.
  1751      */
  1752     public int indexOf(String str, int fromIndex) {
  1753         return indexOf(value, offset, count,
  1754                        str.value, str.offset, str.count, fromIndex);
  1755     }
  1756 
  1757     /**
  1758      * Code shared by String and StringBuffer to do searches. The
  1759      * source is the character array being searched, and the target
  1760      * is the string being searched for.
  1761      *
  1762      * @param   source       the characters being searched.
  1763      * @param   sourceOffset offset of the source string.
  1764      * @param   sourceCount  count of the source string.
  1765      * @param   target       the characters being searched for.
  1766      * @param   targetOffset offset of the target string.
  1767      * @param   targetCount  count of the target string.
  1768      * @param   fromIndex    the index to begin searching from.
  1769      */
  1770     static int indexOf(char[] source, int sourceOffset, int sourceCount,
  1771                        char[] target, int targetOffset, int targetCount,
  1772                        int fromIndex) {
  1773         if (fromIndex >= sourceCount) {
  1774             return (targetCount == 0 ? sourceCount : -1);
  1775         }
  1776         if (fromIndex < 0) {
  1777             fromIndex = 0;
  1778         }
  1779         if (targetCount == 0) {
  1780             return fromIndex;
  1781         }
  1782 
  1783         char first  = target[targetOffset];
  1784         int max = sourceOffset + (sourceCount - targetCount);
  1785 
  1786         for (int i = sourceOffset + fromIndex; i <= max; i++) {
  1787             /* Look for first character. */
  1788             if (source[i] != first) {
  1789                 while (++i <= max && source[i] != first);
  1790             }
  1791 
  1792             /* Found first character, now look at the rest of v2 */
  1793             if (i <= max) {
  1794                 int j = i + 1;
  1795                 int end = j + targetCount - 1;
  1796                 for (int k = targetOffset + 1; j < end && source[j] ==
  1797                          target[k]; j++, k++);
  1798 
  1799                 if (j == end) {
  1800                     /* Found whole string. */
  1801                     return i - sourceOffset;
  1802                 }
  1803             }
  1804         }
  1805         return -1;
  1806     }
  1807 
  1808     /**
  1809      * Returns the index within this string of the last occurrence of the
  1810      * specified substring.  The last occurrence of the empty string ""
  1811      * is considered to occur at the index value {@code this.length()}.
  1812      *
  1813      * <p>The returned index is the largest value <i>k</i> for which:
  1814      * <blockquote><pre>
  1815      * this.startsWith(str, <i>k</i>)
  1816      * </pre></blockquote>
  1817      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1818      *
  1819      * @param   str   the substring to search for.
  1820      * @return  the index of the last occurrence of the specified substring,
  1821      *          or {@code -1} if there is no such occurrence.
  1822      */
  1823     public int lastIndexOf(String str) {
  1824         return lastIndexOf(str, count);
  1825     }
  1826 
  1827     /**
  1828      * Returns the index within this string of the last occurrence of the
  1829      * specified substring, searching backward starting at the specified index.
  1830      *
  1831      * <p>The returned index is the largest value <i>k</i> for which:
  1832      * <blockquote><pre>
  1833      * <i>k</i> &lt;= fromIndex && this.startsWith(str, <i>k</i>)
  1834      * </pre></blockquote>
  1835      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1836      *
  1837      * @param   str         the substring to search for.
  1838      * @param   fromIndex   the index to start the search from.
  1839      * @return  the index of the last occurrence of the specified substring,
  1840      *          searching backward from the specified index,
  1841      *          or {@code -1} if there is no such occurrence.
  1842      */
  1843     public int lastIndexOf(String str, int fromIndex) {
  1844         return lastIndexOf(value, offset, count,
  1845                            str.value, str.offset, str.count, fromIndex);
  1846     }
  1847 
  1848     /**
  1849      * Code shared by String and StringBuffer to do searches. The
  1850      * source is the character array being searched, and the target
  1851      * is the string being searched for.
  1852      *
  1853      * @param   source       the characters being searched.
  1854      * @param   sourceOffset offset of the source string.
  1855      * @param   sourceCount  count of the source string.
  1856      * @param   target       the characters being searched for.
  1857      * @param   targetOffset offset of the target string.
  1858      * @param   targetCount  count of the target string.
  1859      * @param   fromIndex    the index to begin searching from.
  1860      */
  1861     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
  1862                            char[] target, int targetOffset, int targetCount,
  1863                            int fromIndex) {
  1864         /*
  1865          * Check arguments; return immediately where possible. For
  1866          * consistency, don't check for null str.
  1867          */
  1868         int rightIndex = sourceCount - targetCount;
  1869         if (fromIndex < 0) {
  1870             return -1;
  1871         }
  1872         if (fromIndex > rightIndex) {
  1873             fromIndex = rightIndex;
  1874         }
  1875         /* Empty string always matches. */
  1876         if (targetCount == 0) {
  1877             return fromIndex;
  1878         }
  1879 
  1880         int strLastIndex = targetOffset + targetCount - 1;
  1881         char strLastChar = target[strLastIndex];
  1882         int min = sourceOffset + targetCount - 1;
  1883         int i = min + fromIndex;
  1884 
  1885     startSearchForLastChar:
  1886         while (true) {
  1887             while (i >= min && source[i] != strLastChar) {
  1888                 i--;
  1889             }
  1890             if (i < min) {
  1891                 return -1;
  1892             }
  1893             int j = i - 1;
  1894             int start = j - (targetCount - 1);
  1895             int k = strLastIndex - 1;
  1896 
  1897             while (j > start) {
  1898                 if (source[j--] != target[k--]) {
  1899                     i--;
  1900                     continue startSearchForLastChar;
  1901                 }
  1902             }
  1903             return start - sourceOffset + 1;
  1904         }
  1905     }
  1906 
  1907     /**
  1908      * Returns a new string that is a substring of this string. The
  1909      * substring begins with the character at the specified index and
  1910      * extends to the end of this string. <p>
  1911      * Examples:
  1912      * <blockquote><pre>
  1913      * "unhappy".substring(2) returns "happy"
  1914      * "Harbison".substring(3) returns "bison"
  1915      * "emptiness".substring(9) returns "" (an empty string)
  1916      * </pre></blockquote>
  1917      *
  1918      * @param      beginIndex   the beginning index, inclusive.
  1919      * @return     the specified substring.
  1920      * @exception  IndexOutOfBoundsException  if
  1921      *             <code>beginIndex</code> is negative or larger than the
  1922      *             length of this <code>String</code> object.
  1923      */
  1924     public String substring(int beginIndex) {
  1925         return substring(beginIndex, count);
  1926     }
  1927 
  1928     /**
  1929      * Returns a new string that is a substring of this string. The
  1930      * substring begins at the specified <code>beginIndex</code> and
  1931      * extends to the character at index <code>endIndex - 1</code>.
  1932      * Thus the length of the substring is <code>endIndex-beginIndex</code>.
  1933      * <p>
  1934      * Examples:
  1935      * <blockquote><pre>
  1936      * "hamburger".substring(4, 8) returns "urge"
  1937      * "smiles".substring(1, 5) returns "mile"
  1938      * </pre></blockquote>
  1939      *
  1940      * @param      beginIndex   the beginning index, inclusive.
  1941      * @param      endIndex     the ending index, exclusive.
  1942      * @return     the specified substring.
  1943      * @exception  IndexOutOfBoundsException  if the
  1944      *             <code>beginIndex</code> is negative, or
  1945      *             <code>endIndex</code> is larger than the length of
  1946      *             this <code>String</code> object, or
  1947      *             <code>beginIndex</code> is larger than
  1948      *             <code>endIndex</code>.
  1949      */
  1950     public String substring(int beginIndex, int endIndex) {
  1951         if (beginIndex < 0) {
  1952             throw new StringIndexOutOfBoundsException(beginIndex);
  1953         }
  1954         if (endIndex > count) {
  1955             throw new StringIndexOutOfBoundsException(endIndex);
  1956         }
  1957         if (beginIndex > endIndex) {
  1958             throw new StringIndexOutOfBoundsException(endIndex - beginIndex);
  1959         }
  1960         return ((beginIndex == 0) && (endIndex == count)) ? this :
  1961             new String(offset + beginIndex, endIndex - beginIndex, value);
  1962     }
  1963 
  1964     /**
  1965      * Returns a new character sequence that is a subsequence of this sequence.
  1966      *
  1967      * <p> An invocation of this method of the form
  1968      *
  1969      * <blockquote><pre>
  1970      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
  1971      *
  1972      * behaves in exactly the same way as the invocation
  1973      *
  1974      * <blockquote><pre>
  1975      * str.substring(begin,&nbsp;end)</pre></blockquote>
  1976      *
  1977      * This method is defined so that the <tt>String</tt> class can implement
  1978      * the {@link CharSequence} interface. </p>
  1979      *
  1980      * @param      beginIndex   the begin index, inclusive.
  1981      * @param      endIndex     the end index, exclusive.
  1982      * @return     the specified subsequence.
  1983      *
  1984      * @throws  IndexOutOfBoundsException
  1985      *          if <tt>beginIndex</tt> or <tt>endIndex</tt> are negative,
  1986      *          if <tt>endIndex</tt> is greater than <tt>length()</tt>,
  1987      *          or if <tt>beginIndex</tt> is greater than <tt>startIndex</tt>
  1988      *
  1989      * @since 1.4
  1990      * @spec JSR-51
  1991      */
  1992     public CharSequence subSequence(int beginIndex, int endIndex) {
  1993         return this.substring(beginIndex, endIndex);
  1994     }
  1995 
  1996     /**
  1997      * Concatenates the specified string to the end of this string.
  1998      * <p>
  1999      * If the length of the argument string is <code>0</code>, then this
  2000      * <code>String</code> object is returned. Otherwise, a new
  2001      * <code>String</code> object is created, representing a character
  2002      * sequence that is the concatenation of the character sequence
  2003      * represented by this <code>String</code> object and the character
  2004      * sequence represented by the argument string.<p>
  2005      * Examples:
  2006      * <blockquote><pre>
  2007      * "cares".concat("s") returns "caress"
  2008      * "to".concat("get").concat("her") returns "together"
  2009      * </pre></blockquote>
  2010      *
  2011      * @param   str   the <code>String</code> that is concatenated to the end
  2012      *                of this <code>String</code>.
  2013      * @return  a string that represents the concatenation of this object's
  2014      *          characters followed by the string argument's characters.
  2015      */
  2016     public String concat(String str) {
  2017         int otherLen = str.length();
  2018         if (otherLen == 0) {
  2019             return this;
  2020         }
  2021         char buf[] = new char[count + otherLen];
  2022         getChars(0, count, buf, 0);
  2023         str.getChars(0, otherLen, buf, count);
  2024         return new String(0, count + otherLen, buf);
  2025     }
  2026 
  2027     /**
  2028      * Returns a new string resulting from replacing all occurrences of
  2029      * <code>oldChar</code> in this string with <code>newChar</code>.
  2030      * <p>
  2031      * If the character <code>oldChar</code> does not occur in the
  2032      * character sequence represented by this <code>String</code> object,
  2033      * then a reference to this <code>String</code> object is returned.
  2034      * Otherwise, a new <code>String</code> object is created that
  2035      * represents a character sequence identical to the character sequence
  2036      * represented by this <code>String</code> object, except that every
  2037      * occurrence of <code>oldChar</code> is replaced by an occurrence
  2038      * of <code>newChar</code>.
  2039      * <p>
  2040      * Examples:
  2041      * <blockquote><pre>
  2042      * "mesquite in your cellar".replace('e', 'o')
  2043      *         returns "mosquito in your collar"
  2044      * "the war of baronets".replace('r', 'y')
  2045      *         returns "the way of bayonets"
  2046      * "sparring with a purple porpoise".replace('p', 't')
  2047      *         returns "starring with a turtle tortoise"
  2048      * "JonL".replace('q', 'x') returns "JonL" (no change)
  2049      * </pre></blockquote>
  2050      *
  2051      * @param   oldChar   the old character.
  2052      * @param   newChar   the new character.
  2053      * @return  a string derived from this string by replacing every
  2054      *          occurrence of <code>oldChar</code> with <code>newChar</code>.
  2055      */
  2056     public String replace(char oldChar, char newChar) {
  2057         if (oldChar != newChar) {
  2058             int len = count;
  2059             int i = -1;
  2060             char[] val = value; /* avoid getfield opcode */
  2061             int off = offset;   /* avoid getfield opcode */
  2062 
  2063             while (++i < len) {
  2064                 if (val[off + i] == oldChar) {
  2065                     break;
  2066                 }
  2067             }
  2068             if (i < len) {
  2069                 char buf[] = new char[len];
  2070                 for (int j = 0 ; j < i ; j++) {
  2071                     buf[j] = val[off+j];
  2072                 }
  2073                 while (i < len) {
  2074                     char c = val[off + i];
  2075                     buf[i] = (c == oldChar) ? newChar : c;
  2076                     i++;
  2077                 }
  2078                 return new String(0, len, buf);
  2079             }
  2080         }
  2081         return this;
  2082     }
  2083 
  2084     /**
  2085      * Tells whether or not this string matches the given <a
  2086      * href="../util/regex/Pattern.html#sum">regular expression</a>.
  2087      *
  2088      * <p> An invocation of this method of the form
  2089      * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the
  2090      * same result as the expression
  2091      *
  2092      * <blockquote><tt> {@link java.util.regex.Pattern}.{@link
  2093      * java.util.regex.Pattern#matches(String,CharSequence)
  2094      * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>
  2095      *
  2096      * @param   regex
  2097      *          the regular expression to which this string is to be matched
  2098      *
  2099      * @return  <tt>true</tt> if, and only if, this string matches the
  2100      *          given regular expression
  2101      *
  2102      * @throws  PatternSyntaxException
  2103      *          if the regular expression's syntax is invalid
  2104      *
  2105      * @see java.util.regex.Pattern
  2106      *
  2107      * @since 1.4
  2108      * @spec JSR-51
  2109      */
  2110     public boolean matches(String regex) {
  2111         return Pattern.matches(regex, this);
  2112     }
  2113 
  2114     /**
  2115      * Returns true if and only if this string contains the specified
  2116      * sequence of char values.
  2117      *
  2118      * @param s the sequence to search for
  2119      * @return true if this string contains <code>s</code>, false otherwise
  2120      * @throws NullPointerException if <code>s</code> is <code>null</code>
  2121      * @since 1.5
  2122      */
  2123     public boolean contains(CharSequence s) {
  2124         return indexOf(s.toString()) > -1;
  2125     }
  2126 
  2127     /**
  2128      * Replaces the first substring of this string that matches the given <a
  2129      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
  2130      * given replacement.
  2131      *
  2132      * <p> An invocation of this method of the form
  2133      * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
  2134      * yields exactly the same result as the expression
  2135      *
  2136      * <blockquote><tt>
  2137      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2138      * compile}(</tt><i>regex</i><tt>).{@link
  2139      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
  2140      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst
  2141      * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>
  2142      *
  2143      *<p>
  2144      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
  2145      * replacement string may cause the results to be different than if it were
  2146      * being treated as a literal replacement string; see
  2147      * {@link java.util.regex.Matcher#replaceFirst}.
  2148      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
  2149      * meaning of these characters, if desired.
  2150      *
  2151      * @param   regex
  2152      *          the regular expression to which this string is to be matched
  2153      * @param   replacement
  2154      *          the string to be substituted for the first match
  2155      *
  2156      * @return  The resulting <tt>String</tt>
  2157      *
  2158      * @throws  PatternSyntaxException
  2159      *          if the regular expression's syntax is invalid
  2160      *
  2161      * @see java.util.regex.Pattern
  2162      *
  2163      * @since 1.4
  2164      * @spec JSR-51
  2165      */
  2166     public String replaceFirst(String regex, String replacement) {
  2167         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
  2168     }
  2169 
  2170     /**
  2171      * Replaces each substring of this string that matches the given <a
  2172      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
  2173      * given replacement.
  2174      *
  2175      * <p> An invocation of this method of the form
  2176      * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
  2177      * yields exactly the same result as the expression
  2178      *
  2179      * <blockquote><tt>
  2180      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2181      * compile}(</tt><i>regex</i><tt>).{@link
  2182      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
  2183      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll
  2184      * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote>
  2185      *
  2186      *<p>
  2187      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
  2188      * replacement string may cause the results to be different than if it were
  2189      * being treated as a literal replacement string; see
  2190      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
  2191      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
  2192      * meaning of these characters, if desired.
  2193      *
  2194      * @param   regex
  2195      *          the regular expression to which this string is to be matched
  2196      * @param   replacement
  2197      *          the string to be substituted for each match
  2198      *
  2199      * @return  The resulting <tt>String</tt>
  2200      *
  2201      * @throws  PatternSyntaxException
  2202      *          if the regular expression's syntax is invalid
  2203      *
  2204      * @see java.util.regex.Pattern
  2205      *
  2206      * @since 1.4
  2207      * @spec JSR-51
  2208      */
  2209     public String replaceAll(String regex, String replacement) {
  2210         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
  2211     }
  2212 
  2213     /**
  2214      * Replaces each substring of this string that matches the literal target
  2215      * sequence with the specified literal replacement sequence. The
  2216      * replacement proceeds from the beginning of the string to the end, for
  2217      * example, replacing "aa" with "b" in the string "aaa" will result in
  2218      * "ba" rather than "ab".
  2219      *
  2220      * @param  target The sequence of char values to be replaced
  2221      * @param  replacement The replacement sequence of char values
  2222      * @return  The resulting string
  2223      * @throws NullPointerException if <code>target</code> or
  2224      *         <code>replacement</code> is <code>null</code>.
  2225      * @since 1.5
  2226      */
  2227     public String replace(CharSequence target, CharSequence replacement) {
  2228         return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
  2229             this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
  2230     }
  2231 
  2232     /**
  2233      * Splits this string around matches of the given
  2234      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
  2235      *
  2236      * <p> The array returned by this method contains each substring of this
  2237      * string that is terminated by another substring that matches the given
  2238      * expression or is terminated by the end of the string.  The substrings in
  2239      * the array are in the order in which they occur in this string.  If the
  2240      * expression does not match any part of the input then the resulting array
  2241      * has just one element, namely this string.
  2242      *
  2243      * <p> The <tt>limit</tt> parameter controls the number of times the
  2244      * pattern is applied and therefore affects the length of the resulting
  2245      * array.  If the limit <i>n</i> is greater than zero then the pattern
  2246      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
  2247      * length will be no greater than <i>n</i>, and the array's last entry
  2248      * will contain all input beyond the last matched delimiter.  If <i>n</i>
  2249      * is non-positive then the pattern will be applied as many times as
  2250      * possible and the array can have any length.  If <i>n</i> is zero then
  2251      * the pattern will be applied as many times as possible, the array can
  2252      * have any length, and trailing empty strings will be discarded.
  2253      *
  2254      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the
  2255      * following results with these parameters:
  2256      *
  2257      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
  2258      * <tr>
  2259      *     <th>Regex</th>
  2260      *     <th>Limit</th>
  2261      *     <th>Result</th>
  2262      * </tr>
  2263      * <tr><td align=center>:</td>
  2264      *     <td align=center>2</td>
  2265      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
  2266      * <tr><td align=center>:</td>
  2267      *     <td align=center>5</td>
  2268      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2269      * <tr><td align=center>:</td>
  2270      *     <td align=center>-2</td>
  2271      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2272      * <tr><td align=center>o</td>
  2273      *     <td align=center>5</td>
  2274      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  2275      * <tr><td align=center>o</td>
  2276      *     <td align=center>-2</td>
  2277      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  2278      * <tr><td align=center>o</td>
  2279      *     <td align=center>0</td>
  2280      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  2281      * </table></blockquote>
  2282      *
  2283      * <p> An invocation of this method of the form
  2284      * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
  2285      * yields the same result as the expression
  2286      *
  2287      * <blockquote>
  2288      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2289      * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link
  2290      * java.util.regex.Pattern#split(java.lang.CharSequence,int)
  2291      * split}<tt>(</tt><i>str</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
  2292      * </blockquote>
  2293      *
  2294      *
  2295      * @param  regex
  2296      *         the delimiting regular expression
  2297      *
  2298      * @param  limit
  2299      *         the result threshold, as described above
  2300      *
  2301      * @return  the array of strings computed by splitting this string
  2302      *          around matches of the given regular expression
  2303      *
  2304      * @throws  PatternSyntaxException
  2305      *          if the regular expression's syntax is invalid
  2306      *
  2307      * @see java.util.regex.Pattern
  2308      *
  2309      * @since 1.4
  2310      * @spec JSR-51
  2311      */
  2312     public String[] split(String regex, int limit) {
  2313         /* fastpath if the regex is a
  2314            (1)one-char String and this character is not one of the
  2315               RegEx's meta characters ".$|()[{^?*+\\", or
  2316            (2)two-char String and the first char is the backslash and
  2317               the second is not the ascii digit or ascii letter.
  2318         */
  2319         char ch = 0;
  2320         if (((regex.count == 1 &&
  2321              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
  2322              (regex.length() == 2 &&
  2323               regex.charAt(0) == '\\' &&
  2324               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
  2325               ((ch-'a')|('z'-ch)) < 0 &&
  2326               ((ch-'A')|('Z'-ch)) < 0)) &&
  2327             (ch < Character.MIN_HIGH_SURROGATE ||
  2328              ch > Character.MAX_LOW_SURROGATE))
  2329         {/*
  2330             int off = 0;
  2331             int next = 0;
  2332             boolean limited = limit > 0;
  2333             ArrayList<String> list = new ArrayList<String>();
  2334             while ((next = indexOf(ch, off)) != -1) {
  2335                 if (!limited || list.size() < limit - 1) {
  2336                     list.add(substring(off, next));
  2337                     off = next + 1;
  2338                 } else {    // last one
  2339                     //assert (list.size() == limit - 1);
  2340                     list.add(substring(off, count));
  2341                     off = count;
  2342                     break;
  2343                 }
  2344             }
  2345             // If no match was found, return this
  2346             if (off == 0)
  2347                 return new String[] { this };
  2348 
  2349             // Add remaining segment
  2350             if (!limited || list.size() < limit)
  2351                 list.add(substring(off, count));
  2352 
  2353             // Construct result
  2354             int resultSize = list.size();
  2355             if (limit == 0)
  2356                 while (resultSize > 0 && list.get(resultSize-1).length() == 0)
  2357                     resultSize--;
  2358             String[] result = new String[resultSize];
  2359             return list.subList(0, resultSize).toArray(result);
  2360         */}
  2361         return Pattern.compile(regex).split(this, limit);
  2362     }
  2363 
  2364     /**
  2365      * Splits this string around matches of the given <a
  2366      * href="../util/regex/Pattern.html#sum">regular expression</a>.
  2367      *
  2368      * <p> This method works as if by invoking the two-argument {@link
  2369      * #split(String, int) split} method with the given expression and a limit
  2370      * argument of zero.  Trailing empty strings are therefore not included in
  2371      * the resulting array.
  2372      *
  2373      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following
  2374      * results with these expressions:
  2375      *
  2376      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
  2377      * <tr>
  2378      *  <th>Regex</th>
  2379      *  <th>Result</th>
  2380      * </tr>
  2381      * <tr><td align=center>:</td>
  2382      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2383      * <tr><td align=center>o</td>
  2384      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  2385      * </table></blockquote>
  2386      *
  2387      *
  2388      * @param  regex
  2389      *         the delimiting regular expression
  2390      *
  2391      * @return  the array of strings computed by splitting this string
  2392      *          around matches of the given regular expression
  2393      *
  2394      * @throws  PatternSyntaxException
  2395      *          if the regular expression's syntax is invalid
  2396      *
  2397      * @see java.util.regex.Pattern
  2398      *
  2399      * @since 1.4
  2400      * @spec JSR-51
  2401      */
  2402     public String[] split(String regex) {
  2403         return split(regex, 0);
  2404     }
  2405 
  2406     /**
  2407      * Converts all of the characters in this <code>String</code> to lower
  2408      * case using the rules of the given <code>Locale</code>.  Case mapping is based
  2409      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
  2410      * class. Since case mappings are not always 1:1 char mappings, the resulting
  2411      * <code>String</code> may be a different length than the original <code>String</code>.
  2412      * <p>
  2413      * Examples of lowercase  mappings are in the following table:
  2414      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
  2415      * <tr>
  2416      *   <th>Language Code of Locale</th>
  2417      *   <th>Upper Case</th>
  2418      *   <th>Lower Case</th>
  2419      *   <th>Description</th>
  2420      * </tr>
  2421      * <tr>
  2422      *   <td>tr (Turkish)</td>
  2423      *   <td>&#92;u0130</td>
  2424      *   <td>&#92;u0069</td>
  2425      *   <td>capital letter I with dot above -&gt; small letter i</td>
  2426      * </tr>
  2427      * <tr>
  2428      *   <td>tr (Turkish)</td>
  2429      *   <td>&#92;u0049</td>
  2430      *   <td>&#92;u0131</td>
  2431      *   <td>capital letter I -&gt; small letter dotless i </td>
  2432      * </tr>
  2433      * <tr>
  2434      *   <td>(all)</td>
  2435      *   <td>French Fries</td>
  2436      *   <td>french fries</td>
  2437      *   <td>lowercased all chars in String</td>
  2438      * </tr>
  2439      * <tr>
  2440      *   <td>(all)</td>
  2441      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
  2442      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
  2443      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
  2444      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
  2445      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
  2446      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
  2447      *   <td>lowercased all chars in String</td>
  2448      * </tr>
  2449      * </table>
  2450      *
  2451      * @param locale use the case transformation rules for this locale
  2452      * @return the <code>String</code>, converted to lowercase.
  2453      * @see     java.lang.String#toLowerCase()
  2454      * @see     java.lang.String#toUpperCase()
  2455      * @see     java.lang.String#toUpperCase(Locale)
  2456      * @since   1.1
  2457      */
  2458 //    public String toLowerCase(Locale locale) {
  2459 //        if (locale == null) {
  2460 //            throw new NullPointerException();
  2461 //        }
  2462 //
  2463 //        int     firstUpper;
  2464 //
  2465 //        /* Now check if there are any characters that need to be changed. */
  2466 //        scan: {
  2467 //            for (firstUpper = 0 ; firstUpper < count; ) {
  2468 //                char c = value[offset+firstUpper];
  2469 //                if ((c >= Character.MIN_HIGH_SURROGATE) &&
  2470 //                    (c <= Character.MAX_HIGH_SURROGATE)) {
  2471 //                    int supplChar = codePointAt(firstUpper);
  2472 //                    if (supplChar != Character.toLowerCase(supplChar)) {
  2473 //                        break scan;
  2474 //                    }
  2475 //                    firstUpper += Character.charCount(supplChar);
  2476 //                } else {
  2477 //                    if (c != Character.toLowerCase(c)) {
  2478 //                        break scan;
  2479 //                    }
  2480 //                    firstUpper++;
  2481 //                }
  2482 //            }
  2483 //            return this;
  2484 //        }
  2485 //
  2486 //        char[]  result = new char[count];
  2487 //        int     resultOffset = 0;  /* result may grow, so i+resultOffset
  2488 //                                    * is the write location in result */
  2489 //
  2490 //        /* Just copy the first few lowerCase characters. */
  2491 //        System.arraycopy(value, offset, result, 0, firstUpper);
  2492 //
  2493 //        String lang = locale.getLanguage();
  2494 //        boolean localeDependent =
  2495 //            (lang == "tr" || lang == "az" || lang == "lt");
  2496 //        char[] lowerCharArray;
  2497 //        int lowerChar;
  2498 //        int srcChar;
  2499 //        int srcCount;
  2500 //        for (int i = firstUpper; i < count; i += srcCount) {
  2501 //            srcChar = (int)value[offset+i];
  2502 //            if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
  2503 //                (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
  2504 //                srcChar = codePointAt(i);
  2505 //                srcCount = Character.charCount(srcChar);
  2506 //            } else {
  2507 //                srcCount = 1;
  2508 //            }
  2509 //            if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
  2510 //                lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
  2511 //            } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT
  2512 //                lowerChar = Character.ERROR;
  2513 //            } else {
  2514 //                lowerChar = Character.toLowerCase(srcChar);
  2515 //            }
  2516 //            if ((lowerChar == Character.ERROR) ||
  2517 //                (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
  2518 //                if (lowerChar == Character.ERROR) {
  2519 //                     if (!localeDependent && srcChar == '\u0130') {
  2520 //                         lowerCharArray =
  2521 //                             ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);
  2522 //                     } else {
  2523 //                        lowerCharArray =
  2524 //                            ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
  2525 //                     }
  2526 //                } else if (srcCount == 2) {
  2527 //                    resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
  2528 //                    continue;
  2529 //                } else {
  2530 //                    lowerCharArray = Character.toChars(lowerChar);
  2531 //                }
  2532 //
  2533 //                /* Grow result if needed */
  2534 //                int mapLen = lowerCharArray.length;
  2535 //                if (mapLen > srcCount) {
  2536 //                    char[] result2 = new char[result.length + mapLen - srcCount];
  2537 //                    System.arraycopy(result, 0, result2, 0,
  2538 //                        i + resultOffset);
  2539 //                    result = result2;
  2540 //                }
  2541 //                for (int x=0; x<mapLen; ++x) {
  2542 //                    result[i+resultOffset+x] = lowerCharArray[x];
  2543 //                }
  2544 //                resultOffset += (mapLen - srcCount);
  2545 //            } else {
  2546 //                result[i+resultOffset] = (char)lowerChar;
  2547 //            }
  2548 //        }
  2549 //        return new String(0, count+resultOffset, result);
  2550 //    }
  2551 
  2552     /**
  2553      * Converts all of the characters in this <code>String</code> to lower
  2554      * case using the rules of the default locale. This is equivalent to calling
  2555      * <code>toLowerCase(Locale.getDefault())</code>.
  2556      * <p>
  2557      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
  2558      * results if used for strings that are intended to be interpreted locale
  2559      * independently.
  2560      * Examples are programming language identifiers, protocol keys, and HTML
  2561      * tags.
  2562      * For instance, <code>"TITLE".toLowerCase()</code> in a Turkish locale
  2563      * returns <code>"t\u005Cu0131tle"</code>, where '\u005Cu0131' is the
  2564      * LATIN SMALL LETTER DOTLESS I character.
  2565      * To obtain correct results for locale insensitive strings, use
  2566      * <code>toLowerCase(Locale.ENGLISH)</code>.
  2567      * <p>
  2568      * @return  the <code>String</code>, converted to lowercase.
  2569      * @see     java.lang.String#toLowerCase(Locale)
  2570      */
  2571     public String toLowerCase() {
  2572         return toLowerCase(Locale.getDefault());
  2573     }
  2574 
  2575     /**
  2576      * Converts all of the characters in this <code>String</code> to upper
  2577      * case using the rules of the given <code>Locale</code>. Case mapping is based
  2578      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
  2579      * class. Since case mappings are not always 1:1 char mappings, the resulting
  2580      * <code>String</code> may be a different length than the original <code>String</code>.
  2581      * <p>
  2582      * Examples of locale-sensitive and 1:M case mappings are in the following table.
  2583      * <p>
  2584      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
  2585      * <tr>
  2586      *   <th>Language Code of Locale</th>
  2587      *   <th>Lower Case</th>
  2588      *   <th>Upper Case</th>
  2589      *   <th>Description</th>
  2590      * </tr>
  2591      * <tr>
  2592      *   <td>tr (Turkish)</td>
  2593      *   <td>&#92;u0069</td>
  2594      *   <td>&#92;u0130</td>
  2595      *   <td>small letter i -&gt; capital letter I with dot above</td>
  2596      * </tr>
  2597      * <tr>
  2598      *   <td>tr (Turkish)</td>
  2599      *   <td>&#92;u0131</td>
  2600      *   <td>&#92;u0049</td>
  2601      *   <td>small letter dotless i -&gt; capital letter I</td>
  2602      * </tr>
  2603      * <tr>
  2604      *   <td>(all)</td>
  2605      *   <td>&#92;u00df</td>
  2606      *   <td>&#92;u0053 &#92;u0053</td>
  2607      *   <td>small letter sharp s -&gt; two letters: SS</td>
  2608      * </tr>
  2609      * <tr>
  2610      *   <td>(all)</td>
  2611      *   <td>Fahrvergn&uuml;gen</td>
  2612      *   <td>FAHRVERGN&Uuml;GEN</td>
  2613      *   <td></td>
  2614      * </tr>
  2615      * </table>
  2616      * @param locale use the case transformation rules for this locale
  2617      * @return the <code>String</code>, converted to uppercase.
  2618      * @see     java.lang.String#toUpperCase()
  2619      * @see     java.lang.String#toLowerCase()
  2620      * @see     java.lang.String#toLowerCase(Locale)
  2621      * @since   1.1
  2622      */
  2623     /* not for javascript 
  2624     public String toUpperCase(Locale locale) {
  2625         if (locale == null) {
  2626             throw new NullPointerException();
  2627         }
  2628 
  2629         int     firstLower;
  2630 
  2631         // Now check if there are any characters that need to be changed. 
  2632         scan: {
  2633             for (firstLower = 0 ; firstLower < count; ) {
  2634                 int c = (int)value[offset+firstLower];
  2635                 int srcCount;
  2636                 if ((c >= Character.MIN_HIGH_SURROGATE) &&
  2637                     (c <= Character.MAX_HIGH_SURROGATE)) {
  2638                     c = codePointAt(firstLower);
  2639                     srcCount = Character.charCount(c);
  2640                 } else {
  2641                     srcCount = 1;
  2642                 }
  2643                 int upperCaseChar = Character.toUpperCaseEx(c);
  2644                 if ((upperCaseChar == Character.ERROR) ||
  2645                     (c != upperCaseChar)) {
  2646                     break scan;
  2647                 }
  2648                 firstLower += srcCount;
  2649             }
  2650             return this;
  2651         }
  2652 
  2653         char[]  result       = new char[count]; /* may grow *
  2654         int     resultOffset = 0;  /* result may grow, so i+resultOffset
  2655                                     * is the write location in result *
  2656 
  2657         /* Just copy the first few upperCase characters. *
  2658         System.arraycopy(value, offset, result, 0, firstLower);
  2659 
  2660         String lang = locale.getLanguage();
  2661         boolean localeDependent =
  2662             (lang == "tr" || lang == "az" || lang == "lt");
  2663         char[] upperCharArray;
  2664         int upperChar;
  2665         int srcChar;
  2666         int srcCount;
  2667         for (int i = firstLower; i < count; i += srcCount) {
  2668             srcChar = (int)value[offset+i];
  2669             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
  2670                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
  2671                 srcChar = codePointAt(i);
  2672                 srcCount = Character.charCount(srcChar);
  2673             } else {
  2674                 srcCount = 1;
  2675             }
  2676             if (localeDependent) {
  2677                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
  2678             } else {
  2679                 upperChar = Character.toUpperCaseEx(srcChar);
  2680             }
  2681             if ((upperChar == Character.ERROR) ||
  2682                 (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
  2683                 if (upperChar == Character.ERROR) {
  2684                     if (localeDependent) {
  2685                         upperCharArray =
  2686                             ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
  2687                     } else {
  2688                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
  2689                     }
  2690                 } else if (srcCount == 2) {
  2691                     resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
  2692                     continue;
  2693                 } else {
  2694                     upperCharArray = Character.toChars(upperChar);
  2695                 }
  2696 
  2697                 /* Grow result if needed *
  2698                 int mapLen = upperCharArray.length;
  2699                 if (mapLen > srcCount) {
  2700                     char[] result2 = new char[result.length + mapLen - srcCount];
  2701                     System.arraycopy(result, 0, result2, 0,
  2702                         i + resultOffset);
  2703                     result = result2;
  2704                 }
  2705                 for (int x=0; x<mapLen; ++x) {
  2706                     result[i+resultOffset+x] = upperCharArray[x];
  2707                 }
  2708                 resultOffset += (mapLen - srcCount);
  2709             } else {
  2710                 result[i+resultOffset] = (char)upperChar;
  2711             }
  2712         }
  2713         return new String(0, count+resultOffset, result);
  2714     }
  2715     */
  2716 
  2717     /**
  2718      * Converts all of the characters in this <code>String</code> to upper
  2719      * case using the rules of the default locale. This method is equivalent to
  2720      * <code>toUpperCase(Locale.getDefault())</code>.
  2721      * <p>
  2722      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
  2723      * results if used for strings that are intended to be interpreted locale
  2724      * independently.
  2725      * Examples are programming language identifiers, protocol keys, and HTML
  2726      * tags.
  2727      * For instance, <code>"title".toUpperCase()</code> in a Turkish locale
  2728      * returns <code>"T\u005Cu0130TLE"</code>, where '\u005Cu0130' is the
  2729      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
  2730      * To obtain correct results for locale insensitive strings, use
  2731      * <code>toUpperCase(Locale.ENGLISH)</code>.
  2732      * <p>
  2733      * @return  the <code>String</code>, converted to uppercase.
  2734      * @see     java.lang.String#toUpperCase(Locale)
  2735      */
  2736     public String toUpperCase() {
  2737         throw new UnsupportedOperationException();
  2738     }
  2739 
  2740     /**
  2741      * Returns a copy of the string, with leading and trailing whitespace
  2742      * omitted.
  2743      * <p>
  2744      * If this <code>String</code> object represents an empty character
  2745      * sequence, or the first and last characters of character sequence
  2746      * represented by this <code>String</code> object both have codes
  2747      * greater than <code>'&#92;u0020'</code> (the space character), then a
  2748      * reference to this <code>String</code> object is returned.
  2749      * <p>
  2750      * Otherwise, if there is no character with a code greater than
  2751      * <code>'&#92;u0020'</code> in the string, then a new
  2752      * <code>String</code> object representing an empty string is created
  2753      * and returned.
  2754      * <p>
  2755      * Otherwise, let <i>k</i> be the index of the first character in the
  2756      * string whose code is greater than <code>'&#92;u0020'</code>, and let
  2757      * <i>m</i> be the index of the last character in the string whose code
  2758      * is greater than <code>'&#92;u0020'</code>. A new <code>String</code>
  2759      * object is created, representing the substring of this string that
  2760      * begins with the character at index <i>k</i> and ends with the
  2761      * character at index <i>m</i>-that is, the result of
  2762      * <code>this.substring(<i>k</i>,&nbsp;<i>m</i>+1)</code>.
  2763      * <p>
  2764      * This method may be used to trim whitespace (as defined above) from
  2765      * the beginning and end of a string.
  2766      *
  2767      * @return  A copy of this string with leading and trailing white
  2768      *          space removed, or this string if it has no leading or
  2769      *          trailing white space.
  2770      */
  2771     public String trim() {
  2772         int len = count;
  2773         int st = 0;
  2774         int off = offset;      /* avoid getfield opcode */
  2775         char[] val = value;    /* avoid getfield opcode */
  2776 
  2777         while ((st < len) && (val[off + st] <= ' ')) {
  2778             st++;
  2779         }
  2780         while ((st < len) && (val[off + len - 1] <= ' ')) {
  2781             len--;
  2782         }
  2783         return ((st > 0) || (len < count)) ? substring(st, len) : this;
  2784     }
  2785 
  2786     /**
  2787      * This object (which is already a string!) is itself returned.
  2788      *
  2789      * @return  the string itself.
  2790      */
  2791     public String toString() {
  2792         return this;
  2793     }
  2794 
  2795     /**
  2796      * Converts this string to a new character array.
  2797      *
  2798      * @return  a newly allocated character array whose length is the length
  2799      *          of this string and whose contents are initialized to contain
  2800      *          the character sequence represented by this string.
  2801      */
  2802     public char[] toCharArray() {
  2803         char result[] = new char[count];
  2804         getChars(0, count, result, 0);
  2805         return result;
  2806     }
  2807 
  2808     /**
  2809      * Returns a formatted string using the specified format string and
  2810      * arguments.
  2811      *
  2812      * <p> The locale always used is the one returned by {@link
  2813      * java.util.Locale#getDefault() Locale.getDefault()}.
  2814      *
  2815      * @param  format
  2816      *         A <a href="../util/Formatter.html#syntax">format string</a>
  2817      *
  2818      * @param  args
  2819      *         Arguments referenced by the format specifiers in the format
  2820      *         string.  If there are more arguments than format specifiers, the
  2821      *         extra arguments are ignored.  The number of arguments is
  2822      *         variable and may be zero.  The maximum number of arguments is
  2823      *         limited by the maximum dimension of a Java array as defined by
  2824      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
  2825      *         The behaviour on a
  2826      *         <tt>null</tt> argument depends on the <a
  2827      *         href="../util/Formatter.html#syntax">conversion</a>.
  2828      *
  2829      * @throws  IllegalFormatException
  2830      *          If a format string contains an illegal syntax, a format
  2831      *          specifier that is incompatible with the given arguments,
  2832      *          insufficient arguments given the format string, or other
  2833      *          illegal conditions.  For specification of all possible
  2834      *          formatting errors, see the <a
  2835      *          href="../util/Formatter.html#detail">Details</a> section of the
  2836      *          formatter class specification.
  2837      *
  2838      * @throws  NullPointerException
  2839      *          If the <tt>format</tt> is <tt>null</tt>
  2840      *
  2841      * @return  A formatted string
  2842      *
  2843      * @see  java.util.Formatter
  2844      * @since  1.5
  2845      */
  2846     public static String format(String format, Object ... args) {
  2847         return new Formatter().format(format, args).toString();
  2848     }
  2849 
  2850     /**
  2851      * Returns a formatted string using the specified locale, format string,
  2852      * and arguments.
  2853      *
  2854      * @param  l
  2855      *         The {@linkplain java.util.Locale locale} to apply during
  2856      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
  2857      *         is applied.
  2858      *
  2859      * @param  format
  2860      *         A <a href="../util/Formatter.html#syntax">format string</a>
  2861      *
  2862      * @param  args
  2863      *         Arguments referenced by the format specifiers in the format
  2864      *         string.  If there are more arguments than format specifiers, the
  2865      *         extra arguments are ignored.  The number of arguments is
  2866      *         variable and may be zero.  The maximum number of arguments is
  2867      *         limited by the maximum dimension of a Java array as defined by
  2868      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
  2869      *         The behaviour on a
  2870      *         <tt>null</tt> argument depends on the <a
  2871      *         href="../util/Formatter.html#syntax">conversion</a>.
  2872      *
  2873      * @throws  IllegalFormatException
  2874      *          If a format string contains an illegal syntax, a format
  2875      *          specifier that is incompatible with the given arguments,
  2876      *          insufficient arguments given the format string, or other
  2877      *          illegal conditions.  For specification of all possible
  2878      *          formatting errors, see the <a
  2879      *          href="../util/Formatter.html#detail">Details</a> section of the
  2880      *          formatter class specification
  2881      *
  2882      * @throws  NullPointerException
  2883      *          If the <tt>format</tt> is <tt>null</tt>
  2884      *
  2885      * @return  A formatted string
  2886      *
  2887      * @see  java.util.Formatter
  2888      * @since  1.5
  2889      */
  2890 //    public static String format(Locale l, String format, Object ... args) {
  2891 //        return new Formatter(l).format(format, args).toString();
  2892 //    }
  2893 
  2894     /**
  2895      * Returns the string representation of the <code>Object</code> argument.
  2896      *
  2897      * @param   obj   an <code>Object</code>.
  2898      * @return  if the argument is <code>null</code>, then a string equal to
  2899      *          <code>"null"</code>; otherwise, the value of
  2900      *          <code>obj.toString()</code> is returned.
  2901      * @see     java.lang.Object#toString()
  2902      */
  2903     public static String valueOf(Object obj) {
  2904         return (obj == null) ? "null" : obj.toString();
  2905     }
  2906 
  2907     /**
  2908      * Returns the string representation of the <code>char</code> array
  2909      * argument. The contents of the character array are copied; subsequent
  2910      * modification of the character array does not affect the newly
  2911      * created string.
  2912      *
  2913      * @param   data   a <code>char</code> array.
  2914      * @return  a newly allocated string representing the same sequence of
  2915      *          characters contained in the character array argument.
  2916      */
  2917     public static String valueOf(char data[]) {
  2918         return new String(data);
  2919     }
  2920 
  2921     /**
  2922      * Returns the string representation of a specific subarray of the
  2923      * <code>char</code> array argument.
  2924      * <p>
  2925      * The <code>offset</code> argument is the index of the first
  2926      * character of the subarray. The <code>count</code> argument
  2927      * specifies the length of the subarray. The contents of the subarray
  2928      * are copied; subsequent modification of the character array does not
  2929      * affect the newly created string.
  2930      *
  2931      * @param   data     the character array.
  2932      * @param   offset   the initial offset into the value of the
  2933      *                  <code>String</code>.
  2934      * @param   count    the length of the value of the <code>String</code>.
  2935      * @return  a string representing the sequence of characters contained
  2936      *          in the subarray of the character array argument.
  2937      * @exception IndexOutOfBoundsException if <code>offset</code> is
  2938      *          negative, or <code>count</code> is negative, or
  2939      *          <code>offset+count</code> is larger than
  2940      *          <code>data.length</code>.
  2941      */
  2942     public static String valueOf(char data[], int offset, int count) {
  2943         return new String(data, offset, count);
  2944     }
  2945 
  2946     /**
  2947      * Returns a String that represents the character sequence in the
  2948      * array specified.
  2949      *
  2950      * @param   data     the character array.
  2951      * @param   offset   initial offset of the subarray.
  2952      * @param   count    length of the subarray.
  2953      * @return  a <code>String</code> that contains the characters of the
  2954      *          specified subarray of the character array.
  2955      */
  2956     public static String copyValueOf(char data[], int offset, int count) {
  2957         // All public String constructors now copy the data.
  2958         return new String(data, offset, count);
  2959     }
  2960 
  2961     /**
  2962      * Returns a String that represents the character sequence in the
  2963      * array specified.
  2964      *
  2965      * @param   data   the character array.
  2966      * @return  a <code>String</code> that contains the characters of the
  2967      *          character array.
  2968      */
  2969     public static String copyValueOf(char data[]) {
  2970         return copyValueOf(data, 0, data.length);
  2971     }
  2972 
  2973     /**
  2974      * Returns the string representation of the <code>boolean</code> argument.
  2975      *
  2976      * @param   b   a <code>boolean</code>.
  2977      * @return  if the argument is <code>true</code>, a string equal to
  2978      *          <code>"true"</code> is returned; otherwise, a string equal to
  2979      *          <code>"false"</code> is returned.
  2980      */
  2981     public static String valueOf(boolean b) {
  2982         return b ? "true" : "false";
  2983     }
  2984 
  2985     /**
  2986      * Returns the string representation of the <code>char</code>
  2987      * argument.
  2988      *
  2989      * @param   c   a <code>char</code>.
  2990      * @return  a string of length <code>1</code> containing
  2991      *          as its single character the argument <code>c</code>.
  2992      */
  2993     public static String valueOf(char c) {
  2994         char data[] = {c};
  2995         return new String(0, 1, data);
  2996     }
  2997 
  2998     /**
  2999      * Returns the string representation of the <code>int</code> argument.
  3000      * <p>
  3001      * The representation is exactly the one returned by the
  3002      * <code>Integer.toString</code> method of one argument.
  3003      *
  3004      * @param   i   an <code>int</code>.
  3005      * @return  a string representation of the <code>int</code> argument.
  3006      * @see     java.lang.Integer#toString(int, int)
  3007      */
  3008     public static String valueOf(int i) {
  3009         return Integer.toString(i);
  3010     }
  3011 
  3012     /**
  3013      * Returns the string representation of the <code>long</code> argument.
  3014      * <p>
  3015      * The representation is exactly the one returned by the
  3016      * <code>Long.toString</code> method of one argument.
  3017      *
  3018      * @param   l   a <code>long</code>.
  3019      * @return  a string representation of the <code>long</code> argument.
  3020      * @see     java.lang.Long#toString(long)
  3021      */
  3022     public static String valueOf(long l) {
  3023         return Long.toString(l);
  3024     }
  3025 
  3026     /**
  3027      * Returns the string representation of the <code>float</code> argument.
  3028      * <p>
  3029      * The representation is exactly the one returned by the
  3030      * <code>Float.toString</code> method of one argument.
  3031      *
  3032      * @param   f   a <code>float</code>.
  3033      * @return  a string representation of the <code>float</code> argument.
  3034      * @see     java.lang.Float#toString(float)
  3035      */
  3036     public static String valueOf(float f) {
  3037         return Float.toString(f);
  3038     }
  3039 
  3040     /**
  3041      * Returns the string representation of the <code>double</code> argument.
  3042      * <p>
  3043      * The representation is exactly the one returned by the
  3044      * <code>Double.toString</code> method of one argument.
  3045      *
  3046      * @param   d   a <code>double</code>.
  3047      * @return  a  string representation of the <code>double</code> argument.
  3048      * @see     java.lang.Double#toString(double)
  3049      */
  3050     public static String valueOf(double d) {
  3051         return Double.toString(d);
  3052     }
  3053 
  3054     /**
  3055      * Returns a canonical representation for the string object.
  3056      * <p>
  3057      * A pool of strings, initially empty, is maintained privately by the
  3058      * class <code>String</code>.
  3059      * <p>
  3060      * When the intern method is invoked, if the pool already contains a
  3061      * string equal to this <code>String</code> object as determined by
  3062      * the {@link #equals(Object)} method, then the string from the pool is
  3063      * returned. Otherwise, this <code>String</code> object is added to the
  3064      * pool and a reference to this <code>String</code> object is returned.
  3065      * <p>
  3066      * It follows that for any two strings <code>s</code> and <code>t</code>,
  3067      * <code>s.intern()&nbsp;==&nbsp;t.intern()</code> is <code>true</code>
  3068      * if and only if <code>s.equals(t)</code> is <code>true</code>.
  3069      * <p>
  3070      * All literal strings and string-valued constant expressions are
  3071      * interned. String literals are defined in section 3.10.5 of the
  3072      * <cite>The Java&trade; Language Specification</cite>.
  3073      *
  3074      * @return  a string that has the same contents as this string, but is
  3075      *          guaranteed to be from a pool of unique strings.
  3076      */
  3077     public native String intern();
  3078 
  3079     static char[] copyOfRange(char[] original, int from, int to) {
  3080         int newLength = to - from;
  3081         if (newLength < 0) {
  3082             throw new IllegalArgumentException(from + " > " + to);
  3083         }
  3084         char[] copy = new char[newLength];
  3085         System.arraycopy(original, from, copy, 0,
  3086             Math.min(original.length - from, newLength));
  3087         return copy;
  3088     }
  3089     static char[] copyOf(char[] original, int newLength) {
  3090         char[] copy = new char[newLength];
  3091         System.arraycopy(original, 0, copy, 0,
  3092             Math.min(original.length, newLength));
  3093         return copy;
  3094     }
  3095 
  3096 }