emul/src/main/java/java/lang/String.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sat, 29 Sep 2012 06:41:48 +0200
branchemul
changeset 54 e7160b348c34
parent 51 506ef276a0db
child 61 4b334950499d
permissions -rw-r--r--
Removing unused import
     1 /*
     2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 
    28 import java.io.ObjectStreamField;
    29 import java.io.UnsupportedEncodingException;
    30 import java.nio.charset.Charset;
    31 import java.util.ArrayList;
    32 import java.util.Arrays;
    33 import java.util.Comparator;
    34 import java.util.Formatter;
    35 import java.util.Locale;
    36 import java.util.regex.Matcher;
    37 import java.util.regex.Pattern;
    38 import java.util.regex.PatternSyntaxException;
    39 
    40 /**
    41  * The <code>String</code> class represents character strings. All
    42  * string literals in Java programs, such as <code>"abc"</code>, are
    43  * implemented as instances of this class.
    44  * <p>
    45  * Strings are constant; their values cannot be changed after they
    46  * are created. String buffers support mutable strings.
    47  * Because String objects are immutable they can be shared. For example:
    48  * <p><blockquote><pre>
    49  *     String str = "abc";
    50  * </pre></blockquote><p>
    51  * is equivalent to:
    52  * <p><blockquote><pre>
    53  *     char data[] = {'a', 'b', 'c'};
    54  *     String str = new String(data);
    55  * </pre></blockquote><p>
    56  * Here are some more examples of how strings can be used:
    57  * <p><blockquote><pre>
    58  *     System.out.println("abc");
    59  *     String cde = "cde";
    60  *     System.out.println("abc" + cde);
    61  *     String c = "abc".substring(2,3);
    62  *     String d = cde.substring(1, 2);
    63  * </pre></blockquote>
    64  * <p>
    65  * The class <code>String</code> includes methods for examining
    66  * individual characters of the sequence, for comparing strings, for
    67  * searching strings, for extracting substrings, and for creating a
    68  * copy of a string with all characters translated to uppercase or to
    69  * lowercase. Case mapping is based on the Unicode Standard version
    70  * specified by the {@link java.lang.Character Character} class.
    71  * <p>
    72  * The Java language provides special support for the string
    73  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
    74  * other objects to strings. String concatenation is implemented
    75  * through the <code>StringBuilder</code>(or <code>StringBuffer</code>)
    76  * class and its <code>append</code> method.
    77  * String conversions are implemented through the method
    78  * <code>toString</code>, defined by <code>Object</code> and
    79  * inherited by all classes in Java. For additional information on
    80  * string concatenation and conversion, see Gosling, Joy, and Steele,
    81  * <i>The Java Language Specification</i>.
    82  *
    83  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
    84  * or method in this class will cause a {@link NullPointerException} to be
    85  * thrown.
    86  *
    87  * <p>A <code>String</code> represents a string in the UTF-16 format
    88  * in which <em>supplementary characters</em> are represented by <em>surrogate
    89  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
    90  * Character Representations</a> in the <code>Character</code> class for
    91  * more information).
    92  * Index values refer to <code>char</code> code units, so a supplementary
    93  * character uses two positions in a <code>String</code>.
    94  * <p>The <code>String</code> class provides methods for dealing with
    95  * Unicode code points (i.e., characters), in addition to those for
    96  * dealing with Unicode code units (i.e., <code>char</code> values).
    97  *
    98  * @author  Lee Boynton
    99  * @author  Arthur van Hoff
   100  * @author  Martin Buchholz
   101  * @author  Ulf Zibis
   102  * @see     java.lang.Object#toString()
   103  * @see     java.lang.StringBuffer
   104  * @see     java.lang.StringBuilder
   105  * @see     java.nio.charset.Charset
   106  * @since   JDK1.0
   107  */
   108 
   109 public final class String
   110     implements java.io.Serializable, Comparable<String>, CharSequence
   111 {
   112     /** The value is used for character storage. */
   113     private final char value[];
   114 
   115     /** The offset is the first index of the storage that is used. */
   116     private final int offset;
   117 
   118     /** The count is the number of characters in the String. */
   119     private final int count;
   120 
   121     /** Cache the hash code for the string */
   122     private int hash; // Default to 0
   123 
   124     /** use serialVersionUID from JDK 1.0.2 for interoperability */
   125     private static final long serialVersionUID = -6849794470754667710L;
   126 
   127     /**
   128      * Class String is special cased within the Serialization Stream Protocol.
   129      *
   130      * A String instance is written initially into an ObjectOutputStream in the
   131      * following format:
   132      * <pre>
   133      *      <code>TC_STRING</code> (utf String)
   134      * </pre>
   135      * The String is written by method <code>DataOutput.writeUTF</code>.
   136      * A new handle is generated to  refer to all future references to the
   137      * string instance within the stream.
   138      */
   139     private static final ObjectStreamField[] serialPersistentFields =
   140         new ObjectStreamField[0];
   141 
   142     /**
   143      * Initializes a newly created {@code String} object so that it represents
   144      * an empty character sequence.  Note that use of this constructor is
   145      * unnecessary since Strings are immutable.
   146      */
   147     public String() {
   148         this.offset = 0;
   149         this.count = 0;
   150         this.value = new char[0];
   151     }
   152 
   153     /**
   154      * Initializes a newly created {@code String} object so that it represents
   155      * the same sequence of characters as the argument; in other words, the
   156      * newly created string is a copy of the argument string. Unless an
   157      * explicit copy of {@code original} is needed, use of this constructor is
   158      * unnecessary since Strings are immutable.
   159      *
   160      * @param  original
   161      *         A {@code String}
   162      */
   163     public String(String original) {
   164         int size = original.count;
   165         char[] originalValue = original.value;
   166         char[] v;
   167         if (originalValue.length > size) {
   168             // The array representing the String is bigger than the new
   169             // String itself.  Perhaps this constructor is being called
   170             // in order to trim the baggage, so make a copy of the array.
   171             int off = original.offset;
   172             v = Arrays.copyOfRange(originalValue, off, off+size);
   173         } else {
   174             // The array representing the String is the same
   175             // size as the String, so no point in making a copy.
   176             v = originalValue;
   177         }
   178         this.offset = 0;
   179         this.count = size;
   180         this.value = v;
   181     }
   182 
   183     /**
   184      * Allocates a new {@code String} so that it represents the sequence of
   185      * characters currently contained in the character array argument. The
   186      * contents of the character array are copied; subsequent modification of
   187      * the character array does not affect the newly created string.
   188      *
   189      * @param  value
   190      *         The initial value of the string
   191      */
   192     public String(char value[]) {
   193         int size = value.length;
   194         this.offset = 0;
   195         this.count = size;
   196         this.value = Arrays.copyOf(value, size);
   197     }
   198 
   199     /**
   200      * Allocates a new {@code String} that contains characters from a subarray
   201      * of the character array argument. The {@code offset} argument is the
   202      * index of the first character of the subarray and the {@code count}
   203      * argument specifies the length of the subarray. The contents of the
   204      * subarray are copied; subsequent modification of the character array does
   205      * not affect the newly created string.
   206      *
   207      * @param  value
   208      *         Array that is the source of characters
   209      *
   210      * @param  offset
   211      *         The initial offset
   212      *
   213      * @param  count
   214      *         The length
   215      *
   216      * @throws  IndexOutOfBoundsException
   217      *          If the {@code offset} and {@code count} arguments index
   218      *          characters outside the bounds of the {@code value} array
   219      */
   220     public String(char value[], int offset, int count) {
   221         if (offset < 0) {
   222             throw new StringIndexOutOfBoundsException(offset);
   223         }
   224         if (count < 0) {
   225             throw new StringIndexOutOfBoundsException(count);
   226         }
   227         // Note: offset or count might be near -1>>>1.
   228         if (offset > value.length - count) {
   229             throw new StringIndexOutOfBoundsException(offset + count);
   230         }
   231         this.offset = 0;
   232         this.count = count;
   233         this.value = Arrays.copyOfRange(value, offset, offset+count);
   234     }
   235 
   236     /**
   237      * Allocates a new {@code String} that contains characters from a subarray
   238      * of the <a href="Character.html#unicode">Unicode code point</a> array
   239      * argument.  The {@code offset} argument is the index of the first code
   240      * point of the subarray and the {@code count} argument specifies the
   241      * length of the subarray.  The contents of the subarray are converted to
   242      * {@code char}s; subsequent modification of the {@code int} array does not
   243      * affect the newly created string.
   244      *
   245      * @param  codePoints
   246      *         Array that is the source of Unicode code points
   247      *
   248      * @param  offset
   249      *         The initial offset
   250      *
   251      * @param  count
   252      *         The length
   253      *
   254      * @throws  IllegalArgumentException
   255      *          If any invalid Unicode code point is found in {@code
   256      *          codePoints}
   257      *
   258      * @throws  IndexOutOfBoundsException
   259      *          If the {@code offset} and {@code count} arguments index
   260      *          characters outside the bounds of the {@code codePoints} array
   261      *
   262      * @since  1.5
   263      */
   264     public String(int[] codePoints, int offset, int count) {
   265         if (offset < 0) {
   266             throw new StringIndexOutOfBoundsException(offset);
   267         }
   268         if (count < 0) {
   269             throw new StringIndexOutOfBoundsException(count);
   270         }
   271         // Note: offset or count might be near -1>>>1.
   272         if (offset > codePoints.length - count) {
   273             throw new StringIndexOutOfBoundsException(offset + count);
   274         }
   275 
   276         final int end = offset + count;
   277 
   278         // Pass 1: Compute precise size of char[]
   279         int n = count;
   280         for (int i = offset; i < end; i++) {
   281             int c = codePoints[i];
   282             if (Character.isBmpCodePoint(c))
   283                 continue;
   284             else if (Character.isValidCodePoint(c))
   285                 n++;
   286             else throw new IllegalArgumentException(Integer.toString(c));
   287         }
   288 
   289         // Pass 2: Allocate and fill in char[]
   290         final char[] v = new char[n];
   291 
   292         for (int i = offset, j = 0; i < end; i++, j++) {
   293             int c = codePoints[i];
   294             if (Character.isBmpCodePoint(c))
   295                 v[j] = (char) c;
   296             else
   297                 Character.toSurrogates(c, v, j++);
   298         }
   299 
   300         this.value  = v;
   301         this.count  = n;
   302         this.offset = 0;
   303     }
   304 
   305     /**
   306      * Allocates a new {@code String} constructed from a subarray of an array
   307      * of 8-bit integer values.
   308      *
   309      * <p> The {@code offset} argument is the index of the first byte of the
   310      * subarray, and the {@code count} argument specifies the length of the
   311      * subarray.
   312      *
   313      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
   314      * specified in the method above.
   315      *
   316      * @deprecated This method does not properly convert bytes into characters.
   317      * As of JDK&nbsp;1.1, the preferred way to do this is via the
   318      * {@code String} constructors that take a {@link
   319      * java.nio.charset.Charset}, charset name, or that use the platform's
   320      * default charset.
   321      *
   322      * @param  ascii
   323      *         The bytes to be converted to characters
   324      *
   325      * @param  hibyte
   326      *         The top 8 bits of each 16-bit Unicode code unit
   327      *
   328      * @param  offset
   329      *         The initial offset
   330      * @param  count
   331      *         The length
   332      *
   333      * @throws  IndexOutOfBoundsException
   334      *          If the {@code offset} or {@code count} argument is invalid
   335      *
   336      * @see  #String(byte[], int)
   337      * @see  #String(byte[], int, int, java.lang.String)
   338      * @see  #String(byte[], int, int, java.nio.charset.Charset)
   339      * @see  #String(byte[], int, int)
   340      * @see  #String(byte[], java.lang.String)
   341      * @see  #String(byte[], java.nio.charset.Charset)
   342      * @see  #String(byte[])
   343      */
   344     @Deprecated
   345     public String(byte ascii[], int hibyte, int offset, int count) {
   346         checkBounds(ascii, offset, count);
   347         char value[] = new char[count];
   348 
   349         if (hibyte == 0) {
   350             for (int i = count ; i-- > 0 ;) {
   351                 value[i] = (char) (ascii[i + offset] & 0xff);
   352             }
   353         } else {
   354             hibyte <<= 8;
   355             for (int i = count ; i-- > 0 ;) {
   356                 value[i] = (char) (hibyte | (ascii[i + offset] & 0xff));
   357             }
   358         }
   359         this.offset = 0;
   360         this.count = count;
   361         this.value = value;
   362     }
   363 
   364     /**
   365      * Allocates a new {@code String} containing characters constructed from
   366      * an array of 8-bit integer values. Each character <i>c</i>in the
   367      * resulting string is constructed from the corresponding component
   368      * <i>b</i> in the byte array such that:
   369      *
   370      * <blockquote><pre>
   371      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
   372      *                         | (<b><i>b</i></b> &amp; 0xff))
   373      * </pre></blockquote>
   374      *
   375      * @deprecated  This method does not properly convert bytes into
   376      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
   377      * {@code String} constructors that take a {@link
   378      * java.nio.charset.Charset}, charset name, or that use the platform's
   379      * default charset.
   380      *
   381      * @param  ascii
   382      *         The bytes to be converted to characters
   383      *
   384      * @param  hibyte
   385      *         The top 8 bits of each 16-bit Unicode code unit
   386      *
   387      * @see  #String(byte[], int, int, java.lang.String)
   388      * @see  #String(byte[], int, int, java.nio.charset.Charset)
   389      * @see  #String(byte[], int, int)
   390      * @see  #String(byte[], java.lang.String)
   391      * @see  #String(byte[], java.nio.charset.Charset)
   392      * @see  #String(byte[])
   393      */
   394     @Deprecated
   395     public String(byte ascii[], int hibyte) {
   396         this(ascii, hibyte, 0, ascii.length);
   397     }
   398 
   399     /* Common private utility method used to bounds check the byte array
   400      * and requested offset & length values used by the String(byte[],..)
   401      * constructors.
   402      */
   403     private static void checkBounds(byte[] bytes, int offset, int length) {
   404         if (length < 0)
   405             throw new StringIndexOutOfBoundsException(length);
   406         if (offset < 0)
   407             throw new StringIndexOutOfBoundsException(offset);
   408         if (offset > bytes.length - length)
   409             throw new StringIndexOutOfBoundsException(offset + length);
   410     }
   411 
   412     /**
   413      * Constructs a new {@code String} by decoding the specified subarray of
   414      * bytes using the specified charset.  The length of the new {@code String}
   415      * is a function of the charset, and hence may not be equal to the length
   416      * of the subarray.
   417      *
   418      * <p> The behavior of this constructor when the given bytes are not valid
   419      * in the given charset is unspecified.  The {@link
   420      * java.nio.charset.CharsetDecoder} class should be used when more control
   421      * over the decoding process is required.
   422      *
   423      * @param  bytes
   424      *         The bytes to be decoded into characters
   425      *
   426      * @param  offset
   427      *         The index of the first byte to decode
   428      *
   429      * @param  length
   430      *         The number of bytes to decode
   431 
   432      * @param  charsetName
   433      *         The name of a supported {@linkplain java.nio.charset.Charset
   434      *         charset}
   435      *
   436      * @throws  UnsupportedEncodingException
   437      *          If the named charset is not supported
   438      *
   439      * @throws  IndexOutOfBoundsException
   440      *          If the {@code offset} and {@code length} arguments index
   441      *          characters outside the bounds of the {@code bytes} array
   442      *
   443      * @since  JDK1.1
   444      */
   445     public String(byte bytes[], int offset, int length, String charsetName)
   446         throws UnsupportedEncodingException
   447     {
   448         if (charsetName == null)
   449             throw new NullPointerException("charsetName");
   450         checkBounds(bytes, offset, length);
   451         char[] v = StringCoding.decode(charsetName, bytes, offset, length);
   452         this.offset = 0;
   453         this.count = v.length;
   454         this.value = v;
   455     }
   456 
   457     /**
   458      * Constructs a new {@code String} by decoding the specified subarray of
   459      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
   460      * The length of the new {@code String} is a function of the charset, and
   461      * hence may not be equal to the length of the subarray.
   462      *
   463      * <p> This method always replaces malformed-input and unmappable-character
   464      * sequences with this charset's default replacement string.  The {@link
   465      * java.nio.charset.CharsetDecoder} class should be used when more control
   466      * over the decoding process is required.
   467      *
   468      * @param  bytes
   469      *         The bytes to be decoded into characters
   470      *
   471      * @param  offset
   472      *         The index of the first byte to decode
   473      *
   474      * @param  length
   475      *         The number of bytes to decode
   476      *
   477      * @param  charset
   478      *         The {@linkplain java.nio.charset.Charset charset} to be used to
   479      *         decode the {@code bytes}
   480      *
   481      * @throws  IndexOutOfBoundsException
   482      *          If the {@code offset} and {@code length} arguments index
   483      *          characters outside the bounds of the {@code bytes} array
   484      *
   485      * @since  1.6
   486      */
   487     public String(byte bytes[], int offset, int length, Charset charset) {
   488         if (charset == null)
   489             throw new NullPointerException("charset");
   490         checkBounds(bytes, offset, length);
   491         char[] v = StringCoding.decode(charset, bytes, offset, length);
   492         this.offset = 0;
   493         this.count = v.length;
   494         this.value = v;
   495     }
   496 
   497     /**
   498      * Constructs a new {@code String} by decoding the specified array of bytes
   499      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
   500      * length of the new {@code String} is a function of the charset, and hence
   501      * may not be equal to the length of the byte array.
   502      *
   503      * <p> The behavior of this constructor when the given bytes are not valid
   504      * in the given charset is unspecified.  The {@link
   505      * java.nio.charset.CharsetDecoder} class should be used when more control
   506      * over the decoding process is required.
   507      *
   508      * @param  bytes
   509      *         The bytes to be decoded into characters
   510      *
   511      * @param  charsetName
   512      *         The name of a supported {@linkplain java.nio.charset.Charset
   513      *         charset}
   514      *
   515      * @throws  UnsupportedEncodingException
   516      *          If the named charset is not supported
   517      *
   518      * @since  JDK1.1
   519      */
   520     public String(byte bytes[], String charsetName)
   521         throws UnsupportedEncodingException
   522     {
   523         this(bytes, 0, bytes.length, charsetName);
   524     }
   525 
   526     /**
   527      * Constructs a new {@code String} by decoding the specified array of
   528      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
   529      * The length of the new {@code String} is a function of the charset, and
   530      * hence may not be equal to the length of the byte array.
   531      *
   532      * <p> This method always replaces malformed-input and unmappable-character
   533      * sequences with this charset's default replacement string.  The {@link
   534      * java.nio.charset.CharsetDecoder} class should be used when more control
   535      * over the decoding process is required.
   536      *
   537      * @param  bytes
   538      *         The bytes to be decoded into characters
   539      *
   540      * @param  charset
   541      *         The {@linkplain java.nio.charset.Charset charset} to be used to
   542      *         decode the {@code bytes}
   543      *
   544      * @since  1.6
   545      */
   546     public String(byte bytes[], Charset charset) {
   547         this(bytes, 0, bytes.length, charset);
   548     }
   549 
   550     /**
   551      * Constructs a new {@code String} by decoding the specified subarray of
   552      * bytes using the platform's default charset.  The length of the new
   553      * {@code String} is a function of the charset, and hence may not be equal
   554      * to the length of the subarray.
   555      *
   556      * <p> The behavior of this constructor when the given bytes are not valid
   557      * in the default charset is unspecified.  The {@link
   558      * java.nio.charset.CharsetDecoder} class should be used when more control
   559      * over the decoding process is required.
   560      *
   561      * @param  bytes
   562      *         The bytes to be decoded into characters
   563      *
   564      * @param  offset
   565      *         The index of the first byte to decode
   566      *
   567      * @param  length
   568      *         The number of bytes to decode
   569      *
   570      * @throws  IndexOutOfBoundsException
   571      *          If the {@code offset} and the {@code length} arguments index
   572      *          characters outside the bounds of the {@code bytes} array
   573      *
   574      * @since  JDK1.1
   575      */
   576     public String(byte bytes[], int offset, int length) {
   577         checkBounds(bytes, offset, length);
   578         char[] v  = StringCoding.decode(bytes, offset, length);
   579         this.offset = 0;
   580         this.count = v.length;
   581         this.value = v;
   582     }
   583 
   584     /**
   585      * Constructs a new {@code String} by decoding the specified array of bytes
   586      * using the platform's default charset.  The length of the new {@code
   587      * String} is a function of the charset, and hence may not be equal to the
   588      * length of the byte array.
   589      *
   590      * <p> The behavior of this constructor when the given bytes are not valid
   591      * in the default charset is unspecified.  The {@link
   592      * java.nio.charset.CharsetDecoder} class should be used when more control
   593      * over the decoding process is required.
   594      *
   595      * @param  bytes
   596      *         The bytes to be decoded into characters
   597      *
   598      * @since  JDK1.1
   599      */
   600     public String(byte bytes[]) {
   601         this(bytes, 0, bytes.length);
   602     }
   603 
   604     /**
   605      * Allocates a new string that contains the sequence of characters
   606      * currently contained in the string buffer argument. The contents of the
   607      * string buffer are copied; subsequent modification of the string buffer
   608      * does not affect the newly created string.
   609      *
   610      * @param  buffer
   611      *         A {@code StringBuffer}
   612      */
   613     public String(StringBuffer buffer) {
   614         String result = buffer.toString();
   615         this.value = result.value;
   616         this.count = result.count;
   617         this.offset = result.offset;
   618     }
   619 
   620     /**
   621      * Allocates a new string that contains the sequence of characters
   622      * currently contained in the string builder argument. The contents of the
   623      * string builder are copied; subsequent modification of the string builder
   624      * does not affect the newly created string.
   625      *
   626      * <p> This constructor is provided to ease migration to {@code
   627      * StringBuilder}. Obtaining a string from a string builder via the {@code
   628      * toString} method is likely to run faster and is generally preferred.
   629      *
   630      * @param   builder
   631      *          A {@code StringBuilder}
   632      *
   633      * @since  1.5
   634      */
   635     public String(StringBuilder builder) {
   636         String result = builder.toString();
   637         this.value = result.value;
   638         this.count = result.count;
   639         this.offset = result.offset;
   640     }
   641 
   642 
   643     // Package private constructor which shares value array for speed.
   644     String(int offset, int count, char value[]) {
   645         this.value = value;
   646         this.offset = offset;
   647         this.count = count;
   648     }
   649 
   650     /**
   651      * Returns the length of this string.
   652      * The length is equal to the number of <a href="Character.html#unicode">Unicode
   653      * code units</a> in the string.
   654      *
   655      * @return  the length of the sequence of characters represented by this
   656      *          object.
   657      */
   658     public int length() {
   659         return count;
   660     }
   661 
   662     /**
   663      * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.
   664      *
   665      * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise
   666      * <tt>false</tt>
   667      *
   668      * @since 1.6
   669      */
   670     public boolean isEmpty() {
   671         return count == 0;
   672     }
   673 
   674     /**
   675      * Returns the <code>char</code> value at the
   676      * specified index. An index ranges from <code>0</code> to
   677      * <code>length() - 1</code>. The first <code>char</code> value of the sequence
   678      * is at index <code>0</code>, the next at index <code>1</code>,
   679      * and so on, as for array indexing.
   680      *
   681      * <p>If the <code>char</code> value specified by the index is a
   682      * <a href="Character.html#unicode">surrogate</a>, the surrogate
   683      * value is returned.
   684      *
   685      * @param      index   the index of the <code>char</code> value.
   686      * @return     the <code>char</code> value at the specified index of this string.
   687      *             The first <code>char</code> value is at index <code>0</code>.
   688      * @exception  IndexOutOfBoundsException  if the <code>index</code>
   689      *             argument is negative or not less than the length of this
   690      *             string.
   691      */
   692     public char charAt(int index) {
   693         if ((index < 0) || (index >= count)) {
   694             throw new StringIndexOutOfBoundsException(index);
   695         }
   696         return value[index + offset];
   697     }
   698 
   699     /**
   700      * Returns the character (Unicode code point) at the specified
   701      * index. The index refers to <code>char</code> values
   702      * (Unicode code units) and ranges from <code>0</code> to
   703      * {@link #length()}<code> - 1</code>.
   704      *
   705      * <p> If the <code>char</code> value specified at the given index
   706      * is in the high-surrogate range, the following index is less
   707      * than the length of this <code>String</code>, and the
   708      * <code>char</code> value at the following index is in the
   709      * low-surrogate range, then the supplementary code point
   710      * corresponding to this surrogate pair is returned. Otherwise,
   711      * the <code>char</code> value at the given index is returned.
   712      *
   713      * @param      index the index to the <code>char</code> values
   714      * @return     the code point value of the character at the
   715      *             <code>index</code>
   716      * @exception  IndexOutOfBoundsException  if the <code>index</code>
   717      *             argument is negative or not less than the length of this
   718      *             string.
   719      * @since      1.5
   720      */
   721     public int codePointAt(int index) {
   722         if ((index < 0) || (index >= count)) {
   723             throw new StringIndexOutOfBoundsException(index);
   724         }
   725         return Character.codePointAtImpl(value, offset + index, offset + count);
   726     }
   727 
   728     /**
   729      * Returns the character (Unicode code point) before the specified
   730      * index. The index refers to <code>char</code> values
   731      * (Unicode code units) and ranges from <code>1</code> to {@link
   732      * CharSequence#length() length}.
   733      *
   734      * <p> If the <code>char</code> value at <code>(index - 1)</code>
   735      * is in the low-surrogate range, <code>(index - 2)</code> is not
   736      * negative, and the <code>char</code> value at <code>(index -
   737      * 2)</code> is in the high-surrogate range, then the
   738      * supplementary code point value of the surrogate pair is
   739      * returned. If the <code>char</code> value at <code>index -
   740      * 1</code> is an unpaired low-surrogate or a high-surrogate, the
   741      * surrogate value is returned.
   742      *
   743      * @param     index the index following the code point that should be returned
   744      * @return    the Unicode code point value before the given index.
   745      * @exception IndexOutOfBoundsException if the <code>index</code>
   746      *            argument is less than 1 or greater than the length
   747      *            of this string.
   748      * @since     1.5
   749      */
   750     public int codePointBefore(int index) {
   751         int i = index - 1;
   752         if ((i < 0) || (i >= count)) {
   753             throw new StringIndexOutOfBoundsException(index);
   754         }
   755         return Character.codePointBeforeImpl(value, offset + index, offset);
   756     }
   757 
   758     /**
   759      * Returns the number of Unicode code points in the specified text
   760      * range of this <code>String</code>. The text range begins at the
   761      * specified <code>beginIndex</code> and extends to the
   762      * <code>char</code> at index <code>endIndex - 1</code>. Thus the
   763      * length (in <code>char</code>s) of the text range is
   764      * <code>endIndex-beginIndex</code>. Unpaired surrogates within
   765      * the text range count as one code point each.
   766      *
   767      * @param beginIndex the index to the first <code>char</code> of
   768      * the text range.
   769      * @param endIndex the index after the last <code>char</code> of
   770      * the text range.
   771      * @return the number of Unicode code points in the specified text
   772      * range
   773      * @exception IndexOutOfBoundsException if the
   774      * <code>beginIndex</code> is negative, or <code>endIndex</code>
   775      * is larger than the length of this <code>String</code>, or
   776      * <code>beginIndex</code> is larger than <code>endIndex</code>.
   777      * @since  1.5
   778      */
   779     public int codePointCount(int beginIndex, int endIndex) {
   780         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
   781             throw new IndexOutOfBoundsException();
   782         }
   783         return Character.codePointCountImpl(value, offset+beginIndex, endIndex-beginIndex);
   784     }
   785 
   786     /**
   787      * Returns the index within this <code>String</code> that is
   788      * offset from the given <code>index</code> by
   789      * <code>codePointOffset</code> code points. Unpaired surrogates
   790      * within the text range given by <code>index</code> and
   791      * <code>codePointOffset</code> count as one code point each.
   792      *
   793      * @param index the index to be offset
   794      * @param codePointOffset the offset in code points
   795      * @return the index within this <code>String</code>
   796      * @exception IndexOutOfBoundsException if <code>index</code>
   797      *   is negative or larger then the length of this
   798      *   <code>String</code>, or if <code>codePointOffset</code> is positive
   799      *   and the substring starting with <code>index</code> has fewer
   800      *   than <code>codePointOffset</code> code points,
   801      *   or if <code>codePointOffset</code> is negative and the substring
   802      *   before <code>index</code> has fewer than the absolute value
   803      *   of <code>codePointOffset</code> code points.
   804      * @since 1.5
   805      */
   806     public int offsetByCodePoints(int index, int codePointOffset) {
   807         if (index < 0 || index > count) {
   808             throw new IndexOutOfBoundsException();
   809         }
   810         return Character.offsetByCodePointsImpl(value, offset, count,
   811                                                 offset+index, codePointOffset) - offset;
   812     }
   813 
   814     /**
   815      * Copy characters from this string into dst starting at dstBegin.
   816      * This method doesn't perform any range checking.
   817      */
   818     void getChars(char dst[], int dstBegin) {
   819         System.arraycopy(value, offset, dst, dstBegin, count);
   820     }
   821 
   822     /**
   823      * Copies characters from this string into the destination character
   824      * array.
   825      * <p>
   826      * The first character to be copied is at index <code>srcBegin</code>;
   827      * the last character to be copied is at index <code>srcEnd-1</code>
   828      * (thus the total number of characters to be copied is
   829      * <code>srcEnd-srcBegin</code>). The characters are copied into the
   830      * subarray of <code>dst</code> starting at index <code>dstBegin</code>
   831      * and ending at index:
   832      * <p><blockquote><pre>
   833      *     dstbegin + (srcEnd-srcBegin) - 1
   834      * </pre></blockquote>
   835      *
   836      * @param      srcBegin   index of the first character in the string
   837      *                        to copy.
   838      * @param      srcEnd     index after the last character in the string
   839      *                        to copy.
   840      * @param      dst        the destination array.
   841      * @param      dstBegin   the start offset in the destination array.
   842      * @exception IndexOutOfBoundsException If any of the following
   843      *            is true:
   844      *            <ul><li><code>srcBegin</code> is negative.
   845      *            <li><code>srcBegin</code> is greater than <code>srcEnd</code>
   846      *            <li><code>srcEnd</code> is greater than the length of this
   847      *                string
   848      *            <li><code>dstBegin</code> is negative
   849      *            <li><code>dstBegin+(srcEnd-srcBegin)</code> is larger than
   850      *                <code>dst.length</code></ul>
   851      */
   852     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
   853         if (srcBegin < 0) {
   854             throw new StringIndexOutOfBoundsException(srcBegin);
   855         }
   856         if (srcEnd > count) {
   857             throw new StringIndexOutOfBoundsException(srcEnd);
   858         }
   859         if (srcBegin > srcEnd) {
   860             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
   861         }
   862         System.arraycopy(value, offset + srcBegin, dst, dstBegin,
   863              srcEnd - srcBegin);
   864     }
   865 
   866     /**
   867      * Copies characters from this string into the destination byte array. Each
   868      * byte receives the 8 low-order bits of the corresponding character. The
   869      * eight high-order bits of each character are not copied and do not
   870      * participate in the transfer in any way.
   871      *
   872      * <p> The first character to be copied is at index {@code srcBegin}; the
   873      * last character to be copied is at index {@code srcEnd-1}.  The total
   874      * number of characters to be copied is {@code srcEnd-srcBegin}. The
   875      * characters, converted to bytes, are copied into the subarray of {@code
   876      * dst} starting at index {@code dstBegin} and ending at index:
   877      *
   878      * <blockquote><pre>
   879      *     dstbegin + (srcEnd-srcBegin) - 1
   880      * </pre></blockquote>
   881      *
   882      * @deprecated  This method does not properly convert characters into
   883      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
   884      * {@link #getBytes()} method, which uses the platform's default charset.
   885      *
   886      * @param  srcBegin
   887      *         Index of the first character in the string to copy
   888      *
   889      * @param  srcEnd
   890      *         Index after the last character in the string to copy
   891      *
   892      * @param  dst
   893      *         The destination array
   894      *
   895      * @param  dstBegin
   896      *         The start offset in the destination array
   897      *
   898      * @throws  IndexOutOfBoundsException
   899      *          If any of the following is true:
   900      *          <ul>
   901      *            <li> {@code srcBegin} is negative
   902      *            <li> {@code srcBegin} is greater than {@code srcEnd}
   903      *            <li> {@code srcEnd} is greater than the length of this String
   904      *            <li> {@code dstBegin} is negative
   905      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
   906      *                 dst.length}
   907      *          </ul>
   908      */
   909     @Deprecated
   910     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
   911         if (srcBegin < 0) {
   912             throw new StringIndexOutOfBoundsException(srcBegin);
   913         }
   914         if (srcEnd > count) {
   915             throw new StringIndexOutOfBoundsException(srcEnd);
   916         }
   917         if (srcBegin > srcEnd) {
   918             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
   919         }
   920         int j = dstBegin;
   921         int n = offset + srcEnd;
   922         int i = offset + srcBegin;
   923         char[] val = value;   /* avoid getfield opcode */
   924 
   925         while (i < n) {
   926             dst[j++] = (byte)val[i++];
   927         }
   928     }
   929 
   930     /**
   931      * Encodes this {@code String} into a sequence of bytes using the named
   932      * charset, storing the result into a new byte array.
   933      *
   934      * <p> The behavior of this method when this string cannot be encoded in
   935      * the given charset is unspecified.  The {@link
   936      * java.nio.charset.CharsetEncoder} class should be used when more control
   937      * over the encoding process is required.
   938      *
   939      * @param  charsetName
   940      *         The name of a supported {@linkplain java.nio.charset.Charset
   941      *         charset}
   942      *
   943      * @return  The resultant byte array
   944      *
   945      * @throws  UnsupportedEncodingException
   946      *          If the named charset is not supported
   947      *
   948      * @since  JDK1.1
   949      */
   950     public byte[] getBytes(String charsetName)
   951         throws UnsupportedEncodingException
   952     {
   953         if (charsetName == null) throw new NullPointerException();
   954         return StringCoding.encode(charsetName, value, offset, count);
   955     }
   956 
   957     /**
   958      * Encodes this {@code String} into a sequence of bytes using the given
   959      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
   960      * new byte array.
   961      *
   962      * <p> This method always replaces malformed-input and unmappable-character
   963      * sequences with this charset's default replacement byte array.  The
   964      * {@link java.nio.charset.CharsetEncoder} class should be used when more
   965      * control over the encoding process is required.
   966      *
   967      * @param  charset
   968      *         The {@linkplain java.nio.charset.Charset} to be used to encode
   969      *         the {@code String}
   970      *
   971      * @return  The resultant byte array
   972      *
   973      * @since  1.6
   974      */
   975     public byte[] getBytes(Charset charset) {
   976         if (charset == null) throw new NullPointerException();
   977         return StringCoding.encode(charset, value, offset, count);
   978     }
   979 
   980     /**
   981      * Encodes this {@code String} into a sequence of bytes using the
   982      * platform's default charset, storing the result into a new byte array.
   983      *
   984      * <p> The behavior of this method when this string cannot be encoded in
   985      * the default charset is unspecified.  The {@link
   986      * java.nio.charset.CharsetEncoder} class should be used when more control
   987      * over the encoding process is required.
   988      *
   989      * @return  The resultant byte array
   990      *
   991      * @since      JDK1.1
   992      */
   993     public byte[] getBytes() {
   994         return StringCoding.encode(value, offset, count);
   995     }
   996 
   997     /**
   998      * Compares this string to the specified object.  The result is {@code
   999      * true} if and only if the argument is not {@code null} and is a {@code
  1000      * String} object that represents the same sequence of characters as this
  1001      * object.
  1002      *
  1003      * @param  anObject
  1004      *         The object to compare this {@code String} against
  1005      *
  1006      * @return  {@code true} if the given object represents a {@code String}
  1007      *          equivalent to this string, {@code false} otherwise
  1008      *
  1009      * @see  #compareTo(String)
  1010      * @see  #equalsIgnoreCase(String)
  1011      */
  1012     public boolean equals(Object anObject) {
  1013         if (this == anObject) {
  1014             return true;
  1015         }
  1016         if (anObject instanceof String) {
  1017             String anotherString = (String)anObject;
  1018             int n = count;
  1019             if (n == anotherString.count) {
  1020                 char v1[] = value;
  1021                 char v2[] = anotherString.value;
  1022                 int i = offset;
  1023                 int j = anotherString.offset;
  1024                 while (n-- != 0) {
  1025                     if (v1[i++] != v2[j++])
  1026                         return false;
  1027                 }
  1028                 return true;
  1029             }
  1030         }
  1031         return false;
  1032     }
  1033 
  1034     /**
  1035      * Compares this string to the specified {@code StringBuffer}.  The result
  1036      * is {@code true} if and only if this {@code String} represents the same
  1037      * sequence of characters as the specified {@code StringBuffer}.
  1038      *
  1039      * @param  sb
  1040      *         The {@code StringBuffer} to compare this {@code String} against
  1041      *
  1042      * @return  {@code true} if this {@code String} represents the same
  1043      *          sequence of characters as the specified {@code StringBuffer},
  1044      *          {@code false} otherwise
  1045      *
  1046      * @since  1.4
  1047      */
  1048     public boolean contentEquals(StringBuffer sb) {
  1049         synchronized(sb) {
  1050             return contentEquals((CharSequence)sb);
  1051         }
  1052     }
  1053 
  1054     /**
  1055      * Compares this string to the specified {@code CharSequence}.  The result
  1056      * is {@code true} if and only if this {@code String} represents the same
  1057      * sequence of char values as the specified sequence.
  1058      *
  1059      * @param  cs
  1060      *         The sequence to compare this {@code String} against
  1061      *
  1062      * @return  {@code true} if this {@code String} represents the same
  1063      *          sequence of char values as the specified sequence, {@code
  1064      *          false} otherwise
  1065      *
  1066      * @since  1.5
  1067      */
  1068     public boolean contentEquals(CharSequence cs) {
  1069         if (count != cs.length())
  1070             return false;
  1071         // Argument is a StringBuffer, StringBuilder
  1072         if (cs instanceof AbstractStringBuilder) {
  1073             char v1[] = value;
  1074             char v2[] = ((AbstractStringBuilder)cs).getValue();
  1075             int i = offset;
  1076             int j = 0;
  1077             int n = count;
  1078             while (n-- != 0) {
  1079                 if (v1[i++] != v2[j++])
  1080                     return false;
  1081             }
  1082             return true;
  1083         }
  1084         // Argument is a String
  1085         if (cs.equals(this))
  1086             return true;
  1087         // Argument is a generic CharSequence
  1088         char v1[] = value;
  1089         int i = offset;
  1090         int j = 0;
  1091         int n = count;
  1092         while (n-- != 0) {
  1093             if (v1[i++] != cs.charAt(j++))
  1094                 return false;
  1095         }
  1096         return true;
  1097     }
  1098 
  1099     /**
  1100      * Compares this {@code String} to another {@code String}, ignoring case
  1101      * considerations.  Two strings are considered equal ignoring case if they
  1102      * are of the same length and corresponding characters in the two strings
  1103      * are equal ignoring case.
  1104      *
  1105      * <p> Two characters {@code c1} and {@code c2} are considered the same
  1106      * ignoring case if at least one of the following is true:
  1107      * <ul>
  1108      *   <li> The two characters are the same (as compared by the
  1109      *        {@code ==} operator)
  1110      *   <li> Applying the method {@link
  1111      *        java.lang.Character#toUpperCase(char)} to each character
  1112      *        produces the same result
  1113      *   <li> Applying the method {@link
  1114      *        java.lang.Character#toLowerCase(char)} to each character
  1115      *        produces the same result
  1116      * </ul>
  1117      *
  1118      * @param  anotherString
  1119      *         The {@code String} to compare this {@code String} against
  1120      *
  1121      * @return  {@code true} if the argument is not {@code null} and it
  1122      *          represents an equivalent {@code String} ignoring case; {@code
  1123      *          false} otherwise
  1124      *
  1125      * @see  #equals(Object)
  1126      */
  1127     public boolean equalsIgnoreCase(String anotherString) {
  1128         return (this == anotherString) ? true :
  1129                (anotherString != null) && (anotherString.count == count) &&
  1130                regionMatches(true, 0, anotherString, 0, count);
  1131     }
  1132 
  1133     /**
  1134      * Compares two strings lexicographically.
  1135      * The comparison is based on the Unicode value of each character in
  1136      * the strings. The character sequence represented by this
  1137      * <code>String</code> object is compared lexicographically to the
  1138      * character sequence represented by the argument string. The result is
  1139      * a negative integer if this <code>String</code> object
  1140      * lexicographically precedes the argument string. The result is a
  1141      * positive integer if this <code>String</code> object lexicographically
  1142      * follows the argument string. The result is zero if the strings
  1143      * are equal; <code>compareTo</code> returns <code>0</code> exactly when
  1144      * the {@link #equals(Object)} method would return <code>true</code>.
  1145      * <p>
  1146      * This is the definition of lexicographic ordering. If two strings are
  1147      * different, then either they have different characters at some index
  1148      * that is a valid index for both strings, or their lengths are different,
  1149      * or both. If they have different characters at one or more index
  1150      * positions, let <i>k</i> be the smallest such index; then the string
  1151      * whose character at position <i>k</i> has the smaller value, as
  1152      * determined by using the &lt; operator, lexicographically precedes the
  1153      * other string. In this case, <code>compareTo</code> returns the
  1154      * difference of the two character values at position <code>k</code> in
  1155      * the two string -- that is, the value:
  1156      * <blockquote><pre>
  1157      * this.charAt(k)-anotherString.charAt(k)
  1158      * </pre></blockquote>
  1159      * If there is no index position at which they differ, then the shorter
  1160      * string lexicographically precedes the longer string. In this case,
  1161      * <code>compareTo</code> returns the difference of the lengths of the
  1162      * strings -- that is, the value:
  1163      * <blockquote><pre>
  1164      * this.length()-anotherString.length()
  1165      * </pre></blockquote>
  1166      *
  1167      * @param   anotherString   the <code>String</code> to be compared.
  1168      * @return  the value <code>0</code> if the argument string is equal to
  1169      *          this string; a value less than <code>0</code> if this string
  1170      *          is lexicographically less than the string argument; and a
  1171      *          value greater than <code>0</code> if this string is
  1172      *          lexicographically greater than the string argument.
  1173      */
  1174     public int compareTo(String anotherString) {
  1175         int len1 = count;
  1176         int len2 = anotherString.count;
  1177         int n = Math.min(len1, len2);
  1178         char v1[] = value;
  1179         char v2[] = anotherString.value;
  1180         int i = offset;
  1181         int j = anotherString.offset;
  1182 
  1183         if (i == j) {
  1184             int k = i;
  1185             int lim = n + i;
  1186             while (k < lim) {
  1187                 char c1 = v1[k];
  1188                 char c2 = v2[k];
  1189                 if (c1 != c2) {
  1190                     return c1 - c2;
  1191                 }
  1192                 k++;
  1193             }
  1194         } else {
  1195             while (n-- != 0) {
  1196                 char c1 = v1[i++];
  1197                 char c2 = v2[j++];
  1198                 if (c1 != c2) {
  1199                     return c1 - c2;
  1200                 }
  1201             }
  1202         }
  1203         return len1 - len2;
  1204     }
  1205 
  1206     /**
  1207      * A Comparator that orders <code>String</code> objects as by
  1208      * <code>compareToIgnoreCase</code>. This comparator is serializable.
  1209      * <p>
  1210      * Note that this Comparator does <em>not</em> take locale into account,
  1211      * and will result in an unsatisfactory ordering for certain locales.
  1212      * The java.text package provides <em>Collators</em> to allow
  1213      * locale-sensitive ordering.
  1214      *
  1215      * @see     java.text.Collator#compare(String, String)
  1216      * @since   1.2
  1217      */
  1218     public static final Comparator<String> CASE_INSENSITIVE_ORDER
  1219                                          = new CaseInsensitiveComparator();
  1220     private static class CaseInsensitiveComparator
  1221                          implements Comparator<String>, java.io.Serializable {
  1222         // use serialVersionUID from JDK 1.2.2 for interoperability
  1223         private static final long serialVersionUID = 8575799808933029326L;
  1224 
  1225         public int compare(String s1, String s2) {
  1226             int n1 = s1.length();
  1227             int n2 = s2.length();
  1228             int min = Math.min(n1, n2);
  1229             for (int i = 0; i < min; i++) {
  1230                 char c1 = s1.charAt(i);
  1231                 char c2 = s2.charAt(i);
  1232                 if (c1 != c2) {
  1233                     c1 = Character.toUpperCase(c1);
  1234                     c2 = Character.toUpperCase(c2);
  1235                     if (c1 != c2) {
  1236                         c1 = Character.toLowerCase(c1);
  1237                         c2 = Character.toLowerCase(c2);
  1238                         if (c1 != c2) {
  1239                             // No overflow because of numeric promotion
  1240                             return c1 - c2;
  1241                         }
  1242                     }
  1243                 }
  1244             }
  1245             return n1 - n2;
  1246         }
  1247     }
  1248 
  1249     /**
  1250      * Compares two strings lexicographically, ignoring case
  1251      * differences. This method returns an integer whose sign is that of
  1252      * calling <code>compareTo</code> with normalized versions of the strings
  1253      * where case differences have been eliminated by calling
  1254      * <code>Character.toLowerCase(Character.toUpperCase(character))</code> on
  1255      * each character.
  1256      * <p>
  1257      * Note that this method does <em>not</em> take locale into account,
  1258      * and will result in an unsatisfactory ordering for certain locales.
  1259      * The java.text package provides <em>collators</em> to allow
  1260      * locale-sensitive ordering.
  1261      *
  1262      * @param   str   the <code>String</code> to be compared.
  1263      * @return  a negative integer, zero, or a positive integer as the
  1264      *          specified String is greater than, equal to, or less
  1265      *          than this String, ignoring case considerations.
  1266      * @see     java.text.Collator#compare(String, String)
  1267      * @since   1.2
  1268      */
  1269     public int compareToIgnoreCase(String str) {
  1270         return CASE_INSENSITIVE_ORDER.compare(this, str);
  1271     }
  1272 
  1273     /**
  1274      * Tests if two string regions are equal.
  1275      * <p>
  1276      * A substring of this <tt>String</tt> object is compared to a substring
  1277      * of the argument other. The result is true if these substrings
  1278      * represent identical character sequences. The substring of this
  1279      * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>
  1280      * and has length <tt>len</tt>. The substring of other to be compared
  1281      * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The
  1282      * result is <tt>false</tt> if and only if at least one of the following
  1283      * is true:
  1284      * <ul><li><tt>toffset</tt> is negative.
  1285      * <li><tt>ooffset</tt> is negative.
  1286      * <li><tt>toffset+len</tt> is greater than the length of this
  1287      * <tt>String</tt> object.
  1288      * <li><tt>ooffset+len</tt> is greater than the length of the other
  1289      * argument.
  1290      * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>
  1291      * such that:
  1292      * <tt>this.charAt(toffset+<i>k</i>)&nbsp;!=&nbsp;other.charAt(ooffset+<i>k</i>)</tt>
  1293      * </ul>
  1294      *
  1295      * @param   toffset   the starting offset of the subregion in this string.
  1296      * @param   other     the string argument.
  1297      * @param   ooffset   the starting offset of the subregion in the string
  1298      *                    argument.
  1299      * @param   len       the number of characters to compare.
  1300      * @return  <code>true</code> if the specified subregion of this string
  1301      *          exactly matches the specified subregion of the string argument;
  1302      *          <code>false</code> otherwise.
  1303      */
  1304     public boolean regionMatches(int toffset, String other, int ooffset,
  1305                                  int len) {
  1306         char ta[] = value;
  1307         int to = offset + toffset;
  1308         char pa[] = other.value;
  1309         int po = other.offset + ooffset;
  1310         // Note: toffset, ooffset, or len might be near -1>>>1.
  1311         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len)
  1312             || (ooffset > (long)other.count - len)) {
  1313             return false;
  1314         }
  1315         while (len-- > 0) {
  1316             if (ta[to++] != pa[po++]) {
  1317                 return false;
  1318             }
  1319         }
  1320         return true;
  1321     }
  1322 
  1323     /**
  1324      * Tests if two string regions are equal.
  1325      * <p>
  1326      * A substring of this <tt>String</tt> object is compared to a substring
  1327      * of the argument <tt>other</tt>. The result is <tt>true</tt> if these
  1328      * substrings represent character sequences that are the same, ignoring
  1329      * case if and only if <tt>ignoreCase</tt> is true. The substring of
  1330      * this <tt>String</tt> object to be compared begins at index
  1331      * <tt>toffset</tt> and has length <tt>len</tt>. The substring of
  1332      * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and
  1333      * has length <tt>len</tt>. The result is <tt>false</tt> if and only if
  1334      * at least one of the following is true:
  1335      * <ul><li><tt>toffset</tt> is negative.
  1336      * <li><tt>ooffset</tt> is negative.
  1337      * <li><tt>toffset+len</tt> is greater than the length of this
  1338      * <tt>String</tt> object.
  1339      * <li><tt>ooffset+len</tt> is greater than the length of the other
  1340      * argument.
  1341      * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative
  1342      * integer <i>k</i> less than <tt>len</tt> such that:
  1343      * <blockquote><pre>
  1344      * this.charAt(toffset+k) != other.charAt(ooffset+k)
  1345      * </pre></blockquote>
  1346      * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative
  1347      * integer <i>k</i> less than <tt>len</tt> such that:
  1348      * <blockquote><pre>
  1349      * Character.toLowerCase(this.charAt(toffset+k)) !=
  1350                Character.toLowerCase(other.charAt(ooffset+k))
  1351      * </pre></blockquote>
  1352      * and:
  1353      * <blockquote><pre>
  1354      * Character.toUpperCase(this.charAt(toffset+k)) !=
  1355      *         Character.toUpperCase(other.charAt(ooffset+k))
  1356      * </pre></blockquote>
  1357      * </ul>
  1358      *
  1359      * @param   ignoreCase   if <code>true</code>, ignore case when comparing
  1360      *                       characters.
  1361      * @param   toffset      the starting offset of the subregion in this
  1362      *                       string.
  1363      * @param   other        the string argument.
  1364      * @param   ooffset      the starting offset of the subregion in the string
  1365      *                       argument.
  1366      * @param   len          the number of characters to compare.
  1367      * @return  <code>true</code> if the specified subregion of this string
  1368      *          matches the specified subregion of the string argument;
  1369      *          <code>false</code> otherwise. Whether the matching is exact
  1370      *          or case insensitive depends on the <code>ignoreCase</code>
  1371      *          argument.
  1372      */
  1373     public boolean regionMatches(boolean ignoreCase, int toffset,
  1374                            String other, int ooffset, int len) {
  1375         char ta[] = value;
  1376         int to = offset + toffset;
  1377         char pa[] = other.value;
  1378         int po = other.offset + ooffset;
  1379         // Note: toffset, ooffset, or len might be near -1>>>1.
  1380         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len) ||
  1381                 (ooffset > (long)other.count - len)) {
  1382             return false;
  1383         }
  1384         while (len-- > 0) {
  1385             char c1 = ta[to++];
  1386             char c2 = pa[po++];
  1387             if (c1 == c2) {
  1388                 continue;
  1389             }
  1390             if (ignoreCase) {
  1391                 // If characters don't match but case may be ignored,
  1392                 // try converting both characters to uppercase.
  1393                 // If the results match, then the comparison scan should
  1394                 // continue.
  1395                 char u1 = Character.toUpperCase(c1);
  1396                 char u2 = Character.toUpperCase(c2);
  1397                 if (u1 == u2) {
  1398                     continue;
  1399                 }
  1400                 // Unfortunately, conversion to uppercase does not work properly
  1401                 // for the Georgian alphabet, which has strange rules about case
  1402                 // conversion.  So we need to make one last check before
  1403                 // exiting.
  1404                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
  1405                     continue;
  1406                 }
  1407             }
  1408             return false;
  1409         }
  1410         return true;
  1411     }
  1412 
  1413     /**
  1414      * Tests if the substring of this string beginning at the
  1415      * specified index starts with the specified prefix.
  1416      *
  1417      * @param   prefix    the prefix.
  1418      * @param   toffset   where to begin looking in this string.
  1419      * @return  <code>true</code> if the character sequence represented by the
  1420      *          argument is a prefix of the substring of this object starting
  1421      *          at index <code>toffset</code>; <code>false</code> otherwise.
  1422      *          The result is <code>false</code> if <code>toffset</code> is
  1423      *          negative or greater than the length of this
  1424      *          <code>String</code> object; otherwise the result is the same
  1425      *          as the result of the expression
  1426      *          <pre>
  1427      *          this.substring(toffset).startsWith(prefix)
  1428      *          </pre>
  1429      */
  1430     public boolean startsWith(String prefix, int toffset) {
  1431         char ta[] = value;
  1432         int to = offset + toffset;
  1433         char pa[] = prefix.value;
  1434         int po = prefix.offset;
  1435         int pc = prefix.count;
  1436         // Note: toffset might be near -1>>>1.
  1437         if ((toffset < 0) || (toffset > count - pc)) {
  1438             return false;
  1439         }
  1440         while (--pc >= 0) {
  1441             if (ta[to++] != pa[po++]) {
  1442                 return false;
  1443             }
  1444         }
  1445         return true;
  1446     }
  1447 
  1448     /**
  1449      * Tests if this string starts with the specified prefix.
  1450      *
  1451      * @param   prefix   the prefix.
  1452      * @return  <code>true</code> if the character sequence represented by the
  1453      *          argument is a prefix of the character sequence represented by
  1454      *          this string; <code>false</code> otherwise.
  1455      *          Note also that <code>true</code> will be returned if the
  1456      *          argument is an empty string or is equal to this
  1457      *          <code>String</code> object as determined by the
  1458      *          {@link #equals(Object)} method.
  1459      * @since   1. 0
  1460      */
  1461     public boolean startsWith(String prefix) {
  1462         return startsWith(prefix, 0);
  1463     }
  1464 
  1465     /**
  1466      * Tests if this string ends with the specified suffix.
  1467      *
  1468      * @param   suffix   the suffix.
  1469      * @return  <code>true</code> if the character sequence represented by the
  1470      *          argument is a suffix of the character sequence represented by
  1471      *          this object; <code>false</code> otherwise. Note that the
  1472      *          result will be <code>true</code> if the argument is the
  1473      *          empty string or is equal to this <code>String</code> object
  1474      *          as determined by the {@link #equals(Object)} method.
  1475      */
  1476     public boolean endsWith(String suffix) {
  1477         return startsWith(suffix, count - suffix.count);
  1478     }
  1479 
  1480     /**
  1481      * Returns a hash code for this string. The hash code for a
  1482      * <code>String</code> object is computed as
  1483      * <blockquote><pre>
  1484      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
  1485      * </pre></blockquote>
  1486      * using <code>int</code> arithmetic, where <code>s[i]</code> is the
  1487      * <i>i</i>th character of the string, <code>n</code> is the length of
  1488      * the string, and <code>^</code> indicates exponentiation.
  1489      * (The hash value of the empty string is zero.)
  1490      *
  1491      * @return  a hash code value for this object.
  1492      */
  1493     public int hashCode() {
  1494         int h = hash;
  1495         if (h == 0 && count > 0) {
  1496             int off = offset;
  1497             char val[] = value;
  1498             int len = count;
  1499 
  1500             for (int i = 0; i < len; i++) {
  1501                 h = 31*h + val[off++];
  1502             }
  1503             hash = h;
  1504         }
  1505         return h;
  1506     }
  1507 
  1508     /**
  1509      * Returns the index within this string of the first occurrence of
  1510      * the specified character. If a character with value
  1511      * <code>ch</code> occurs in the character sequence represented by
  1512      * this <code>String</code> object, then the index (in Unicode
  1513      * code units) of the first such occurrence is returned. For
  1514      * values of <code>ch</code> in the range from 0 to 0xFFFF
  1515      * (inclusive), this is the smallest value <i>k</i> such that:
  1516      * <blockquote><pre>
  1517      * this.charAt(<i>k</i>) == ch
  1518      * </pre></blockquote>
  1519      * is true. For other values of <code>ch</code>, it is the
  1520      * smallest value <i>k</i> such that:
  1521      * <blockquote><pre>
  1522      * this.codePointAt(<i>k</i>) == ch
  1523      * </pre></blockquote>
  1524      * is true. In either case, if no such character occurs in this
  1525      * string, then <code>-1</code> is returned.
  1526      *
  1527      * @param   ch   a character (Unicode code point).
  1528      * @return  the index of the first occurrence of the character in the
  1529      *          character sequence represented by this object, or
  1530      *          <code>-1</code> if the character does not occur.
  1531      */
  1532     public int indexOf(int ch) {
  1533         return indexOf(ch, 0);
  1534     }
  1535 
  1536     /**
  1537      * Returns the index within this string of the first occurrence of the
  1538      * specified character, starting the search at the specified index.
  1539      * <p>
  1540      * If a character with value <code>ch</code> occurs in the
  1541      * character sequence represented by this <code>String</code>
  1542      * object at an index no smaller than <code>fromIndex</code>, then
  1543      * the index of the first such occurrence is returned. For values
  1544      * of <code>ch</code> in the range from 0 to 0xFFFF (inclusive),
  1545      * this is the smallest value <i>k</i> such that:
  1546      * <blockquote><pre>
  1547      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
  1548      * </pre></blockquote>
  1549      * is true. For other values of <code>ch</code>, it is the
  1550      * smallest value <i>k</i> such that:
  1551      * <blockquote><pre>
  1552      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
  1553      * </pre></blockquote>
  1554      * is true. In either case, if no such character occurs in this
  1555      * string at or after position <code>fromIndex</code>, then
  1556      * <code>-1</code> is returned.
  1557      *
  1558      * <p>
  1559      * There is no restriction on the value of <code>fromIndex</code>. If it
  1560      * is negative, it has the same effect as if it were zero: this entire
  1561      * string may be searched. If it is greater than the length of this
  1562      * string, it has the same effect as if it were equal to the length of
  1563      * this string: <code>-1</code> is returned.
  1564      *
  1565      * <p>All indices are specified in <code>char</code> values
  1566      * (Unicode code units).
  1567      *
  1568      * @param   ch          a character (Unicode code point).
  1569      * @param   fromIndex   the index to start the search from.
  1570      * @return  the index of the first occurrence of the character in the
  1571      *          character sequence represented by this object that is greater
  1572      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
  1573      *          if the character does not occur.
  1574      */
  1575     public int indexOf(int ch, int fromIndex) {
  1576         if (fromIndex < 0) {
  1577             fromIndex = 0;
  1578         } else if (fromIndex >= count) {
  1579             // Note: fromIndex might be near -1>>>1.
  1580             return -1;
  1581         }
  1582 
  1583         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
  1584             // handle most cases here (ch is a BMP code point or a
  1585             // negative value (invalid code point))
  1586             final char[] value = this.value;
  1587             final int offset = this.offset;
  1588             final int max = offset + count;
  1589             for (int i = offset + fromIndex; i < max ; i++) {
  1590                 if (value[i] == ch) {
  1591                     return i - offset;
  1592                 }
  1593             }
  1594             return -1;
  1595         } else {
  1596             return indexOfSupplementary(ch, fromIndex);
  1597         }
  1598     }
  1599 
  1600     /**
  1601      * Handles (rare) calls of indexOf with a supplementary character.
  1602      */
  1603     private int indexOfSupplementary(int ch, int fromIndex) {
  1604         if (Character.isValidCodePoint(ch)) {
  1605             final char[] value = this.value;
  1606             final int offset = this.offset;
  1607             final char hi = Character.highSurrogate(ch);
  1608             final char lo = Character.lowSurrogate(ch);
  1609             final int max = offset + count - 1;
  1610             for (int i = offset + fromIndex; i < max; i++) {
  1611                 if (value[i] == hi && value[i+1] == lo) {
  1612                     return i - offset;
  1613                 }
  1614             }
  1615         }
  1616         return -1;
  1617     }
  1618 
  1619     /**
  1620      * Returns the index within this string of the last occurrence of
  1621      * the specified character. For values of <code>ch</code> in the
  1622      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
  1623      * units) returned is the largest value <i>k</i> such that:
  1624      * <blockquote><pre>
  1625      * this.charAt(<i>k</i>) == ch
  1626      * </pre></blockquote>
  1627      * is true. For other values of <code>ch</code>, it is the
  1628      * largest value <i>k</i> such that:
  1629      * <blockquote><pre>
  1630      * this.codePointAt(<i>k</i>) == ch
  1631      * </pre></blockquote>
  1632      * is true.  In either case, if no such character occurs in this
  1633      * string, then <code>-1</code> is returned.  The
  1634      * <code>String</code> is searched backwards starting at the last
  1635      * character.
  1636      *
  1637      * @param   ch   a character (Unicode code point).
  1638      * @return  the index of the last occurrence of the character in the
  1639      *          character sequence represented by this object, or
  1640      *          <code>-1</code> if the character does not occur.
  1641      */
  1642     public int lastIndexOf(int ch) {
  1643         return lastIndexOf(ch, count - 1);
  1644     }
  1645 
  1646     /**
  1647      * Returns the index within this string of the last occurrence of
  1648      * the specified character, searching backward starting at the
  1649      * specified index. For values of <code>ch</code> in the range
  1650      * from 0 to 0xFFFF (inclusive), the index returned is the largest
  1651      * value <i>k</i> such that:
  1652      * <blockquote><pre>
  1653      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
  1654      * </pre></blockquote>
  1655      * is true. For other values of <code>ch</code>, it is the
  1656      * largest value <i>k</i> such that:
  1657      * <blockquote><pre>
  1658      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
  1659      * </pre></blockquote>
  1660      * is true. In either case, if no such character occurs in this
  1661      * string at or before position <code>fromIndex</code>, then
  1662      * <code>-1</code> is returned.
  1663      *
  1664      * <p>All indices are specified in <code>char</code> values
  1665      * (Unicode code units).
  1666      *
  1667      * @param   ch          a character (Unicode code point).
  1668      * @param   fromIndex   the index to start the search from. There is no
  1669      *          restriction on the value of <code>fromIndex</code>. If it is
  1670      *          greater than or equal to the length of this string, it has
  1671      *          the same effect as if it were equal to one less than the
  1672      *          length of this string: this entire string may be searched.
  1673      *          If it is negative, it has the same effect as if it were -1:
  1674      *          -1 is returned.
  1675      * @return  the index of the last occurrence of the character in the
  1676      *          character sequence represented by this object that is less
  1677      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
  1678      *          if the character does not occur before that point.
  1679      */
  1680     public int lastIndexOf(int ch, int fromIndex) {
  1681         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
  1682             // handle most cases here (ch is a BMP code point or a
  1683             // negative value (invalid code point))
  1684             final char[] value = this.value;
  1685             final int offset = this.offset;
  1686             int i = offset + Math.min(fromIndex, count - 1);
  1687             for (; i >= offset ; i--) {
  1688                 if (value[i] == ch) {
  1689                     return i - offset;
  1690                 }
  1691             }
  1692             return -1;
  1693         } else {
  1694             return lastIndexOfSupplementary(ch, fromIndex);
  1695         }
  1696     }
  1697 
  1698     /**
  1699      * Handles (rare) calls of lastIndexOf with a supplementary character.
  1700      */
  1701     private int lastIndexOfSupplementary(int ch, int fromIndex) {
  1702         if (Character.isValidCodePoint(ch)) {
  1703             final char[] value = this.value;
  1704             final int offset = this.offset;
  1705             char hi = Character.highSurrogate(ch);
  1706             char lo = Character.lowSurrogate(ch);
  1707             int i = offset + Math.min(fromIndex, count - 2);
  1708             for (; i >= offset; i--) {
  1709                 if (value[i] == hi && value[i+1] == lo) {
  1710                     return i - offset;
  1711                 }
  1712             }
  1713         }
  1714         return -1;
  1715     }
  1716 
  1717     /**
  1718      * Returns the index within this string of the first occurrence of the
  1719      * specified substring.
  1720      *
  1721      * <p>The returned index is the smallest value <i>k</i> for which:
  1722      * <blockquote><pre>
  1723      * this.startsWith(str, <i>k</i>)
  1724      * </pre></blockquote>
  1725      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1726      *
  1727      * @param   str   the substring to search for.
  1728      * @return  the index of the first occurrence of the specified substring,
  1729      *          or {@code -1} if there is no such occurrence.
  1730      */
  1731     public int indexOf(String str) {
  1732         return indexOf(str, 0);
  1733     }
  1734 
  1735     /**
  1736      * Returns the index within this string of the first occurrence of the
  1737      * specified substring, starting at the specified index.
  1738      *
  1739      * <p>The returned index is the smallest value <i>k</i> for which:
  1740      * <blockquote><pre>
  1741      * <i>k</i> &gt;= fromIndex && this.startsWith(str, <i>k</i>)
  1742      * </pre></blockquote>
  1743      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1744      *
  1745      * @param   str         the substring to search for.
  1746      * @param   fromIndex   the index from which to start the search.
  1747      * @return  the index of the first occurrence of the specified substring,
  1748      *          starting at the specified index,
  1749      *          or {@code -1} if there is no such occurrence.
  1750      */
  1751     public int indexOf(String str, int fromIndex) {
  1752         return indexOf(value, offset, count,
  1753                        str.value, str.offset, str.count, fromIndex);
  1754     }
  1755 
  1756     /**
  1757      * Code shared by String and StringBuffer to do searches. The
  1758      * source is the character array being searched, and the target
  1759      * is the string being searched for.
  1760      *
  1761      * @param   source       the characters being searched.
  1762      * @param   sourceOffset offset of the source string.
  1763      * @param   sourceCount  count of the source string.
  1764      * @param   target       the characters being searched for.
  1765      * @param   targetOffset offset of the target string.
  1766      * @param   targetCount  count of the target string.
  1767      * @param   fromIndex    the index to begin searching from.
  1768      */
  1769     static int indexOf(char[] source, int sourceOffset, int sourceCount,
  1770                        char[] target, int targetOffset, int targetCount,
  1771                        int fromIndex) {
  1772         if (fromIndex >= sourceCount) {
  1773             return (targetCount == 0 ? sourceCount : -1);
  1774         }
  1775         if (fromIndex < 0) {
  1776             fromIndex = 0;
  1777         }
  1778         if (targetCount == 0) {
  1779             return fromIndex;
  1780         }
  1781 
  1782         char first  = target[targetOffset];
  1783         int max = sourceOffset + (sourceCount - targetCount);
  1784 
  1785         for (int i = sourceOffset + fromIndex; i <= max; i++) {
  1786             /* Look for first character. */
  1787             if (source[i] != first) {
  1788                 while (++i <= max && source[i] != first);
  1789             }
  1790 
  1791             /* Found first character, now look at the rest of v2 */
  1792             if (i <= max) {
  1793                 int j = i + 1;
  1794                 int end = j + targetCount - 1;
  1795                 for (int k = targetOffset + 1; j < end && source[j] ==
  1796                          target[k]; j++, k++);
  1797 
  1798                 if (j == end) {
  1799                     /* Found whole string. */
  1800                     return i - sourceOffset;
  1801                 }
  1802             }
  1803         }
  1804         return -1;
  1805     }
  1806 
  1807     /**
  1808      * Returns the index within this string of the last occurrence of the
  1809      * specified substring.  The last occurrence of the empty string ""
  1810      * is considered to occur at the index value {@code this.length()}.
  1811      *
  1812      * <p>The returned index is the largest value <i>k</i> for which:
  1813      * <blockquote><pre>
  1814      * this.startsWith(str, <i>k</i>)
  1815      * </pre></blockquote>
  1816      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1817      *
  1818      * @param   str   the substring to search for.
  1819      * @return  the index of the last occurrence of the specified substring,
  1820      *          or {@code -1} if there is no such occurrence.
  1821      */
  1822     public int lastIndexOf(String str) {
  1823         return lastIndexOf(str, count);
  1824     }
  1825 
  1826     /**
  1827      * Returns the index within this string of the last occurrence of the
  1828      * specified substring, searching backward starting at the specified index.
  1829      *
  1830      * <p>The returned index is the largest value <i>k</i> for which:
  1831      * <blockquote><pre>
  1832      * <i>k</i> &lt;= fromIndex && this.startsWith(str, <i>k</i>)
  1833      * </pre></blockquote>
  1834      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1835      *
  1836      * @param   str         the substring to search for.
  1837      * @param   fromIndex   the index to start the search from.
  1838      * @return  the index of the last occurrence of the specified substring,
  1839      *          searching backward from the specified index,
  1840      *          or {@code -1} if there is no such occurrence.
  1841      */
  1842     public int lastIndexOf(String str, int fromIndex) {
  1843         return lastIndexOf(value, offset, count,
  1844                            str.value, str.offset, str.count, fromIndex);
  1845     }
  1846 
  1847     /**
  1848      * Code shared by String and StringBuffer to do searches. The
  1849      * source is the character array being searched, and the target
  1850      * is the string being searched for.
  1851      *
  1852      * @param   source       the characters being searched.
  1853      * @param   sourceOffset offset of the source string.
  1854      * @param   sourceCount  count of the source string.
  1855      * @param   target       the characters being searched for.
  1856      * @param   targetOffset offset of the target string.
  1857      * @param   targetCount  count of the target string.
  1858      * @param   fromIndex    the index to begin searching from.
  1859      */
  1860     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
  1861                            char[] target, int targetOffset, int targetCount,
  1862                            int fromIndex) {
  1863         /*
  1864          * Check arguments; return immediately where possible. For
  1865          * consistency, don't check for null str.
  1866          */
  1867         int rightIndex = sourceCount - targetCount;
  1868         if (fromIndex < 0) {
  1869             return -1;
  1870         }
  1871         if (fromIndex > rightIndex) {
  1872             fromIndex = rightIndex;
  1873         }
  1874         /* Empty string always matches. */
  1875         if (targetCount == 0) {
  1876             return fromIndex;
  1877         }
  1878 
  1879         int strLastIndex = targetOffset + targetCount - 1;
  1880         char strLastChar = target[strLastIndex];
  1881         int min = sourceOffset + targetCount - 1;
  1882         int i = min + fromIndex;
  1883 
  1884     startSearchForLastChar:
  1885         while (true) {
  1886             while (i >= min && source[i] != strLastChar) {
  1887                 i--;
  1888             }
  1889             if (i < min) {
  1890                 return -1;
  1891             }
  1892             int j = i - 1;
  1893             int start = j - (targetCount - 1);
  1894             int k = strLastIndex - 1;
  1895 
  1896             while (j > start) {
  1897                 if (source[j--] != target[k--]) {
  1898                     i--;
  1899                     continue startSearchForLastChar;
  1900                 }
  1901             }
  1902             return start - sourceOffset + 1;
  1903         }
  1904     }
  1905 
  1906     /**
  1907      * Returns a new string that is a substring of this string. The
  1908      * substring begins with the character at the specified index and
  1909      * extends to the end of this string. <p>
  1910      * Examples:
  1911      * <blockquote><pre>
  1912      * "unhappy".substring(2) returns "happy"
  1913      * "Harbison".substring(3) returns "bison"
  1914      * "emptiness".substring(9) returns "" (an empty string)
  1915      * </pre></blockquote>
  1916      *
  1917      * @param      beginIndex   the beginning index, inclusive.
  1918      * @return     the specified substring.
  1919      * @exception  IndexOutOfBoundsException  if
  1920      *             <code>beginIndex</code> is negative or larger than the
  1921      *             length of this <code>String</code> object.
  1922      */
  1923     public String substring(int beginIndex) {
  1924         return substring(beginIndex, count);
  1925     }
  1926 
  1927     /**
  1928      * Returns a new string that is a substring of this string. The
  1929      * substring begins at the specified <code>beginIndex</code> and
  1930      * extends to the character at index <code>endIndex - 1</code>.
  1931      * Thus the length of the substring is <code>endIndex-beginIndex</code>.
  1932      * <p>
  1933      * Examples:
  1934      * <blockquote><pre>
  1935      * "hamburger".substring(4, 8) returns "urge"
  1936      * "smiles".substring(1, 5) returns "mile"
  1937      * </pre></blockquote>
  1938      *
  1939      * @param      beginIndex   the beginning index, inclusive.
  1940      * @param      endIndex     the ending index, exclusive.
  1941      * @return     the specified substring.
  1942      * @exception  IndexOutOfBoundsException  if the
  1943      *             <code>beginIndex</code> is negative, or
  1944      *             <code>endIndex</code> is larger than the length of
  1945      *             this <code>String</code> object, or
  1946      *             <code>beginIndex</code> is larger than
  1947      *             <code>endIndex</code>.
  1948      */
  1949     public String substring(int beginIndex, int endIndex) {
  1950         if (beginIndex < 0) {
  1951             throw new StringIndexOutOfBoundsException(beginIndex);
  1952         }
  1953         if (endIndex > count) {
  1954             throw new StringIndexOutOfBoundsException(endIndex);
  1955         }
  1956         if (beginIndex > endIndex) {
  1957             throw new StringIndexOutOfBoundsException(endIndex - beginIndex);
  1958         }
  1959         return ((beginIndex == 0) && (endIndex == count)) ? this :
  1960             new String(offset + beginIndex, endIndex - beginIndex, value);
  1961     }
  1962 
  1963     /**
  1964      * Returns a new character sequence that is a subsequence of this sequence.
  1965      *
  1966      * <p> An invocation of this method of the form
  1967      *
  1968      * <blockquote><pre>
  1969      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
  1970      *
  1971      * behaves in exactly the same way as the invocation
  1972      *
  1973      * <blockquote><pre>
  1974      * str.substring(begin,&nbsp;end)</pre></blockquote>
  1975      *
  1976      * This method is defined so that the <tt>String</tt> class can implement
  1977      * the {@link CharSequence} interface. </p>
  1978      *
  1979      * @param      beginIndex   the begin index, inclusive.
  1980      * @param      endIndex     the end index, exclusive.
  1981      * @return     the specified subsequence.
  1982      *
  1983      * @throws  IndexOutOfBoundsException
  1984      *          if <tt>beginIndex</tt> or <tt>endIndex</tt> are negative,
  1985      *          if <tt>endIndex</tt> is greater than <tt>length()</tt>,
  1986      *          or if <tt>beginIndex</tt> is greater than <tt>startIndex</tt>
  1987      *
  1988      * @since 1.4
  1989      * @spec JSR-51
  1990      */
  1991     public CharSequence subSequence(int beginIndex, int endIndex) {
  1992         return this.substring(beginIndex, endIndex);
  1993     }
  1994 
  1995     /**
  1996      * Concatenates the specified string to the end of this string.
  1997      * <p>
  1998      * If the length of the argument string is <code>0</code>, then this
  1999      * <code>String</code> object is returned. Otherwise, a new
  2000      * <code>String</code> object is created, representing a character
  2001      * sequence that is the concatenation of the character sequence
  2002      * represented by this <code>String</code> object and the character
  2003      * sequence represented by the argument string.<p>
  2004      * Examples:
  2005      * <blockquote><pre>
  2006      * "cares".concat("s") returns "caress"
  2007      * "to".concat("get").concat("her") returns "together"
  2008      * </pre></blockquote>
  2009      *
  2010      * @param   str   the <code>String</code> that is concatenated to the end
  2011      *                of this <code>String</code>.
  2012      * @return  a string that represents the concatenation of this object's
  2013      *          characters followed by the string argument's characters.
  2014      */
  2015     public String concat(String str) {
  2016         int otherLen = str.length();
  2017         if (otherLen == 0) {
  2018             return this;
  2019         }
  2020         char buf[] = new char[count + otherLen];
  2021         getChars(0, count, buf, 0);
  2022         str.getChars(0, otherLen, buf, count);
  2023         return new String(0, count + otherLen, buf);
  2024     }
  2025 
  2026     /**
  2027      * Returns a new string resulting from replacing all occurrences of
  2028      * <code>oldChar</code> in this string with <code>newChar</code>.
  2029      * <p>
  2030      * If the character <code>oldChar</code> does not occur in the
  2031      * character sequence represented by this <code>String</code> object,
  2032      * then a reference to this <code>String</code> object is returned.
  2033      * Otherwise, a new <code>String</code> object is created that
  2034      * represents a character sequence identical to the character sequence
  2035      * represented by this <code>String</code> object, except that every
  2036      * occurrence of <code>oldChar</code> is replaced by an occurrence
  2037      * of <code>newChar</code>.
  2038      * <p>
  2039      * Examples:
  2040      * <blockquote><pre>
  2041      * "mesquite in your cellar".replace('e', 'o')
  2042      *         returns "mosquito in your collar"
  2043      * "the war of baronets".replace('r', 'y')
  2044      *         returns "the way of bayonets"
  2045      * "sparring with a purple porpoise".replace('p', 't')
  2046      *         returns "starring with a turtle tortoise"
  2047      * "JonL".replace('q', 'x') returns "JonL" (no change)
  2048      * </pre></blockquote>
  2049      *
  2050      * @param   oldChar   the old character.
  2051      * @param   newChar   the new character.
  2052      * @return  a string derived from this string by replacing every
  2053      *          occurrence of <code>oldChar</code> with <code>newChar</code>.
  2054      */
  2055     public String replace(char oldChar, char newChar) {
  2056         if (oldChar != newChar) {
  2057             int len = count;
  2058             int i = -1;
  2059             char[] val = value; /* avoid getfield opcode */
  2060             int off = offset;   /* avoid getfield opcode */
  2061 
  2062             while (++i < len) {
  2063                 if (val[off + i] == oldChar) {
  2064                     break;
  2065                 }
  2066             }
  2067             if (i < len) {
  2068                 char buf[] = new char[len];
  2069                 for (int j = 0 ; j < i ; j++) {
  2070                     buf[j] = val[off+j];
  2071                 }
  2072                 while (i < len) {
  2073                     char c = val[off + i];
  2074                     buf[i] = (c == oldChar) ? newChar : c;
  2075                     i++;
  2076                 }
  2077                 return new String(0, len, buf);
  2078             }
  2079         }
  2080         return this;
  2081     }
  2082 
  2083     /**
  2084      * Tells whether or not this string matches the given <a
  2085      * href="../util/regex/Pattern.html#sum">regular expression</a>.
  2086      *
  2087      * <p> An invocation of this method of the form
  2088      * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the
  2089      * same result as the expression
  2090      *
  2091      * <blockquote><tt> {@link java.util.regex.Pattern}.{@link
  2092      * java.util.regex.Pattern#matches(String,CharSequence)
  2093      * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>
  2094      *
  2095      * @param   regex
  2096      *          the regular expression to which this string is to be matched
  2097      *
  2098      * @return  <tt>true</tt> if, and only if, this string matches the
  2099      *          given regular expression
  2100      *
  2101      * @throws  PatternSyntaxException
  2102      *          if the regular expression's syntax is invalid
  2103      *
  2104      * @see java.util.regex.Pattern
  2105      *
  2106      * @since 1.4
  2107      * @spec JSR-51
  2108      */
  2109     public boolean matches(String regex) {
  2110         return Pattern.matches(regex, this);
  2111     }
  2112 
  2113     /**
  2114      * Returns true if and only if this string contains the specified
  2115      * sequence of char values.
  2116      *
  2117      * @param s the sequence to search for
  2118      * @return true if this string contains <code>s</code>, false otherwise
  2119      * @throws NullPointerException if <code>s</code> is <code>null</code>
  2120      * @since 1.5
  2121      */
  2122     public boolean contains(CharSequence s) {
  2123         return indexOf(s.toString()) > -1;
  2124     }
  2125 
  2126     /**
  2127      * Replaces the first substring of this string that matches the given <a
  2128      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
  2129      * given replacement.
  2130      *
  2131      * <p> An invocation of this method of the form
  2132      * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
  2133      * yields exactly the same result as the expression
  2134      *
  2135      * <blockquote><tt>
  2136      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2137      * compile}(</tt><i>regex</i><tt>).{@link
  2138      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
  2139      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst
  2140      * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>
  2141      *
  2142      *<p>
  2143      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
  2144      * replacement string may cause the results to be different than if it were
  2145      * being treated as a literal replacement string; see
  2146      * {@link java.util.regex.Matcher#replaceFirst}.
  2147      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
  2148      * meaning of these characters, if desired.
  2149      *
  2150      * @param   regex
  2151      *          the regular expression to which this string is to be matched
  2152      * @param   replacement
  2153      *          the string to be substituted for the first match
  2154      *
  2155      * @return  The resulting <tt>String</tt>
  2156      *
  2157      * @throws  PatternSyntaxException
  2158      *          if the regular expression's syntax is invalid
  2159      *
  2160      * @see java.util.regex.Pattern
  2161      *
  2162      * @since 1.4
  2163      * @spec JSR-51
  2164      */
  2165     public String replaceFirst(String regex, String replacement) {
  2166         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
  2167     }
  2168 
  2169     /**
  2170      * Replaces each substring of this string that matches the given <a
  2171      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
  2172      * given replacement.
  2173      *
  2174      * <p> An invocation of this method of the form
  2175      * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
  2176      * yields exactly the same result as the expression
  2177      *
  2178      * <blockquote><tt>
  2179      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2180      * compile}(</tt><i>regex</i><tt>).{@link
  2181      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
  2182      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll
  2183      * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote>
  2184      *
  2185      *<p>
  2186      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
  2187      * replacement string may cause the results to be different than if it were
  2188      * being treated as a literal replacement string; see
  2189      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
  2190      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
  2191      * meaning of these characters, if desired.
  2192      *
  2193      * @param   regex
  2194      *          the regular expression to which this string is to be matched
  2195      * @param   replacement
  2196      *          the string to be substituted for each match
  2197      *
  2198      * @return  The resulting <tt>String</tt>
  2199      *
  2200      * @throws  PatternSyntaxException
  2201      *          if the regular expression's syntax is invalid
  2202      *
  2203      * @see java.util.regex.Pattern
  2204      *
  2205      * @since 1.4
  2206      * @spec JSR-51
  2207      */
  2208     public String replaceAll(String regex, String replacement) {
  2209         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
  2210     }
  2211 
  2212     /**
  2213      * Replaces each substring of this string that matches the literal target
  2214      * sequence with the specified literal replacement sequence. The
  2215      * replacement proceeds from the beginning of the string to the end, for
  2216      * example, replacing "aa" with "b" in the string "aaa" will result in
  2217      * "ba" rather than "ab".
  2218      *
  2219      * @param  target The sequence of char values to be replaced
  2220      * @param  replacement The replacement sequence of char values
  2221      * @return  The resulting string
  2222      * @throws NullPointerException if <code>target</code> or
  2223      *         <code>replacement</code> is <code>null</code>.
  2224      * @since 1.5
  2225      */
  2226     public String replace(CharSequence target, CharSequence replacement) {
  2227         return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
  2228             this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
  2229     }
  2230 
  2231     /**
  2232      * Splits this string around matches of the given
  2233      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
  2234      *
  2235      * <p> The array returned by this method contains each substring of this
  2236      * string that is terminated by another substring that matches the given
  2237      * expression or is terminated by the end of the string.  The substrings in
  2238      * the array are in the order in which they occur in this string.  If the
  2239      * expression does not match any part of the input then the resulting array
  2240      * has just one element, namely this string.
  2241      *
  2242      * <p> The <tt>limit</tt> parameter controls the number of times the
  2243      * pattern is applied and therefore affects the length of the resulting
  2244      * array.  If the limit <i>n</i> is greater than zero then the pattern
  2245      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
  2246      * length will be no greater than <i>n</i>, and the array's last entry
  2247      * will contain all input beyond the last matched delimiter.  If <i>n</i>
  2248      * is non-positive then the pattern will be applied as many times as
  2249      * possible and the array can have any length.  If <i>n</i> is zero then
  2250      * the pattern will be applied as many times as possible, the array can
  2251      * have any length, and trailing empty strings will be discarded.
  2252      *
  2253      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the
  2254      * following results with these parameters:
  2255      *
  2256      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
  2257      * <tr>
  2258      *     <th>Regex</th>
  2259      *     <th>Limit</th>
  2260      *     <th>Result</th>
  2261      * </tr>
  2262      * <tr><td align=center>:</td>
  2263      *     <td align=center>2</td>
  2264      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
  2265      * <tr><td align=center>:</td>
  2266      *     <td align=center>5</td>
  2267      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2268      * <tr><td align=center>:</td>
  2269      *     <td align=center>-2</td>
  2270      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2271      * <tr><td align=center>o</td>
  2272      *     <td align=center>5</td>
  2273      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  2274      * <tr><td align=center>o</td>
  2275      *     <td align=center>-2</td>
  2276      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  2277      * <tr><td align=center>o</td>
  2278      *     <td align=center>0</td>
  2279      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  2280      * </table></blockquote>
  2281      *
  2282      * <p> An invocation of this method of the form
  2283      * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
  2284      * yields the same result as the expression
  2285      *
  2286      * <blockquote>
  2287      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2288      * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link
  2289      * java.util.regex.Pattern#split(java.lang.CharSequence,int)
  2290      * split}<tt>(</tt><i>str</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
  2291      * </blockquote>
  2292      *
  2293      *
  2294      * @param  regex
  2295      *         the delimiting regular expression
  2296      *
  2297      * @param  limit
  2298      *         the result threshold, as described above
  2299      *
  2300      * @return  the array of strings computed by splitting this string
  2301      *          around matches of the given regular expression
  2302      *
  2303      * @throws  PatternSyntaxException
  2304      *          if the regular expression's syntax is invalid
  2305      *
  2306      * @see java.util.regex.Pattern
  2307      *
  2308      * @since 1.4
  2309      * @spec JSR-51
  2310      */
  2311     public String[] split(String regex, int limit) {
  2312         /* fastpath if the regex is a
  2313            (1)one-char String and this character is not one of the
  2314               RegEx's meta characters ".$|()[{^?*+\\", or
  2315            (2)two-char String and the first char is the backslash and
  2316               the second is not the ascii digit or ascii letter.
  2317         */
  2318         char ch = 0;
  2319         if (((regex.count == 1 &&
  2320              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
  2321              (regex.length() == 2 &&
  2322               regex.charAt(0) == '\\' &&
  2323               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
  2324               ((ch-'a')|('z'-ch)) < 0 &&
  2325               ((ch-'A')|('Z'-ch)) < 0)) &&
  2326             (ch < Character.MIN_HIGH_SURROGATE ||
  2327              ch > Character.MAX_LOW_SURROGATE))
  2328         {
  2329             int off = 0;
  2330             int next = 0;
  2331             boolean limited = limit > 0;
  2332             ArrayList<String> list = new ArrayList<String>();
  2333             while ((next = indexOf(ch, off)) != -1) {
  2334                 if (!limited || list.size() < limit - 1) {
  2335                     list.add(substring(off, next));
  2336                     off = next + 1;
  2337                 } else {    // last one
  2338                     //assert (list.size() == limit - 1);
  2339                     list.add(substring(off, count));
  2340                     off = count;
  2341                     break;
  2342                 }
  2343             }
  2344             // If no match was found, return this
  2345             if (off == 0)
  2346                 return new String[] { this };
  2347 
  2348             // Add remaining segment
  2349             if (!limited || list.size() < limit)
  2350                 list.add(substring(off, count));
  2351 
  2352             // Construct result
  2353             int resultSize = list.size();
  2354             if (limit == 0)
  2355                 while (resultSize > 0 && list.get(resultSize-1).length() == 0)
  2356                     resultSize--;
  2357             String[] result = new String[resultSize];
  2358             return list.subList(0, resultSize).toArray(result);
  2359         }
  2360         return Pattern.compile(regex).split(this, limit);
  2361     }
  2362 
  2363     /**
  2364      * Splits this string around matches of the given <a
  2365      * href="../util/regex/Pattern.html#sum">regular expression</a>.
  2366      *
  2367      * <p> This method works as if by invoking the two-argument {@link
  2368      * #split(String, int) split} method with the given expression and a limit
  2369      * argument of zero.  Trailing empty strings are therefore not included in
  2370      * the resulting array.
  2371      *
  2372      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following
  2373      * results with these expressions:
  2374      *
  2375      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
  2376      * <tr>
  2377      *  <th>Regex</th>
  2378      *  <th>Result</th>
  2379      * </tr>
  2380      * <tr><td align=center>:</td>
  2381      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2382      * <tr><td align=center>o</td>
  2383      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  2384      * </table></blockquote>
  2385      *
  2386      *
  2387      * @param  regex
  2388      *         the delimiting regular expression
  2389      *
  2390      * @return  the array of strings computed by splitting this string
  2391      *          around matches of the given regular expression
  2392      *
  2393      * @throws  PatternSyntaxException
  2394      *          if the regular expression's syntax is invalid
  2395      *
  2396      * @see java.util.regex.Pattern
  2397      *
  2398      * @since 1.4
  2399      * @spec JSR-51
  2400      */
  2401     public String[] split(String regex) {
  2402         return split(regex, 0);
  2403     }
  2404 
  2405     /**
  2406      * Converts all of the characters in this <code>String</code> to lower
  2407      * case using the rules of the given <code>Locale</code>.  Case mapping is based
  2408      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
  2409      * class. Since case mappings are not always 1:1 char mappings, the resulting
  2410      * <code>String</code> may be a different length than the original <code>String</code>.
  2411      * <p>
  2412      * Examples of lowercase  mappings are in the following table:
  2413      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
  2414      * <tr>
  2415      *   <th>Language Code of Locale</th>
  2416      *   <th>Upper Case</th>
  2417      *   <th>Lower Case</th>
  2418      *   <th>Description</th>
  2419      * </tr>
  2420      * <tr>
  2421      *   <td>tr (Turkish)</td>
  2422      *   <td>&#92;u0130</td>
  2423      *   <td>&#92;u0069</td>
  2424      *   <td>capital letter I with dot above -&gt; small letter i</td>
  2425      * </tr>
  2426      * <tr>
  2427      *   <td>tr (Turkish)</td>
  2428      *   <td>&#92;u0049</td>
  2429      *   <td>&#92;u0131</td>
  2430      *   <td>capital letter I -&gt; small letter dotless i </td>
  2431      * </tr>
  2432      * <tr>
  2433      *   <td>(all)</td>
  2434      *   <td>French Fries</td>
  2435      *   <td>french fries</td>
  2436      *   <td>lowercased all chars in String</td>
  2437      * </tr>
  2438      * <tr>
  2439      *   <td>(all)</td>
  2440      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
  2441      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
  2442      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
  2443      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
  2444      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
  2445      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
  2446      *   <td>lowercased all chars in String</td>
  2447      * </tr>
  2448      * </table>
  2449      *
  2450      * @param locale use the case transformation rules for this locale
  2451      * @return the <code>String</code>, converted to lowercase.
  2452      * @see     java.lang.String#toLowerCase()
  2453      * @see     java.lang.String#toUpperCase()
  2454      * @see     java.lang.String#toUpperCase(Locale)
  2455      * @since   1.1
  2456      */
  2457     public String toLowerCase(Locale locale) {
  2458         if (locale == null) {
  2459             throw new NullPointerException();
  2460         }
  2461 
  2462         int     firstUpper;
  2463 
  2464         /* Now check if there are any characters that need to be changed. */
  2465         scan: {
  2466             for (firstUpper = 0 ; firstUpper < count; ) {
  2467                 char c = value[offset+firstUpper];
  2468                 if ((c >= Character.MIN_HIGH_SURROGATE) &&
  2469                     (c <= Character.MAX_HIGH_SURROGATE)) {
  2470                     int supplChar = codePointAt(firstUpper);
  2471                     if (supplChar != Character.toLowerCase(supplChar)) {
  2472                         break scan;
  2473                     }
  2474                     firstUpper += Character.charCount(supplChar);
  2475                 } else {
  2476                     if (c != Character.toLowerCase(c)) {
  2477                         break scan;
  2478                     }
  2479                     firstUpper++;
  2480                 }
  2481             }
  2482             return this;
  2483         }
  2484 
  2485         char[]  result = new char[count];
  2486         int     resultOffset = 0;  /* result may grow, so i+resultOffset
  2487                                     * is the write location in result */
  2488 
  2489         /* Just copy the first few lowerCase characters. */
  2490         System.arraycopy(value, offset, result, 0, firstUpper);
  2491 
  2492         String lang = locale.getLanguage();
  2493         boolean localeDependent =
  2494             (lang == "tr" || lang == "az" || lang == "lt");
  2495         char[] lowerCharArray;
  2496         int lowerChar;
  2497         int srcChar;
  2498         int srcCount;
  2499         for (int i = firstUpper; i < count; i += srcCount) {
  2500             srcChar = (int)value[offset+i];
  2501             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
  2502                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
  2503                 srcChar = codePointAt(i);
  2504                 srcCount = Character.charCount(srcChar);
  2505             } else {
  2506                 srcCount = 1;
  2507             }
  2508             if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
  2509                 lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
  2510             } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT
  2511                 lowerChar = Character.ERROR;
  2512             } else {
  2513                 lowerChar = Character.toLowerCase(srcChar);
  2514             }
  2515             if ((lowerChar == Character.ERROR) ||
  2516                 (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
  2517                 if (lowerChar == Character.ERROR) {
  2518                      if (!localeDependent && srcChar == '\u0130') {
  2519                          lowerCharArray =
  2520                              ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);
  2521                      } else {
  2522                         lowerCharArray =
  2523                             ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
  2524                      }
  2525                 } else if (srcCount == 2) {
  2526                     resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
  2527                     continue;
  2528                 } else {
  2529                     lowerCharArray = Character.toChars(lowerChar);
  2530                 }
  2531 
  2532                 /* Grow result if needed */
  2533                 int mapLen = lowerCharArray.length;
  2534                 if (mapLen > srcCount) {
  2535                     char[] result2 = new char[result.length + mapLen - srcCount];
  2536                     System.arraycopy(result, 0, result2, 0,
  2537                         i + resultOffset);
  2538                     result = result2;
  2539                 }
  2540                 for (int x=0; x<mapLen; ++x) {
  2541                     result[i+resultOffset+x] = lowerCharArray[x];
  2542                 }
  2543                 resultOffset += (mapLen - srcCount);
  2544             } else {
  2545                 result[i+resultOffset] = (char)lowerChar;
  2546             }
  2547         }
  2548         return new String(0, count+resultOffset, result);
  2549     }
  2550 
  2551     /**
  2552      * Converts all of the characters in this <code>String</code> to lower
  2553      * case using the rules of the default locale. This is equivalent to calling
  2554      * <code>toLowerCase(Locale.getDefault())</code>.
  2555      * <p>
  2556      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
  2557      * results if used for strings that are intended to be interpreted locale
  2558      * independently.
  2559      * Examples are programming language identifiers, protocol keys, and HTML
  2560      * tags.
  2561      * For instance, <code>"TITLE".toLowerCase()</code> in a Turkish locale
  2562      * returns <code>"t\u005Cu0131tle"</code>, where '\u005Cu0131' is the
  2563      * LATIN SMALL LETTER DOTLESS I character.
  2564      * To obtain correct results for locale insensitive strings, use
  2565      * <code>toLowerCase(Locale.ENGLISH)</code>.
  2566      * <p>
  2567      * @return  the <code>String</code>, converted to lowercase.
  2568      * @see     java.lang.String#toLowerCase(Locale)
  2569      */
  2570     public String toLowerCase() {
  2571         return toLowerCase(Locale.getDefault());
  2572     }
  2573 
  2574     /**
  2575      * Converts all of the characters in this <code>String</code> to upper
  2576      * case using the rules of the given <code>Locale</code>. Case mapping is based
  2577      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
  2578      * class. Since case mappings are not always 1:1 char mappings, the resulting
  2579      * <code>String</code> may be a different length than the original <code>String</code>.
  2580      * <p>
  2581      * Examples of locale-sensitive and 1:M case mappings are in the following table.
  2582      * <p>
  2583      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
  2584      * <tr>
  2585      *   <th>Language Code of Locale</th>
  2586      *   <th>Lower Case</th>
  2587      *   <th>Upper Case</th>
  2588      *   <th>Description</th>
  2589      * </tr>
  2590      * <tr>
  2591      *   <td>tr (Turkish)</td>
  2592      *   <td>&#92;u0069</td>
  2593      *   <td>&#92;u0130</td>
  2594      *   <td>small letter i -&gt; capital letter I with dot above</td>
  2595      * </tr>
  2596      * <tr>
  2597      *   <td>tr (Turkish)</td>
  2598      *   <td>&#92;u0131</td>
  2599      *   <td>&#92;u0049</td>
  2600      *   <td>small letter dotless i -&gt; capital letter I</td>
  2601      * </tr>
  2602      * <tr>
  2603      *   <td>(all)</td>
  2604      *   <td>&#92;u00df</td>
  2605      *   <td>&#92;u0053 &#92;u0053</td>
  2606      *   <td>small letter sharp s -&gt; two letters: SS</td>
  2607      * </tr>
  2608      * <tr>
  2609      *   <td>(all)</td>
  2610      *   <td>Fahrvergn&uuml;gen</td>
  2611      *   <td>FAHRVERGN&Uuml;GEN</td>
  2612      *   <td></td>
  2613      * </tr>
  2614      * </table>
  2615      * @param locale use the case transformation rules for this locale
  2616      * @return the <code>String</code>, converted to uppercase.
  2617      * @see     java.lang.String#toUpperCase()
  2618      * @see     java.lang.String#toLowerCase()
  2619      * @see     java.lang.String#toLowerCase(Locale)
  2620      * @since   1.1
  2621      */
  2622     public String toUpperCase(Locale locale) {
  2623         if (locale == null) {
  2624             throw new NullPointerException();
  2625         }
  2626 
  2627         int     firstLower;
  2628 
  2629         /* Now check if there are any characters that need to be changed. */
  2630         scan: {
  2631             for (firstLower = 0 ; firstLower < count; ) {
  2632                 int c = (int)value[offset+firstLower];
  2633                 int srcCount;
  2634                 if ((c >= Character.MIN_HIGH_SURROGATE) &&
  2635                     (c <= Character.MAX_HIGH_SURROGATE)) {
  2636                     c = codePointAt(firstLower);
  2637                     srcCount = Character.charCount(c);
  2638                 } else {
  2639                     srcCount = 1;
  2640                 }
  2641                 int upperCaseChar = Character.toUpperCaseEx(c);
  2642                 if ((upperCaseChar == Character.ERROR) ||
  2643                     (c != upperCaseChar)) {
  2644                     break scan;
  2645                 }
  2646                 firstLower += srcCount;
  2647             }
  2648             return this;
  2649         }
  2650 
  2651         char[]  result       = new char[count]; /* may grow */
  2652         int     resultOffset = 0;  /* result may grow, so i+resultOffset
  2653                                     * is the write location in result */
  2654 
  2655         /* Just copy the first few upperCase characters. */
  2656         System.arraycopy(value, offset, result, 0, firstLower);
  2657 
  2658         String lang = locale.getLanguage();
  2659         boolean localeDependent =
  2660             (lang == "tr" || lang == "az" || lang == "lt");
  2661         char[] upperCharArray;
  2662         int upperChar;
  2663         int srcChar;
  2664         int srcCount;
  2665         for (int i = firstLower; i < count; i += srcCount) {
  2666             srcChar = (int)value[offset+i];
  2667             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
  2668                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
  2669                 srcChar = codePointAt(i);
  2670                 srcCount = Character.charCount(srcChar);
  2671             } else {
  2672                 srcCount = 1;
  2673             }
  2674             if (localeDependent) {
  2675                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
  2676             } else {
  2677                 upperChar = Character.toUpperCaseEx(srcChar);
  2678             }
  2679             if ((upperChar == Character.ERROR) ||
  2680                 (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
  2681                 if (upperChar == Character.ERROR) {
  2682                     if (localeDependent) {
  2683                         upperCharArray =
  2684                             ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
  2685                     } else {
  2686                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
  2687                     }
  2688                 } else if (srcCount == 2) {
  2689                     resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
  2690                     continue;
  2691                 } else {
  2692                     upperCharArray = Character.toChars(upperChar);
  2693                 }
  2694 
  2695                 /* Grow result if needed */
  2696                 int mapLen = upperCharArray.length;
  2697                 if (mapLen > srcCount) {
  2698                     char[] result2 = new char[result.length + mapLen - srcCount];
  2699                     System.arraycopy(result, 0, result2, 0,
  2700                         i + resultOffset);
  2701                     result = result2;
  2702                 }
  2703                 for (int x=0; x<mapLen; ++x) {
  2704                     result[i+resultOffset+x] = upperCharArray[x];
  2705                 }
  2706                 resultOffset += (mapLen - srcCount);
  2707             } else {
  2708                 result[i+resultOffset] = (char)upperChar;
  2709             }
  2710         }
  2711         return new String(0, count+resultOffset, result);
  2712     }
  2713 
  2714     /**
  2715      * Converts all of the characters in this <code>String</code> to upper
  2716      * case using the rules of the default locale. This method is equivalent to
  2717      * <code>toUpperCase(Locale.getDefault())</code>.
  2718      * <p>
  2719      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
  2720      * results if used for strings that are intended to be interpreted locale
  2721      * independently.
  2722      * Examples are programming language identifiers, protocol keys, and HTML
  2723      * tags.
  2724      * For instance, <code>"title".toUpperCase()</code> in a Turkish locale
  2725      * returns <code>"T\u005Cu0130TLE"</code>, where '\u005Cu0130' is the
  2726      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
  2727      * To obtain correct results for locale insensitive strings, use
  2728      * <code>toUpperCase(Locale.ENGLISH)</code>.
  2729      * <p>
  2730      * @return  the <code>String</code>, converted to uppercase.
  2731      * @see     java.lang.String#toUpperCase(Locale)
  2732      */
  2733     public String toUpperCase() {
  2734         return toUpperCase(Locale.getDefault());
  2735     }
  2736 
  2737     /**
  2738      * Returns a copy of the string, with leading and trailing whitespace
  2739      * omitted.
  2740      * <p>
  2741      * If this <code>String</code> object represents an empty character
  2742      * sequence, or the first and last characters of character sequence
  2743      * represented by this <code>String</code> object both have codes
  2744      * greater than <code>'&#92;u0020'</code> (the space character), then a
  2745      * reference to this <code>String</code> object is returned.
  2746      * <p>
  2747      * Otherwise, if there is no character with a code greater than
  2748      * <code>'&#92;u0020'</code> in the string, then a new
  2749      * <code>String</code> object representing an empty string is created
  2750      * and returned.
  2751      * <p>
  2752      * Otherwise, let <i>k</i> be the index of the first character in the
  2753      * string whose code is greater than <code>'&#92;u0020'</code>, and let
  2754      * <i>m</i> be the index of the last character in the string whose code
  2755      * is greater than <code>'&#92;u0020'</code>. A new <code>String</code>
  2756      * object is created, representing the substring of this string that
  2757      * begins with the character at index <i>k</i> and ends with the
  2758      * character at index <i>m</i>-that is, the result of
  2759      * <code>this.substring(<i>k</i>,&nbsp;<i>m</i>+1)</code>.
  2760      * <p>
  2761      * This method may be used to trim whitespace (as defined above) from
  2762      * the beginning and end of a string.
  2763      *
  2764      * @return  A copy of this string with leading and trailing white
  2765      *          space removed, or this string if it has no leading or
  2766      *          trailing white space.
  2767      */
  2768     public String trim() {
  2769         int len = count;
  2770         int st = 0;
  2771         int off = offset;      /* avoid getfield opcode */
  2772         char[] val = value;    /* avoid getfield opcode */
  2773 
  2774         while ((st < len) && (val[off + st] <= ' ')) {
  2775             st++;
  2776         }
  2777         while ((st < len) && (val[off + len - 1] <= ' ')) {
  2778             len--;
  2779         }
  2780         return ((st > 0) || (len < count)) ? substring(st, len) : this;
  2781     }
  2782 
  2783     /**
  2784      * This object (which is already a string!) is itself returned.
  2785      *
  2786      * @return  the string itself.
  2787      */
  2788     public String toString() {
  2789         return this;
  2790     }
  2791 
  2792     /**
  2793      * Converts this string to a new character array.
  2794      *
  2795      * @return  a newly allocated character array whose length is the length
  2796      *          of this string and whose contents are initialized to contain
  2797      *          the character sequence represented by this string.
  2798      */
  2799     public char[] toCharArray() {
  2800         char result[] = new char[count];
  2801         getChars(0, count, result, 0);
  2802         return result;
  2803     }
  2804 
  2805     /**
  2806      * Returns a formatted string using the specified format string and
  2807      * arguments.
  2808      *
  2809      * <p> The locale always used is the one returned by {@link
  2810      * java.util.Locale#getDefault() Locale.getDefault()}.
  2811      *
  2812      * @param  format
  2813      *         A <a href="../util/Formatter.html#syntax">format string</a>
  2814      *
  2815      * @param  args
  2816      *         Arguments referenced by the format specifiers in the format
  2817      *         string.  If there are more arguments than format specifiers, the
  2818      *         extra arguments are ignored.  The number of arguments is
  2819      *         variable and may be zero.  The maximum number of arguments is
  2820      *         limited by the maximum dimension of a Java array as defined by
  2821      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
  2822      *         The behaviour on a
  2823      *         <tt>null</tt> argument depends on the <a
  2824      *         href="../util/Formatter.html#syntax">conversion</a>.
  2825      *
  2826      * @throws  IllegalFormatException
  2827      *          If a format string contains an illegal syntax, a format
  2828      *          specifier that is incompatible with the given arguments,
  2829      *          insufficient arguments given the format string, or other
  2830      *          illegal conditions.  For specification of all possible
  2831      *          formatting errors, see the <a
  2832      *          href="../util/Formatter.html#detail">Details</a> section of the
  2833      *          formatter class specification.
  2834      *
  2835      * @throws  NullPointerException
  2836      *          If the <tt>format</tt> is <tt>null</tt>
  2837      *
  2838      * @return  A formatted string
  2839      *
  2840      * @see  java.util.Formatter
  2841      * @since  1.5
  2842      */
  2843     public static String format(String format, Object ... args) {
  2844         return new Formatter().format(format, args).toString();
  2845     }
  2846 
  2847     /**
  2848      * Returns a formatted string using the specified locale, format string,
  2849      * and arguments.
  2850      *
  2851      * @param  l
  2852      *         The {@linkplain java.util.Locale locale} to apply during
  2853      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
  2854      *         is applied.
  2855      *
  2856      * @param  format
  2857      *         A <a href="../util/Formatter.html#syntax">format string</a>
  2858      *
  2859      * @param  args
  2860      *         Arguments referenced by the format specifiers in the format
  2861      *         string.  If there are more arguments than format specifiers, the
  2862      *         extra arguments are ignored.  The number of arguments is
  2863      *         variable and may be zero.  The maximum number of arguments is
  2864      *         limited by the maximum dimension of a Java array as defined by
  2865      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
  2866      *         The behaviour on a
  2867      *         <tt>null</tt> argument depends on the <a
  2868      *         href="../util/Formatter.html#syntax">conversion</a>.
  2869      *
  2870      * @throws  IllegalFormatException
  2871      *          If a format string contains an illegal syntax, a format
  2872      *          specifier that is incompatible with the given arguments,
  2873      *          insufficient arguments given the format string, or other
  2874      *          illegal conditions.  For specification of all possible
  2875      *          formatting errors, see the <a
  2876      *          href="../util/Formatter.html#detail">Details</a> section of the
  2877      *          formatter class specification
  2878      *
  2879      * @throws  NullPointerException
  2880      *          If the <tt>format</tt> is <tt>null</tt>
  2881      *
  2882      * @return  A formatted string
  2883      *
  2884      * @see  java.util.Formatter
  2885      * @since  1.5
  2886      */
  2887     public static String format(Locale l, String format, Object ... args) {
  2888         return new Formatter(l).format(format, args).toString();
  2889     }
  2890 
  2891     /**
  2892      * Returns the string representation of the <code>Object</code> argument.
  2893      *
  2894      * @param   obj   an <code>Object</code>.
  2895      * @return  if the argument is <code>null</code>, then a string equal to
  2896      *          <code>"null"</code>; otherwise, the value of
  2897      *          <code>obj.toString()</code> is returned.
  2898      * @see     java.lang.Object#toString()
  2899      */
  2900     public static String valueOf(Object obj) {
  2901         return (obj == null) ? "null" : obj.toString();
  2902     }
  2903 
  2904     /**
  2905      * Returns the string representation of the <code>char</code> array
  2906      * argument. The contents of the character array are copied; subsequent
  2907      * modification of the character array does not affect the newly
  2908      * created string.
  2909      *
  2910      * @param   data   a <code>char</code> array.
  2911      * @return  a newly allocated string representing the same sequence of
  2912      *          characters contained in the character array argument.
  2913      */
  2914     public static String valueOf(char data[]) {
  2915         return new String(data);
  2916     }
  2917 
  2918     /**
  2919      * Returns the string representation of a specific subarray of the
  2920      * <code>char</code> array argument.
  2921      * <p>
  2922      * The <code>offset</code> argument is the index of the first
  2923      * character of the subarray. The <code>count</code> argument
  2924      * specifies the length of the subarray. The contents of the subarray
  2925      * are copied; subsequent modification of the character array does not
  2926      * affect the newly created string.
  2927      *
  2928      * @param   data     the character array.
  2929      * @param   offset   the initial offset into the value of the
  2930      *                  <code>String</code>.
  2931      * @param   count    the length of the value of the <code>String</code>.
  2932      * @return  a string representing the sequence of characters contained
  2933      *          in the subarray of the character array argument.
  2934      * @exception IndexOutOfBoundsException if <code>offset</code> is
  2935      *          negative, or <code>count</code> is negative, or
  2936      *          <code>offset+count</code> is larger than
  2937      *          <code>data.length</code>.
  2938      */
  2939     public static String valueOf(char data[], int offset, int count) {
  2940         return new String(data, offset, count);
  2941     }
  2942 
  2943     /**
  2944      * Returns a String that represents the character sequence in the
  2945      * array specified.
  2946      *
  2947      * @param   data     the character array.
  2948      * @param   offset   initial offset of the subarray.
  2949      * @param   count    length of the subarray.
  2950      * @return  a <code>String</code> that contains the characters of the
  2951      *          specified subarray of the character array.
  2952      */
  2953     public static String copyValueOf(char data[], int offset, int count) {
  2954         // All public String constructors now copy the data.
  2955         return new String(data, offset, count);
  2956     }
  2957 
  2958     /**
  2959      * Returns a String that represents the character sequence in the
  2960      * array specified.
  2961      *
  2962      * @param   data   the character array.
  2963      * @return  a <code>String</code> that contains the characters of the
  2964      *          character array.
  2965      */
  2966     public static String copyValueOf(char data[]) {
  2967         return copyValueOf(data, 0, data.length);
  2968     }
  2969 
  2970     /**
  2971      * Returns the string representation of the <code>boolean</code> argument.
  2972      *
  2973      * @param   b   a <code>boolean</code>.
  2974      * @return  if the argument is <code>true</code>, a string equal to
  2975      *          <code>"true"</code> is returned; otherwise, a string equal to
  2976      *          <code>"false"</code> is returned.
  2977      */
  2978     public static String valueOf(boolean b) {
  2979         return b ? "true" : "false";
  2980     }
  2981 
  2982     /**
  2983      * Returns the string representation of the <code>char</code>
  2984      * argument.
  2985      *
  2986      * @param   c   a <code>char</code>.
  2987      * @return  a string of length <code>1</code> containing
  2988      *          as its single character the argument <code>c</code>.
  2989      */
  2990     public static String valueOf(char c) {
  2991         char data[] = {c};
  2992         return new String(0, 1, data);
  2993     }
  2994 
  2995     /**
  2996      * Returns the string representation of the <code>int</code> argument.
  2997      * <p>
  2998      * The representation is exactly the one returned by the
  2999      * <code>Integer.toString</code> method of one argument.
  3000      *
  3001      * @param   i   an <code>int</code>.
  3002      * @return  a string representation of the <code>int</code> argument.
  3003      * @see     java.lang.Integer#toString(int, int)
  3004      */
  3005     public static String valueOf(int i) {
  3006         return Integer.toString(i);
  3007     }
  3008 
  3009     /**
  3010      * Returns the string representation of the <code>long</code> argument.
  3011      * <p>
  3012      * The representation is exactly the one returned by the
  3013      * <code>Long.toString</code> method of one argument.
  3014      *
  3015      * @param   l   a <code>long</code>.
  3016      * @return  a string representation of the <code>long</code> argument.
  3017      * @see     java.lang.Long#toString(long)
  3018      */
  3019     public static String valueOf(long l) {
  3020         return Long.toString(l);
  3021     }
  3022 
  3023     /**
  3024      * Returns the string representation of the <code>float</code> argument.
  3025      * <p>
  3026      * The representation is exactly the one returned by the
  3027      * <code>Float.toString</code> method of one argument.
  3028      *
  3029      * @param   f   a <code>float</code>.
  3030      * @return  a string representation of the <code>float</code> argument.
  3031      * @see     java.lang.Float#toString(float)
  3032      */
  3033     public static String valueOf(float f) {
  3034         return Float.toString(f);
  3035     }
  3036 
  3037     /**
  3038      * Returns the string representation of the <code>double</code> argument.
  3039      * <p>
  3040      * The representation is exactly the one returned by the
  3041      * <code>Double.toString</code> method of one argument.
  3042      *
  3043      * @param   d   a <code>double</code>.
  3044      * @return  a  string representation of the <code>double</code> argument.
  3045      * @see     java.lang.Double#toString(double)
  3046      */
  3047     public static String valueOf(double d) {
  3048         return Double.toString(d);
  3049     }
  3050 
  3051     /**
  3052      * Returns a canonical representation for the string object.
  3053      * <p>
  3054      * A pool of strings, initially empty, is maintained privately by the
  3055      * class <code>String</code>.
  3056      * <p>
  3057      * When the intern method is invoked, if the pool already contains a
  3058      * string equal to this <code>String</code> object as determined by
  3059      * the {@link #equals(Object)} method, then the string from the pool is
  3060      * returned. Otherwise, this <code>String</code> object is added to the
  3061      * pool and a reference to this <code>String</code> object is returned.
  3062      * <p>
  3063      * It follows that for any two strings <code>s</code> and <code>t</code>,
  3064      * <code>s.intern()&nbsp;==&nbsp;t.intern()</code> is <code>true</code>
  3065      * if and only if <code>s.equals(t)</code> is <code>true</code>.
  3066      * <p>
  3067      * All literal strings and string-valued constant expressions are
  3068      * interned. String literals are defined in section 3.10.5 of the
  3069      * <cite>The Java&trade; Language Specification</cite>.
  3070      *
  3071      * @return  a string that has the same contents as this string, but is
  3072      *          guaranteed to be from a pool of unique strings.
  3073      */
  3074     public native String intern();
  3075 
  3076 }