rt/emul/compact/src/main/java/java/lang/invoke/MethodHandle.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sun, 10 Aug 2014 06:13:36 +0200
branchjdk8
changeset 1651 5c990ed353e9
parent 1646 c880a8a8803b
permissions -rw-r--r--
Almost compiled java.lang.invoke, except the parts that deal with Asm bytecode generator
     1 /*
     2  * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang.invoke;
    27 
    28 
    29 import java.util.*;
    30 import sun.invoke.util.*;
    31 
    32 import static java.lang.invoke.MethodHandleStatics.*;
    33 import java.util.logging.Level;
    34 import java.util.logging.Logger;
    35 
    36 /**
    37  * A method handle is a typed, directly executable reference to an underlying method,
    38  * constructor, field, or similar low-level operation, with optional
    39  * transformations of arguments or return values.
    40  * These transformations are quite general, and include such patterns as
    41  * {@linkplain #asType conversion},
    42  * {@linkplain #bindTo insertion},
    43  * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
    44  * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
    45  *
    46  * <h1>Method handle contents</h1>
    47  * Method handles are dynamically and strongly typed according to their parameter and return types.
    48  * They are not distinguished by the name or the defining class of their underlying methods.
    49  * A method handle must be invoked using a symbolic type descriptor which matches
    50  * the method handle's own {@linkplain #type type descriptor}.
    51  * <p>
    52  * Every method handle reports its type descriptor via the {@link #type type} accessor.
    53  * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
    54  * whose structure is a series of classes, one of which is
    55  * the return type of the method (or {@code void.class} if none).
    56  * <p>
    57  * A method handle's type controls the types of invocations it accepts,
    58  * and the kinds of transformations that apply to it.
    59  * <p>
    60  * A method handle contains a pair of special invoker methods
    61  * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
    62  * Both invoker methods provide direct access to the method handle's
    63  * underlying method, constructor, field, or other operation,
    64  * as modified by transformations of arguments and return values.
    65  * Both invokers accept calls which exactly match the method handle's own type.
    66  * The plain, inexact invoker also accepts a range of other call types.
    67  * <p>
    68  * Method handles are immutable and have no visible state.
    69  * Of course, they can be bound to underlying methods or data which exhibit state.
    70  * With respect to the Java Memory Model, any method handle will behave
    71  * as if all of its (internal) fields are final variables.  This means that any method
    72  * handle made visible to the application will always be fully formed.
    73  * This is true even if the method handle is published through a shared
    74  * variable in a data race.
    75  * <p>
    76  * Method handles cannot be subclassed by the user.
    77  * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
    78  * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
    79  * operation.  The programmer should not draw conclusions about a method handle
    80  * from its specific class, as the method handle class hierarchy (if any)
    81  * may change from time to time or across implementations from different vendors.
    82  *
    83  * <h1>Method handle compilation</h1>
    84  * A Java method call expression naming {@code invokeExact} or {@code invoke}
    85  * can invoke a method handle from Java source code.
    86  * From the viewpoint of source code, these methods can take any arguments
    87  * and their result can be cast to any return type.
    88  * Formally this is accomplished by giving the invoker methods
    89  * {@code Object} return types and variable arity {@code Object} arguments,
    90  * but they have an additional quality called <em>signature polymorphism</em>
    91  * which connects this freedom of invocation directly to the JVM execution stack.
    92  * <p>
    93  * As is usual with virtual methods, source-level calls to {@code invokeExact}
    94  * and {@code invoke} compile to an {@code invokevirtual} instruction.
    95  * More unusually, the compiler must record the actual argument types,
    96  * and may not perform method invocation conversions on the arguments.
    97  * Instead, it must push them on the stack according to their own unconverted types.
    98  * The method handle object itself is pushed on the stack before the arguments.
    99  * The compiler then calls the method handle with a symbolic type descriptor which
   100  * describes the argument and return types.
   101  * <p>
   102  * To issue a complete symbolic type descriptor, the compiler must also determine
   103  * the return type.  This is based on a cast on the method invocation expression,
   104  * if there is one, or else {@code Object} if the invocation is an expression
   105  * or else {@code void} if the invocation is a statement.
   106  * The cast may be to a primitive type (but not {@code void}).
   107  * <p>
   108  * As a corner case, an uncasted {@code null} argument is given
   109  * a symbolic type descriptor of {@code java.lang.Void}.
   110  * The ambiguity with the type {@code Void} is harmless, since there are no references of type
   111  * {@code Void} except the null reference.
   112  *
   113  * <h1>Method handle invocation</h1>
   114  * The first time a {@code invokevirtual} instruction is executed
   115  * it is linked, by symbolically resolving the names in the instruction
   116  * and verifying that the method call is statically legal.
   117  * This is true of calls to {@code invokeExact} and {@code invoke}.
   118  * In this case, the symbolic type descriptor emitted by the compiler is checked for
   119  * correct syntax and names it contains are resolved.
   120  * Thus, an {@code invokevirtual} instruction which invokes
   121  * a method handle will always link, as long
   122  * as the symbolic type descriptor is syntactically well-formed
   123  * and the types exist.
   124  * <p>
   125  * When the {@code invokevirtual} is executed after linking,
   126  * the receiving method handle's type is first checked by the JVM
   127  * to ensure that it matches the symbolic type descriptor.
   128  * If the type match fails, it means that the method which the
   129  * caller is invoking is not present on the individual
   130  * method handle being invoked.
   131  * <p>
   132  * In the case of {@code invokeExact}, the type descriptor of the invocation
   133  * (after resolving symbolic type names) must exactly match the method type
   134  * of the receiving method handle.
   135  * In the case of plain, inexact {@code invoke}, the resolved type descriptor
   136  * must be a valid argument to the receiver's {@link #asType asType} method.
   137  * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
   138  * <p>
   139  * After type matching, a call to {@code invokeExact} directly
   140  * and immediately invoke the method handle's underlying method
   141  * (or other behavior, as the case may be).
   142  * <p>
   143  * A call to plain {@code invoke} works the same as a call to
   144  * {@code invokeExact}, if the symbolic type descriptor specified by the caller
   145  * exactly matches the method handle's own type.
   146  * If there is a type mismatch, {@code invoke} attempts
   147  * to adjust the type of the receiving method handle,
   148  * as if by a call to {@link #asType asType},
   149  * to obtain an exactly invokable method handle {@code M2}.
   150  * This allows a more powerful negotiation of method type
   151  * between caller and callee.
   152  * <p>
   153  * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
   154  * and implementations are therefore not required to materialize it.)
   155  *
   156  * <h1>Invocation checking</h1>
   157  * In typical programs, method handle type matching will usually succeed.
   158  * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
   159  * either directly (in the case of {@code invokeExact}) or indirectly as if
   160  * by a failed call to {@code asType} (in the case of {@code invoke}).
   161  * <p>
   162  * Thus, a method type mismatch which might show up as a linkage error
   163  * in a statically typed program can show up as
   164  * a dynamic {@code WrongMethodTypeException}
   165  * in a program which uses method handles.
   166  * <p>
   167  * Because method types contain "live" {@code Class} objects,
   168  * method type matching takes into account both types names and class loaders.
   169  * Thus, even if a method handle {@code M} is created in one
   170  * class loader {@code L1} and used in another {@code L2},
   171  * method handle calls are type-safe, because the caller's symbolic type
   172  * descriptor, as resolved in {@code L2},
   173  * is matched against the original callee method's symbolic type descriptor,
   174  * as resolved in {@code L1}.
   175  * The resolution in {@code L1} happens when {@code M} is created
   176  * and its type is assigned, while the resolution in {@code L2} happens
   177  * when the {@code invokevirtual} instruction is linked.
   178  * <p>
   179  * Apart from the checking of type descriptors,
   180  * a method handle's capability to call its underlying method is unrestricted.
   181  * If a method handle is formed on a non-public method by a class
   182  * that has access to that method, the resulting handle can be used
   183  * in any place by any caller who receives a reference to it.
   184  * <p>
   185  * Unlike with the Core Reflection API, where access is checked every time
   186  * a reflective method is invoked,
   187  * method handle access checking is performed
   188  * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
   189  * In the case of {@code ldc} (see below), access checking is performed as part of linking
   190  * the constant pool entry underlying the constant method handle.
   191  * <p>
   192  * Thus, handles to non-public methods, or to methods in non-public classes,
   193  * should generally be kept secret.
   194  * They should not be passed to untrusted code unless their use from
   195  * the untrusted code would be harmless.
   196  *
   197  * <h1>Method handle creation</h1>
   198  * Java code can create a method handle that directly accesses
   199  * any method, constructor, or field that is accessible to that code.
   200  * This is done via a reflective, capability-based API called
   201  * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}
   202  * For example, a static method handle can be obtained
   203  * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
   204  * There are also conversion methods from Core Reflection API objects,
   205  * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
   206  * <p>
   207  * Like classes and strings, method handles that correspond to accessible
   208  * fields, methods, and constructors can also be represented directly
   209  * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
   210  * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
   211  * refers directly to an associated {@code CONSTANT_Methodref},
   212  * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
   213  * constant pool entry.
   214  * (For full details on method handle constants,
   215  * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
   216  * <p>
   217  * Method handles produced by lookups or constant loads from methods or
   218  * constructors with the variable arity modifier bit ({@code 0x0080})
   219  * have a corresponding variable arity, as if they were defined with
   220  * the help of {@link #asVarargsCollector asVarargsCollector}.
   221  * <p>
   222  * A method reference may refer either to a static or non-static method.
   223  * In the non-static case, the method handle type includes an explicit
   224  * receiver argument, prepended before any other arguments.
   225  * In the method handle's type, the initial receiver argument is typed
   226  * according to the class under which the method was initially requested.
   227  * (E.g., if a non-static method handle is obtained via {@code ldc},
   228  * the type of the receiver is the class named in the constant pool entry.)
   229  * <p>
   230  * Method handle constants are subject to the same link-time access checks
   231  * their corresponding bytecode instructions, and the {@code ldc} instruction
   232  * will throw corresponding linkage errors if the bytecode behaviors would
   233  * throw such errors.
   234  * <p>
   235  * As a corollary of this, access to protected members is restricted
   236  * to receivers only of the accessing class, or one of its subclasses,
   237  * and the accessing class must in turn be a subclass (or package sibling)
   238  * of the protected member's defining class.
   239  * If a method reference refers to a protected non-static method or field
   240  * of a class outside the current package, the receiver argument will
   241  * be narrowed to the type of the accessing class.
   242  * <p>
   243  * When a method handle to a virtual method is invoked, the method is
   244  * always looked up in the receiver (that is, the first argument).
   245  * <p>
   246  * A non-virtual method handle to a specific virtual method implementation
   247  * can also be created.  These do not perform virtual lookup based on
   248  * receiver type.  Such a method handle simulates the effect of
   249  * an {@code invokespecial} instruction to the same method.
   250  *
   251  * <h1>Usage examples</h1>
   252  * Here are some examples of usage:
   253  * <blockquote><pre>{@code
   254 Object x, y; String s; int i;
   255 MethodType mt; MethodHandle mh;
   256 MethodHandles.Lookup lookup = MethodHandles.lookup();
   257 // mt is (char,char)String
   258 mt = MethodType.methodType(String.class, char.class, char.class);
   259 mh = lookup.findVirtual(String.class, "replace", mt);
   260 s = (String) mh.invokeExact("daddy",'d','n');
   261 // invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
   262 assertEquals(s, "nanny");
   263 // weakly typed invocation (using MHs.invoke)
   264 s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
   265 assertEquals(s, "savvy");
   266 // mt is (Object[])List
   267 mt = MethodType.methodType(java.util.List.class, Object[].class);
   268 mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
   269 assert(mh.isVarargsCollector());
   270 x = mh.invoke("one", "two");
   271 // invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
   272 assertEquals(x, java.util.Arrays.asList("one","two"));
   273 // mt is (Object,Object,Object)Object
   274 mt = MethodType.genericMethodType(3);
   275 mh = mh.asType(mt);
   276 x = mh.invokeExact((Object)1, (Object)2, (Object)3);
   277 // invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
   278 assertEquals(x, java.util.Arrays.asList(1,2,3));
   279 // mt is ()int
   280 mt = MethodType.methodType(int.class);
   281 mh = lookup.findVirtual(java.util.List.class, "size", mt);
   282 i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
   283 // invokeExact(Ljava/util/List;)I
   284 assert(i == 3);
   285 mt = MethodType.methodType(void.class, String.class);
   286 mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
   287 mh.invokeExact(System.out, "Hello, world.");
   288 // invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
   289  * }</pre></blockquote>
   290  * Each of the above calls to {@code invokeExact} or plain {@code invoke}
   291  * generates a single invokevirtual instruction with
   292  * the symbolic type descriptor indicated in the following comment.
   293  * In these examples, the helper method {@code assertEquals} is assumed to
   294  * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
   295  * on its arguments, and asserts that the result is true.
   296  *
   297  * <h1>Exceptions</h1>
   298  * The methods {@code invokeExact} and {@code invoke} are declared
   299  * to throw {@link java.lang.Throwable Throwable},
   300  * which is to say that there is no static restriction on what a method handle
   301  * can throw.  Since the JVM does not distinguish between checked
   302  * and unchecked exceptions (other than by their class, of course),
   303  * there is no particular effect on bytecode shape from ascribing
   304  * checked exceptions to method handle invocations.  But in Java source
   305  * code, methods which perform method handle calls must either explicitly
   306  * throw {@code Throwable}, or else must catch all
   307  * throwables locally, rethrowing only those which are legal in the context,
   308  * and wrapping ones which are illegal.
   309  *
   310  * <h1><a name="sigpoly"></a>Signature polymorphism</h1>
   311  * The unusual compilation and linkage behavior of
   312  * {@code invokeExact} and plain {@code invoke}
   313  * is referenced by the term <em>signature polymorphism</em>.
   314  * As defined in the Java Language Specification,
   315  * a signature polymorphic method is one which can operate with
   316  * any of a wide range of call signatures and return types.
   317  * <p>
   318  * In source code, a call to a signature polymorphic method will
   319  * compile, regardless of the requested symbolic type descriptor.
   320  * As usual, the Java compiler emits an {@code invokevirtual}
   321  * instruction with the given symbolic type descriptor against the named method.
   322  * The unusual part is that the symbolic type descriptor is derived from
   323  * the actual argument and return types, not from the method declaration.
   324  * <p>
   325  * When the JVM processes bytecode containing signature polymorphic calls,
   326  * it will successfully link any such call, regardless of its symbolic type descriptor.
   327  * (In order to retain type safety, the JVM will guard such calls with suitable
   328  * dynamic type checks, as described elsewhere.)
   329  * <p>
   330  * Bytecode generators, including the compiler back end, are required to emit
   331  * untransformed symbolic type descriptors for these methods.
   332  * Tools which determine symbolic linkage are required to accept such
   333  * untransformed descriptors, without reporting linkage errors.
   334  *
   335  * <h1>Interoperation between method handles and the Core Reflection API</h1>
   336  * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
   337  * any class member represented by a Core Reflection API object
   338  * can be converted to a behaviorally equivalent method handle.
   339  * For example, a reflective {@link java.lang.reflect.Method Method} can
   340  * be converted to a method handle using
   341  * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
   342  * The resulting method handles generally provide more direct and efficient
   343  * access to the underlying class members.
   344  * <p>
   345  * As a special case,
   346  * when the Core Reflection API is used to view the signature polymorphic
   347  * methods {@code invokeExact} or plain {@code invoke} in this class,
   348  * they appear as ordinary non-polymorphic methods.
   349  * Their reflective appearance, as viewed by
   350  * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
   351  * is unaffected by their special status in this API.
   352  * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
   353  * will report exactly those modifier bits required for any similarly
   354  * declared method, including in this case {@code native} and {@code varargs} bits.
   355  * <p>
   356  * As with any reflected method, these methods (when reflected) may be
   357  * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
   358  * However, such reflective calls do not result in method handle invocations.
   359  * Such a call, if passed the required argument
   360  * (a single one, of type {@code Object[]}), will ignore the argument and
   361  * will throw an {@code UnsupportedOperationException}.
   362  * <p>
   363  * Since {@code invokevirtual} instructions can natively
   364  * invoke method handles under any symbolic type descriptor, this reflective view conflicts
   365  * with the normal presentation of these methods via bytecodes.
   366  * Thus, these two native methods, when reflectively viewed by
   367  * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
   368  * <p>
   369  * In order to obtain an invoker method for a particular type descriptor,
   370  * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
   371  * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
   372  * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
   373  * API is also able to return a method handle
   374  * to call {@code invokeExact} or plain {@code invoke},
   375  * for any specified type descriptor .
   376  *
   377  * <h1>Interoperation between method handles and Java generics</h1>
   378  * A method handle can be obtained on a method, constructor, or field
   379  * which is declared with Java generic types.
   380  * As with the Core Reflection API, the type of the method handle
   381  * will constructed from the erasure of the source-level type.
   382  * When a method handle is invoked, the types of its arguments
   383  * or the return value cast type may be generic types or type instances.
   384  * If this occurs, the compiler will replace those
   385  * types by their erasures when it constructs the symbolic type descriptor
   386  * for the {@code invokevirtual} instruction.
   387  * <p>
   388  * Method handles do not represent
   389  * their function-like types in terms of Java parameterized (generic) types,
   390  * because there are three mismatches between function-like types and parameterized
   391  * Java types.
   392  * <ul>
   393  * <li>Method types range over all possible arities,
   394  * from no arguments to up to the  <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
   395  * Generics are not variadic, and so cannot represent this.</li>
   396  * <li>Method types can specify arguments of primitive types,
   397  * which Java generic types cannot range over.</li>
   398  * <li>Higher order functions over method handles (combinators) are
   399  * often generic across a wide range of function types, including
   400  * those of multiple arities.  It is impossible to represent such
   401  * genericity with a Java type parameter.</li>
   402  * </ul>
   403  *
   404  * <h1><a name="maxarity"></a>Arity limits</h1>
   405  * The JVM imposes on all methods and constructors of any kind an absolute
   406  * limit of 255 stacked arguments.  This limit can appear more restrictive
   407  * in certain cases:
   408  * <ul>
   409  * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
   410  * <li>A non-static method consumes an extra argument for the object on which the method is called.
   411  * <li>A constructor consumes an extra argument for the object which is being constructed.
   412  * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
   413  *     it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
   414  * </ul>
   415  * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
   416  * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
   417  * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
   418  * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
   419  *
   420  * @see MethodType
   421  * @see MethodHandles
   422  * @author John Rose, JSR 292 EG
   423  */
   424 public abstract class MethodHandle {
   425     static { MethodHandleImpl.initStatics(); }
   426 
   427     /**
   428      * Internal marker interface which distinguishes (to the Java compiler)
   429      * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
   430      */
   431     @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
   432     @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
   433     @interface PolymorphicSignature { }
   434 
   435     private final MethodType type;
   436     /*private*/ LambdaForm form;
   437     // form is not private so that invokers can easily fetch it
   438     /*private*/ MethodHandle asTypeCache;
   439     // asTypeCache is not private so that invokers can easily fetch it
   440 
   441     /**
   442      * Reports the type of this method handle.
   443      * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
   444      * @return the method handle type
   445      */
   446     public MethodType type() {
   447         return type;
   448     }
   449 
   450     /**
   451      * Package-private constructor for the method handle implementation hierarchy.
   452      * Method handle inheritance will be contained completely within
   453      * the {@code java.lang.invoke} package.
   454      */
   455     // @param type type (permanently assigned) of the new method handle
   456     /*non-public*/ MethodHandle(MethodType type, LambdaForm form) {
   457         type.getClass();  // explicit NPE
   458         form.getClass();  // explicit NPE
   459         this.type = type;
   460         this.form = form;
   461 
   462         form.prepare();  // TO DO:  Try to delay this step until just before invocation.
   463     }
   464 
   465     /**
   466      * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
   467      * The symbolic type descriptor at the call site of {@code invokeExact} must
   468      * exactly match this method handle's {@link #type type}.
   469      * No conversions are allowed on arguments or return values.
   470      * <p>
   471      * When this method is observed via the Core Reflection API,
   472      * it will appear as a single native method, taking an object array and returning an object.
   473      * If this native method is invoked directly via
   474      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
   475      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
   476      * it will throw an {@code UnsupportedOperationException}.
   477      * @param args the signature-polymorphic parameter list, statically represented using varargs
   478      * @return the signature-polymorphic result, statically represented using {@code Object}
   479      * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
   480      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
   481      */
   482     public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
   483 
   484     /**
   485      * Invokes the method handle, allowing any caller type descriptor,
   486      * and optionally performing conversions on arguments and return values.
   487      * <p>
   488      * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type type},
   489      * the call proceeds as if by {@link #invokeExact invokeExact}.
   490      * <p>
   491      * Otherwise, the call proceeds as if this method handle were first
   492      * adjusted by calling {@link #asType asType} to adjust this method handle
   493      * to the required type, and then the call proceeds as if by
   494      * {@link #invokeExact invokeExact} on the adjusted method handle.
   495      * <p>
   496      * There is no guarantee that the {@code asType} call is actually made.
   497      * If the JVM can predict the results of making the call, it may perform
   498      * adaptations directly on the caller's arguments,
   499      * and call the target method handle according to its own exact type.
   500      * <p>
   501      * The resolved type descriptor at the call site of {@code invoke} must
   502      * be a valid argument to the receivers {@code asType} method.
   503      * In particular, the caller must specify the same argument arity
   504      * as the callee's type,
   505      * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
   506      * <p>
   507      * When this method is observed via the Core Reflection API,
   508      * it will appear as a single native method, taking an object array and returning an object.
   509      * If this native method is invoked directly via
   510      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
   511      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
   512      * it will throw an {@code UnsupportedOperationException}.
   513      * @param args the signature-polymorphic parameter list, statically represented using varargs
   514      * @return the signature-polymorphic result, statically represented using {@code Object}
   515      * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
   516      * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
   517      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
   518      */
   519     public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;
   520 
   521     /**
   522      * Private method for trusted invocation of a method handle respecting simplified signatures.
   523      * Type mismatches will not throw {@code WrongMethodTypeException}, but could crash the JVM.
   524      * <p>
   525      * The caller signature is restricted to the following basic types:
   526      * Object, int, long, float, double, and void return.
   527      * <p>
   528      * The caller is responsible for maintaining type correctness by ensuring
   529      * that the each outgoing argument value is a member of the range of the corresponding
   530      * callee argument type.
   531      * (The caller should therefore issue appropriate casts and integer narrowing
   532      * operations on outgoing argument values.)
   533      * The caller can assume that the incoming result value is part of the range
   534      * of the callee's return type.
   535      * @param args the signature-polymorphic parameter list, statically represented using varargs
   536      * @return the signature-polymorphic result, statically represented using {@code Object}
   537      */
   538     /*non-public*/ final native @PolymorphicSignature Object invokeBasic(Object... args) throws Throwable;
   539 
   540     /**
   541      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeVirtual}.
   542      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   543      * The trailing (not leading) argument must be a MemberName.
   544      * @param args the signature-polymorphic parameter list, statically represented using varargs
   545      * @return the signature-polymorphic result, statically represented using {@code Object}
   546      */
   547     /*non-public*/ static native @PolymorphicSignature Object linkToVirtual(Object... args) throws Throwable;
   548 
   549     /**
   550      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeStatic}.
   551      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   552      * The trailing (not leading) argument must be a MemberName.
   553      * @param args the signature-polymorphic parameter list, statically represented using varargs
   554      * @return the signature-polymorphic result, statically represented using {@code Object}
   555      */
   556     /*non-public*/ static native @PolymorphicSignature Object linkToStatic(Object... args) throws Throwable;
   557 
   558     /**
   559      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeSpecial}.
   560      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   561      * The trailing (not leading) argument must be a MemberName.
   562      * @param args the signature-polymorphic parameter list, statically represented using varargs
   563      * @return the signature-polymorphic result, statically represented using {@code Object}
   564      */
   565     /*non-public*/ static native @PolymorphicSignature Object linkToSpecial(Object... args) throws Throwable;
   566 
   567     /**
   568      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeInterface}.
   569      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   570      * The trailing (not leading) argument must be a MemberName.
   571      * @param args the signature-polymorphic parameter list, statically represented using varargs
   572      * @return the signature-polymorphic result, statically represented using {@code Object}
   573      */
   574     /*non-public*/ static native @PolymorphicSignature Object linkToInterface(Object... args) throws Throwable;
   575 
   576     /**
   577      * Performs a variable arity invocation, passing the arguments in the given list
   578      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
   579      * which mentions only the type {@code Object}, and whose arity is the length
   580      * of the argument list.
   581      * <p>
   582      * Specifically, execution proceeds as if by the following steps,
   583      * although the methods are not guaranteed to be called if the JVM
   584      * can predict their effects.
   585      * <ul>
   586      * <li>Determine the length of the argument array as {@code N}.
   587      *     For a null reference, {@code N=0}. </li>
   588      * <li>Determine the general type {@code TN} of {@code N} arguments as
   589      *     as {@code TN=MethodType.genericMethodType(N)}.</li>
   590      * <li>Force the original target method handle {@code MH0} to the
   591      *     required type, as {@code MH1 = MH0.asType(TN)}. </li>
   592      * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li>
   593      * <li>Invoke the type-adjusted method handle on the unpacked arguments:
   594      *     MH1.invokeExact(A0, ...). </li>
   595      * <li>Take the return value as an {@code Object} reference. </li>
   596      * </ul>
   597      * <p>
   598      * Because of the action of the {@code asType} step, the following argument
   599      * conversions are applied as necessary:
   600      * <ul>
   601      * <li>reference casting
   602      * <li>unboxing
   603      * <li>widening primitive conversions
   604      * </ul>
   605      * <p>
   606      * The result returned by the call is boxed if it is a primitive,
   607      * or forced to null if the return type is void.
   608      * <p>
   609      * This call is equivalent to the following code:
   610      * <blockquote><pre>{@code
   611      * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
   612      * Object result = invoker.invokeExact(this, arguments);
   613      * }</pre></blockquote>
   614      * <p>
   615      * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
   616      * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
   617      * It can therefore be used as a bridge between native or reflective code and method handles.
   618      *
   619      * @param arguments the arguments to pass to the target
   620      * @return the result returned by the target
   621      * @throws ClassCastException if an argument cannot be converted by reference casting
   622      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
   623      * @throws Throwable anything thrown by the target method invocation
   624      * @see MethodHandles#spreadInvoker
   625      */
   626     public Object invokeWithArguments(Object... arguments) throws Throwable {
   627         int argc = arguments == null ? 0 : arguments.length;
   628         @SuppressWarnings("LocalVariableHidesMemberVariable")
   629         MethodType type = type();
   630         if (type.parameterCount() != argc || isVarargsCollector()) {
   631             // simulate invoke
   632             return asType(MethodType.genericMethodType(argc)).invokeWithArguments(arguments);
   633         }
   634         MethodHandle invoker = type.invokers().varargsInvoker();
   635         return invoker.invokeExact(this, arguments);
   636     }
   637 
   638     /**
   639      * Performs a variable arity invocation, passing the arguments in the given array
   640      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
   641      * which mentions only the type {@code Object}, and whose arity is the length
   642      * of the argument array.
   643      * <p>
   644      * This method is also equivalent to the following code:
   645      * <blockquote><pre>{@code
   646      *   invokeWithArguments(arguments.toArray()
   647      * }</pre></blockquote>
   648      *
   649      * @param arguments the arguments to pass to the target
   650      * @return the result returned by the target
   651      * @throws NullPointerException if {@code arguments} is a null reference
   652      * @throws ClassCastException if an argument cannot be converted by reference casting
   653      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
   654      * @throws Throwable anything thrown by the target method invocation
   655      */
   656     public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
   657         return invokeWithArguments(arguments.toArray());
   658     }
   659 
   660     /**
   661      * Produces an adapter method handle which adapts the type of the
   662      * current method handle to a new type.
   663      * The resulting method handle is guaranteed to report a type
   664      * which is equal to the desired new type.
   665      * <p>
   666      * If the original type and new type are equal, returns {@code this}.
   667      * <p>
   668      * The new method handle, when invoked, will perform the following
   669      * steps:
   670      * <ul>
   671      * <li>Convert the incoming argument list to match the original
   672      *     method handle's argument list.
   673      * <li>Invoke the original method handle on the converted argument list.
   674      * <li>Convert any result returned by the original method handle
   675      *     to the return type of new method handle.
   676      * </ul>
   677      * <p>
   678      * This method provides the crucial behavioral difference between
   679      * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
   680      * The two methods
   681      * perform the same steps when the caller's type descriptor exactly m atches
   682      * the callee's, but when the types differ, plain {@link #invoke invoke}
   683      * also calls {@code asType} (or some internal equivalent) in order
   684      * to match up the caller's and callee's types.
   685      * <p>
   686      * If the current method is a variable arity method handle
   687      * argument list conversion may involve the conversion and collection
   688      * of several arguments into an array, as
   689      * {@linkplain #asVarargsCollector described elsewhere}.
   690      * In every other case, all conversions are applied <em>pairwise</em>,
   691      * which means that each argument or return value is converted to
   692      * exactly one argument or return value (or no return value).
   693      * The applied conversions are defined by consulting the
   694      * the corresponding component types of the old and new
   695      * method handle types.
   696      * <p>
   697      * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
   698      * or old and new return types.  Specifically, for some valid index {@code i}, let
   699      * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
   700      * Or else, going the other way for return values, let
   701      * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
   702      * If the types are the same, the new method handle makes no change
   703      * to the corresponding argument or return value (if any).
   704      * Otherwise, one of the following conversions is applied
   705      * if possible:
   706      * <ul>
   707      * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
   708      *     (The types do not need to be related in any particular way.
   709      *     This is because a dynamic value of null can convert to any reference type.)
   710      * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
   711      *     conversion (JLS 5.3) is applied, if one exists.
   712      *     (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
   713      * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
   714      *     a Java casting conversion (JLS 5.5) is applied if one exists.
   715      *     (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
   716      *     which is then widened as needed to <em>T1</em>.)
   717      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
   718      *     conversion will be applied at runtime, possibly followed
   719      *     by a Java method invocation conversion (JLS 5.3)
   720      *     on the primitive value.  (These are the primitive widening conversions.)
   721      *     <em>T0</em> must be a wrapper class or a supertype of one.
   722      *     (In the case where <em>T0</em> is Object, these are the conversions
   723      *     allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
   724      *     The unboxing conversion must have a possibility of success, which means that
   725      *     if <em>T0</em> is not itself a wrapper class, there must exist at least one
   726      *     wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
   727      *     primitive value can be widened to <em>T1</em>.
   728      * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
   729      * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
   730      * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
   731      *     a zero value is introduced.
   732      * </ul>
   733     * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
   734      * because neither corresponds specifically to the <em>dynamic type</em> of any
   735      * actual argument or return value.)
   736      * <p>
   737      * The method handle conversion cannot be made if any one of the required
   738      * pairwise conversions cannot be made.
   739      * <p>
   740      * At runtime, the conversions applied to reference arguments
   741      * or return values may require additional runtime checks which can fail.
   742      * An unboxing operation may fail because the original reference is null,
   743      * causing a {@link java.lang.NullPointerException NullPointerException}.
   744      * An unboxing operation or a reference cast may also fail on a reference
   745      * to an object of the wrong type,
   746      * causing a {@link java.lang.ClassCastException ClassCastException}.
   747      * Although an unboxing operation may accept several kinds of wrappers,
   748      * if none are available, a {@code ClassCastException} will be thrown.
   749      *
   750      * @param newType the expected type of the new method handle
   751      * @return a method handle which delegates to {@code this} after performing
   752      *           any necessary argument conversions, and arranges for any
   753      *           necessary return value conversions
   754      * @throws NullPointerException if {@code newType} is a null reference
   755      * @throws WrongMethodTypeException if the conversion cannot be made
   756      * @see MethodHandles#explicitCastArguments
   757      */
   758     public MethodHandle asType(MethodType newType) {
   759         // Fast path alternative to a heavyweight {@code asType} call.
   760         // Return 'this' if the conversion will be a no-op.
   761         if (newType == type) {
   762             return this;
   763         }
   764         // Return 'this.asTypeCache' if the conversion is already memoized.
   765         MethodHandle atc = asTypeCache;
   766         if (atc != null && newType == atc.type) {
   767             return atc;
   768         }
   769         return asTypeUncached(newType);
   770     }
   771 
   772     /** Override this to change asType behavior. */
   773     /*non-public*/ MethodHandle asTypeUncached(MethodType newType) {
   774         if (!type.isConvertibleTo(newType))
   775             throw new WrongMethodTypeException("cannot convert "+this+" to "+newType);
   776         return asTypeCache = convertArguments(newType);
   777     }
   778 
   779     /**
   780      * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
   781      * and spreads its elements as positional arguments.
   782      * The new method handle adapts, as its <i>target</i>,
   783      * the current method handle.  The type of the adapter will be
   784      * the same as the type of the target, except that the final
   785      * {@code arrayLength} parameters of the target's type are replaced
   786      * by a single array parameter of type {@code arrayType}.
   787      * <p>
   788      * If the array element type differs from any of the corresponding
   789      * argument types on the original target,
   790      * the original target is adapted to take the array elements directly,
   791      * as if by a call to {@link #asType asType}.
   792      * <p>
   793      * When called, the adapter replaces a trailing array argument
   794      * by the array's elements, each as its own argument to the target.
   795      * (The order of the arguments is preserved.)
   796      * They are converted pairwise by casting and/or unboxing
   797      * to the types of the trailing parameters of the target.
   798      * Finally the target is called.
   799      * What the target eventually returns is returned unchanged by the adapter.
   800      * <p>
   801      * Before calling the target, the adapter verifies that the array
   802      * contains exactly enough elements to provide a correct argument count
   803      * to the target method handle.
   804      * (The array may also be null when zero elements are required.)
   805      * <p>
   806      * If, when the adapter is called, the supplied array argument does
   807      * not have the correct number of elements, the adapter will throw
   808      * an {@link IllegalArgumentException} instead of invoking the target.
   809      * <p>
   810      * Here are some simple examples of array-spreading method handles:
   811      * <blockquote><pre>{@code
   812 MethodHandle equals = publicLookup()
   813   .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
   814 assert( (boolean) equals.invokeExact("me", (Object)"me"));
   815 assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
   816 // spread both arguments from a 2-array:
   817 MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
   818 assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
   819 assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
   820 // try to spread from anything but a 2-array:
   821 for (int n = 0; n <= 10; n++) {
   822   Object[] badArityArgs = (n == 2 ? null : new Object[n]);
   823   try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
   824   catch (IllegalArgumentException ex) { } // OK
   825 }
   826 // spread both arguments from a String array:
   827 MethodHandle eq2s = equals.asSpreader(String[].class, 2);
   828 assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
   829 assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
   830 // spread second arguments from a 1-array:
   831 MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
   832 assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
   833 assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
   834 // spread no arguments from a 0-array or null:
   835 MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
   836 assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
   837 assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
   838 // asSpreader and asCollector are approximate inverses:
   839 for (int n = 0; n <= 2; n++) {
   840     for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
   841         MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
   842         assert( (boolean) equals2.invokeWithArguments("me", "me"));
   843         assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
   844     }
   845 }
   846 MethodHandle caToString = publicLookup()
   847   .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
   848 assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
   849 MethodHandle caString3 = caToString.asCollector(char[].class, 3);
   850 assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
   851 MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
   852 assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
   853      * }</pre></blockquote>
   854      * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
   855      * @param arrayLength the number of arguments to spread from an incoming array argument
   856      * @return a new method handle which spreads its final array argument,
   857      *         before calling the original method handle
   858      * @throws NullPointerException if {@code arrayType} is a null reference
   859      * @throws IllegalArgumentException if {@code arrayType} is not an array type,
   860      *         or if target does not have at least
   861      *         {@code arrayLength} parameter types,
   862      *         or if {@code arrayLength} is negative,
   863      *         or if the resulting method handle's type would have
   864      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
   865      * @throws WrongMethodTypeException if the implied {@code asType} call fails
   866      * @see #asCollector
   867      */
   868     public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
   869         asSpreaderChecks(arrayType, arrayLength);
   870         int spreadArgPos = type.parameterCount() - arrayLength;
   871         return MethodHandleImpl.makeSpreadArguments(this, arrayType, spreadArgPos, arrayLength);
   872     }
   873 
   874     private void asSpreaderChecks(Class<?> arrayType, int arrayLength) {
   875         spreadArrayChecks(arrayType, arrayLength);
   876         int nargs = type().parameterCount();
   877         if (nargs < arrayLength || arrayLength < 0)
   878             throw newIllegalArgumentException("bad spread array length");
   879         if (arrayType != Object[].class && arrayLength != 0) {
   880             boolean sawProblem = false;
   881             Class<?> arrayElement = arrayType.getComponentType();
   882             for (int i = nargs - arrayLength; i < nargs; i++) {
   883                 if (!MethodType.canConvert(arrayElement, type().parameterType(i))) {
   884                     sawProblem = true;
   885                     break;
   886                 }
   887             }
   888             if (sawProblem) {
   889                 ArrayList<Class<?>> ptypes = new ArrayList<>(type().parameterList());
   890                 for (int i = nargs - arrayLength; i < nargs; i++) {
   891                     ptypes.set(i, arrayElement);
   892                 }
   893                 // elicit an error:
   894                 this.asType(MethodType.methodType(type().returnType(), ptypes));
   895             }
   896         }
   897     }
   898 
   899     private void spreadArrayChecks(Class<?> arrayType, int arrayLength) {
   900         Class<?> arrayElement = arrayType.getComponentType();
   901         if (arrayElement == null)
   902             throw newIllegalArgumentException("not an array type", arrayType);
   903         if ((arrayLength & 0x7F) != arrayLength) {
   904             if ((arrayLength & 0xFF) != arrayLength)
   905                 throw newIllegalArgumentException("array length is not legal", arrayLength);
   906             assert(arrayLength >= 128);
   907             if (arrayElement == long.class ||
   908                 arrayElement == double.class)
   909                 throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength);
   910         }
   911     }
   912 
   913     /**
   914      * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
   915      * positional arguments and collects them into an array argument.
   916      * The new method handle adapts, as its <i>target</i>,
   917      * the current method handle.  The type of the adapter will be
   918      * the same as the type of the target, except that a single trailing
   919      * parameter (usually of type {@code arrayType}) is replaced by
   920      * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
   921      * <p>
   922      * If the array type differs from the final argument type on the original target,
   923      * the original target is adapted to take the array type directly,
   924      * as if by a call to {@link #asType asType}.
   925      * <p>
   926      * When called, the adapter replaces its trailing {@code arrayLength}
   927      * arguments by a single new array of type {@code arrayType}, whose elements
   928      * comprise (in order) the replaced arguments.
   929      * Finally the target is called.
   930      * What the target eventually returns is returned unchanged by the adapter.
   931      * <p>
   932      * (The array may also be a shared constant when {@code arrayLength} is zero.)
   933      * <p>
   934      * (<em>Note:</em> The {@code arrayType} is often identical to the last
   935      * parameter type of the original target.
   936      * It is an explicit argument for symmetry with {@code asSpreader}, and also
   937      * to allow the target to use a simple {@code Object} as its last parameter type.)
   938      * <p>
   939      * In order to create a collecting adapter which is not restricted to a particular
   940      * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector} instead.
   941      * <p>
   942      * Here are some examples of array-collecting method handles:
   943      * <blockquote><pre>{@code
   944 MethodHandle deepToString = publicLookup()
   945   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
   946 assertEquals("[won]",   (String) deepToString.invokeExact(new Object[]{"won"}));
   947 MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
   948 assertEquals(methodType(String.class, Object.class), ts1.type());
   949 //assertEquals("[won]", (String) ts1.invokeExact(         new Object[]{"won"})); //FAIL
   950 assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
   951 // arrayType can be a subtype of Object[]
   952 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
   953 assertEquals(methodType(String.class, String.class, String.class), ts2.type());
   954 assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
   955 MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
   956 assertEquals("[]", (String) ts0.invokeExact());
   957 // collectors can be nested, Lisp-style
   958 MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
   959 assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
   960 // arrayType can be any primitive array type
   961 MethodHandle bytesToString = publicLookup()
   962   .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
   963   .asCollector(byte[].class, 3);
   964 assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
   965 MethodHandle longsToString = publicLookup()
   966   .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
   967   .asCollector(long[].class, 1);
   968 assertEquals("[123]", (String) longsToString.invokeExact((long)123));
   969      * }</pre></blockquote>
   970      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
   971      * @param arrayLength the number of arguments to collect into a new array argument
   972      * @return a new method handle which collects some trailing argument
   973      *         into an array, before calling the original method handle
   974      * @throws NullPointerException if {@code arrayType} is a null reference
   975      * @throws IllegalArgumentException if {@code arrayType} is not an array type
   976      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type,
   977      *         or {@code arrayLength} is not a legal array size,
   978      *         or the resulting method handle's type would have
   979      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
   980      * @throws WrongMethodTypeException if the implied {@code asType} call fails
   981      * @see #asSpreader
   982      * @see #asVarargsCollector
   983      */
   984     public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
   985         asCollectorChecks(arrayType, arrayLength);
   986         int collectArgPos = type().parameterCount()-1;
   987         MethodHandle target = this;
   988         if (arrayType != type().parameterType(collectArgPos))
   989             target = convertArguments(type().changeParameterType(collectArgPos, arrayType));
   990         MethodHandle collector = ValueConversions.varargsArray(arrayType, arrayLength);
   991         return MethodHandles.collectArguments(target, collectArgPos, collector);
   992     }
   993 
   994     // private API: return true if last param exactly matches arrayType
   995     private boolean asCollectorChecks(Class<?> arrayType, int arrayLength) {
   996         spreadArrayChecks(arrayType, arrayLength);
   997         int nargs = type().parameterCount();
   998         if (nargs != 0) {
   999             Class<?> lastParam = type().parameterType(nargs-1);
  1000             if (lastParam == arrayType)  return true;
  1001             if (lastParam.isAssignableFrom(arrayType))  return false;
  1002         }
  1003         throw newIllegalArgumentException("array type not assignable to trailing argument", this, arrayType);
  1004     }
  1005 
  1006     /**
  1007      * Makes a <em>variable arity</em> adapter which is able to accept
  1008      * any number of trailing positional arguments and collect them
  1009      * into an array argument.
  1010      * <p>
  1011      * The type and behavior of the adapter will be the same as
  1012      * the type and behavior of the target, except that certain
  1013      * {@code invoke} and {@code asType} requests can lead to
  1014      * trailing positional arguments being collected into target's
  1015      * trailing parameter.
  1016      * Also, the last parameter type of the adapter will be
  1017      * {@code arrayType}, even if the target has a different
  1018      * last parameter type.
  1019      * <p>
  1020      * This transformation may return {@code this} if the method handle is
  1021      * already of variable arity and its trailing parameter type
  1022      * is identical to {@code arrayType}.
  1023      * <p>
  1024      * When called with {@link #invokeExact invokeExact}, the adapter invokes
  1025      * the target with no argument changes.
  1026      * (<em>Note:</em> This behavior is different from a
  1027      * {@linkplain #asCollector fixed arity collector},
  1028      * since it accepts a whole array of indeterminate length,
  1029      * rather than a fixed number of arguments.)
  1030      * <p>
  1031      * When called with plain, inexact {@link #invoke invoke}, if the caller
  1032      * type is the same as the adapter, the adapter invokes the target as with
  1033      * {@code invokeExact}.
  1034      * (This is the normal behavior for {@code invoke} when types match.)
  1035      * <p>
  1036      * Otherwise, if the caller and adapter arity are the same, and the
  1037      * trailing parameter type of the caller is a reference type identical to
  1038      * or assignable to the trailing parameter type of the adapter,
  1039      * the arguments and return values are converted pairwise,
  1040      * as if by {@link #asType asType} on a fixed arity
  1041      * method handle.
  1042      * <p>
  1043      * Otherwise, the arities differ, or the adapter's trailing parameter
  1044      * type is not assignable from the corresponding caller type.
  1045      * In this case, the adapter replaces all trailing arguments from
  1046      * the original trailing argument position onward, by
  1047      * a new array of type {@code arrayType}, whose elements
  1048      * comprise (in order) the replaced arguments.
  1049      * <p>
  1050      * The caller type must provides as least enough arguments,
  1051      * and of the correct type, to satisfy the target's requirement for
  1052      * positional arguments before the trailing array argument.
  1053      * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
  1054      * where {@code N} is the arity of the target.
  1055      * Also, there must exist conversions from the incoming arguments
  1056      * to the target's arguments.
  1057      * As with other uses of plain {@code invoke}, if these basic
  1058      * requirements are not fulfilled, a {@code WrongMethodTypeException}
  1059      * may be thrown.
  1060      * <p>
  1061      * In all cases, what the target eventually returns is returned unchanged by the adapter.
  1062      * <p>
  1063      * In the final case, it is exactly as if the target method handle were
  1064      * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
  1065      * to the arity required by the caller type.
  1066      * (As with {@code asCollector}, if the array length is zero,
  1067      * a shared constant may be used instead of a new array.
  1068      * If the implied call to {@code asCollector} would throw
  1069      * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
  1070      * the call to the variable arity adapter must throw
  1071      * {@code WrongMethodTypeException}.)
  1072      * <p>
  1073      * The behavior of {@link #asType asType} is also specialized for
  1074      * variable arity adapters, to maintain the invariant that
  1075      * plain, inexact {@code invoke} is always equivalent to an {@code asType}
  1076      * call to adjust the target type, followed by {@code invokeExact}.
  1077      * Therefore, a variable arity adapter responds
  1078      * to an {@code asType} request by building a fixed arity collector,
  1079      * if and only if the adapter and requested type differ either
  1080      * in arity or trailing argument type.
  1081      * The resulting fixed arity collector has its type further adjusted
  1082      * (if necessary) to the requested type by pairwise conversion,
  1083      * as if by another application of {@code asType}.
  1084      * <p>
  1085      * When a method handle is obtained by executing an {@code ldc} instruction
  1086      * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
  1087      * as a variable arity method (with the modifier bit {@code 0x0080}),
  1088      * the method handle will accept multiple arities, as if the method handle
  1089      * constant were created by means of a call to {@code asVarargsCollector}.
  1090      * <p>
  1091      * In order to create a collecting adapter which collects a predetermined
  1092      * number of arguments, and whose type reflects this predetermined number,
  1093      * use {@link #asCollector asCollector} instead.
  1094      * <p>
  1095      * No method handle transformations produce new method handles with
  1096      * variable arity, unless they are documented as doing so.
  1097      * Therefore, besides {@code asVarargsCollector},
  1098      * all methods in {@code MethodHandle} and {@code MethodHandles}
  1099      * will return a method handle with fixed arity,
  1100      * except in the cases where they are specified to return their original
  1101      * operand (e.g., {@code asType} of the method handle's own type).
  1102      * <p>
  1103      * Calling {@code asVarargsCollector} on a method handle which is already
  1104      * of variable arity will produce a method handle with the same type and behavior.
  1105      * It may (or may not) return the original variable arity method handle.
  1106      * <p>
  1107      * Here is an example, of a list-making variable arity method handle:
  1108      * <blockquote><pre>{@code
  1109 MethodHandle deepToString = publicLookup()
  1110   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
  1111 MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
  1112 assertEquals("[won]",   (String) ts1.invokeExact(    new Object[]{"won"}));
  1113 assertEquals("[won]",   (String) ts1.invoke(         new Object[]{"won"}));
  1114 assertEquals("[won]",   (String) ts1.invoke(                      "won" ));
  1115 assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
  1116 // findStatic of Arrays.asList(...) produces a variable arity method handle:
  1117 MethodHandle asList = publicLookup()
  1118   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
  1119 assertEquals(methodType(List.class, Object[].class), asList.type());
  1120 assert(asList.isVarargsCollector());
  1121 assertEquals("[]", asList.invoke().toString());
  1122 assertEquals("[1]", asList.invoke(1).toString());
  1123 assertEquals("[two, too]", asList.invoke("two", "too").toString());
  1124 String[] argv = { "three", "thee", "tee" };
  1125 assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
  1126 assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
  1127 List ls = (List) asList.invoke((Object)argv);
  1128 assertEquals(1, ls.size());
  1129 assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
  1130      * }</pre></blockquote>
  1131      * <p style="font-size:smaller;">
  1132      * <em>Discussion:</em>
  1133      * These rules are designed as a dynamically-typed variation
  1134      * of the Java rules for variable arity methods.
  1135      * In both cases, callers to a variable arity method or method handle
  1136      * can either pass zero or more positional arguments, or else pass
  1137      * pre-collected arrays of any length.  Users should be aware of the
  1138      * special role of the final argument, and of the effect of a
  1139      * type match on that final argument, which determines whether
  1140      * or not a single trailing argument is interpreted as a whole
  1141      * array or a single element of an array to be collected.
  1142      * Note that the dynamic type of the trailing argument has no
  1143      * effect on this decision, only a comparison between the symbolic
  1144      * type descriptor of the call site and the type descriptor of the method handle.)
  1145      *
  1146      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
  1147      * @return a new method handle which can collect any number of trailing arguments
  1148      *         into an array, before calling the original method handle
  1149      * @throws NullPointerException if {@code arrayType} is a null reference
  1150      * @throws IllegalArgumentException if {@code arrayType} is not an array type
  1151      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type
  1152      * @see #asCollector
  1153      * @see #isVarargsCollector
  1154      * @see #asFixedArity
  1155      */
  1156     public MethodHandle asVarargsCollector(Class<?> arrayType) {
  1157         Class<?> arrayElement = arrayType.getComponentType();
  1158         boolean lastMatch = asCollectorChecks(arrayType, 0);
  1159         if (isVarargsCollector() && lastMatch)
  1160             return this;
  1161         return MethodHandleImpl.makeVarargsCollector(this, arrayType);
  1162     }
  1163 
  1164     /**
  1165      * Determines if this method handle
  1166      * supports {@linkplain #asVarargsCollector variable arity} calls.
  1167      * Such method handles arise from the following sources:
  1168      * <ul>
  1169      * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
  1170      * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
  1171      *     which resolves to a variable arity Java method or constructor
  1172      * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
  1173      *     which resolves to a variable arity Java method or constructor
  1174      * </ul>
  1175      * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
  1176      * @see #asVarargsCollector
  1177      * @see #asFixedArity
  1178      */
  1179     public boolean isVarargsCollector() {
  1180         return false;
  1181     }
  1182 
  1183     /**
  1184      * Makes a <em>fixed arity</em> method handle which is otherwise
  1185      * equivalent to the current method handle.
  1186      * <p>
  1187      * If the current method handle is not of
  1188      * {@linkplain #asVarargsCollector variable arity},
  1189      * the current method handle is returned.
  1190      * This is true even if the current method handle
  1191      * could not be a valid input to {@code asVarargsCollector}.
  1192      * <p>
  1193      * Otherwise, the resulting fixed-arity method handle has the same
  1194      * type and behavior of the current method handle,
  1195      * except that {@link #isVarargsCollector isVarargsCollector}
  1196      * will be false.
  1197      * The fixed-arity method handle may (or may not) be the
  1198      * a previous argument to {@code asVarargsCollector}.
  1199      * <p>
  1200      * Here is an example, of a list-making variable arity method handle:
  1201      * <blockquote><pre>{@code
  1202 MethodHandle asListVar = publicLookup()
  1203   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
  1204   .asVarargsCollector(Object[].class);
  1205 MethodHandle asListFix = asListVar.asFixedArity();
  1206 assertEquals("[1]", asListVar.invoke(1).toString());
  1207 Exception caught = null;
  1208 try { asListFix.invoke((Object)1); }
  1209 catch (Exception ex) { caught = ex; }
  1210 assert(caught instanceof ClassCastException);
  1211 assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
  1212 try { asListFix.invoke("two", "too"); }
  1213 catch (Exception ex) { caught = ex; }
  1214 assert(caught instanceof WrongMethodTypeException);
  1215 Object[] argv = { "three", "thee", "tee" };
  1216 assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
  1217 assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
  1218 assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
  1219 assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
  1220      * }</pre></blockquote>
  1221      *
  1222      * @return a new method handle which accepts only a fixed number of arguments
  1223      * @see #asVarargsCollector
  1224      * @see #isVarargsCollector
  1225      */
  1226     public MethodHandle asFixedArity() {
  1227         assert(!isVarargsCollector());
  1228         return this;
  1229     }
  1230 
  1231     /**
  1232      * Binds a value {@code x} to the first argument of a method handle, without invoking it.
  1233      * The new method handle adapts, as its <i>target</i>,
  1234      * the current method handle by binding it to the given argument.
  1235      * The type of the bound handle will be
  1236      * the same as the type of the target, except that a single leading
  1237      * reference parameter will be omitted.
  1238      * <p>
  1239      * When called, the bound handle inserts the given value {@code x}
  1240      * as a new leading argument to the target.  The other arguments are
  1241      * also passed unchanged.
  1242      * What the target eventually returns is returned unchanged by the bound handle.
  1243      * <p>
  1244      * The reference {@code x} must be convertible to the first parameter
  1245      * type of the target.
  1246      * <p>
  1247      * (<em>Note:</em>  Because method handles are immutable, the target method handle
  1248      * retains its original type and behavior.)
  1249      * @param x  the value to bind to the first argument of the target
  1250      * @return a new method handle which prepends the given value to the incoming
  1251      *         argument list, before calling the original method handle
  1252      * @throws IllegalArgumentException if the target does not have a
  1253      *         leading parameter type that is a reference type
  1254      * @throws ClassCastException if {@code x} cannot be converted
  1255      *         to the leading parameter type of the target
  1256      * @see MethodHandles#insertArguments
  1257      */
  1258     public MethodHandle bindTo(Object x) {
  1259         Class<?> ptype;
  1260         @SuppressWarnings("LocalVariableHidesMemberVariable")
  1261         MethodType type = type();
  1262         if (type.parameterCount() == 0 ||
  1263             (ptype = type.parameterType(0)).isPrimitive())
  1264             throw newIllegalArgumentException("no leading reference parameter", x);
  1265         x = ptype.cast(x);  // throw CCE if needed
  1266         return bindReceiver(x);
  1267     }
  1268 
  1269     /**
  1270      * Returns a string representation of the method handle,
  1271      * starting with the string {@code "MethodHandle"} and
  1272      * ending with the string representation of the method handle's type.
  1273      * In other words, this method returns a string equal to the value of:
  1274      * <blockquote><pre>{@code
  1275      * "MethodHandle" + type().toString()
  1276      * }</pre></blockquote>
  1277      * <p>
  1278      * (<em>Note:</em>  Future releases of this API may add further information
  1279      * to the string representation.
  1280      * Therefore, the present syntax should not be parsed by applications.)
  1281      *
  1282      * @return a string representation of the method handle
  1283      */
  1284     @Override
  1285     public String toString() {
  1286         if (DEBUG_METHOD_HANDLE_NAMES)  return debugString();
  1287         return standardString();
  1288     }
  1289     String standardString() {
  1290         return "MethodHandle"+type;
  1291     }
  1292     String debugString() {
  1293         return standardString()+"/LF="+internalForm()+internalProperties();
  1294     }
  1295 
  1296     //// Implementation methods.
  1297     //// Sub-classes can override these default implementations.
  1298     //// All these methods assume arguments are already validated.
  1299 
  1300     // Other transforms to do:  convert, explicitCast, permute, drop, filter, fold, GWT, catch
  1301 
  1302     /*non-public*/
  1303     MethodHandle setVarargs(MemberName member) throws IllegalAccessException {
  1304         if (!member.isVarargs())  return this;
  1305         int argc = type().parameterCount();
  1306         if (argc != 0) {
  1307             Class<?> arrayType = type().parameterType(argc-1);
  1308             if (arrayType.isArray()) {
  1309                 return MethodHandleImpl.makeVarargsCollector(this, arrayType);
  1310             }
  1311         }
  1312         throw member.makeAccessException("cannot make variable arity", null);
  1313     }
  1314     /*non-public*/
  1315     MethodHandle viewAsType(MethodType newType) {
  1316         // No actual conversions, just a new view of the same method.
  1317         return MethodHandleImpl.makePairwiseConvert(this, newType, 0);
  1318     }
  1319 
  1320     // Decoding
  1321 
  1322     /*non-public*/
  1323     LambdaForm internalForm() {
  1324         return form;
  1325     }
  1326 
  1327     /*non-public*/
  1328     MemberName internalMemberName() {
  1329         return null;  // DMH returns DMH.member
  1330     }
  1331 
  1332     /*non-public*/
  1333     Class<?> internalCallerClass() {
  1334         return null;  // caller-bound MH for @CallerSensitive method returns caller
  1335     }
  1336 
  1337     /*non-public*/
  1338     MethodHandle withInternalMemberName(MemberName member) {
  1339         if (member != null) {
  1340             return MethodHandleImpl.makeWrappedMember(this, member);
  1341         } else if (internalMemberName() == null) {
  1342             // The required internaMemberName is null, and this MH (like most) doesn't have one.
  1343             return this;
  1344         } else {
  1345             // The following case is rare. Mask the internalMemberName by wrapping the MH in a BMH.
  1346             MethodHandle result = rebind();
  1347             assert (result.internalMemberName() == null);
  1348             return result;
  1349         }
  1350     }
  1351 
  1352     /*non-public*/
  1353     boolean isInvokeSpecial() {
  1354         return false;  // DMH.Special returns true
  1355     }
  1356 
  1357     /*non-public*/
  1358     Object internalValues() {
  1359         return null;
  1360     }
  1361 
  1362     /*non-public*/
  1363     Object internalProperties() {
  1364         // Override to something like "/FOO=bar"
  1365         return "";
  1366     }
  1367 
  1368     //// Method handle implementation methods.
  1369     //// Sub-classes can override these default implementations.
  1370     //// All these methods assume arguments are already validated.
  1371 
  1372     /*non-public*/ MethodHandle convertArguments(MethodType newType) {
  1373         // Override this if it can be improved.
  1374         return MethodHandleImpl.makePairwiseConvert(this, newType, 1);
  1375     }
  1376 
  1377     /*non-public*/
  1378     MethodHandle bindArgument(int pos, char basicType, Object value) {
  1379         // Override this if it can be improved.
  1380         return rebind().bindArgument(pos, basicType, value);
  1381     }
  1382 
  1383     /*non-public*/
  1384     MethodHandle bindReceiver(Object receiver) {
  1385         // Override this if it can be improved.
  1386         return bindArgument(0, 'L', receiver);
  1387     }
  1388 
  1389     /*non-public*/
  1390     MethodHandle bindImmediate(int pos, char basicType, Object value) {
  1391         // Bind an immediate value to a position in the arguments.
  1392         // This means, elide the respective argument,
  1393         // and replace all references to it in NamedFunction args with the specified value.
  1394 
  1395         // CURRENT RESTRICTIONS
  1396         // * only for pos 0 and UNSAFE (position is adjusted in MHImpl to make API usable for others)
  1397 //        assert pos == 0 && basicType == 'L' && value instanceof Unsafe;
  1398         MethodType type2 = type.dropParameterTypes(pos, pos + 1); // adjustment: ignore receiver!
  1399         LambdaForm form2 = form.bindImmediate(pos + 1, basicType, value); // adjust pos to form-relative pos
  1400         return copyWith(type2, form2);
  1401     }
  1402 
  1403     /*non-public*/
  1404     MethodHandle copyWith(MethodType mt, LambdaForm lf) {
  1405         throw new InternalError("copyWith: " + this.getClass());
  1406     }
  1407 
  1408     /*non-public*/
  1409     MethodHandle dropArguments(MethodType srcType, int pos, int drops) {
  1410         // Override this if it can be improved.
  1411         return rebind().dropArguments(srcType, pos, drops);
  1412     }
  1413 
  1414     /*non-public*/
  1415     MethodHandle permuteArguments(MethodType newType, int[] reorder) {
  1416         // Override this if it can be improved.
  1417         return rebind().permuteArguments(newType, reorder);
  1418     }
  1419 
  1420     /*non-public*/
  1421     MethodHandle rebind() {
  1422         // Bind 'this' into a new invoker, of the known class BMH.
  1423         MethodType type2 = type();
  1424         LambdaForm form2 = reinvokerForm(this);
  1425         // form2 = lambda (bmh, arg*) { thismh = bmh[0]; invokeBasic(thismh, arg*) }
  1426         return BoundMethodHandle.bindSingle(type2, form2, this);
  1427     }
  1428 
  1429     /*non-public*/
  1430     MethodHandle reinvokerTarget() {
  1431         throw new InternalError("not a reinvoker MH: "+this.getClass().getName()+": "+this);
  1432     }
  1433 
  1434     /** Create a LF which simply reinvokes a target of the given basic type.
  1435      *  The target MH must override {@link #reinvokerTarget} to provide the target.
  1436      */
  1437     static LambdaForm reinvokerForm(MethodHandle target) {
  1438         MethodType mtype = target.type().basicType();
  1439         LambdaForm reinvoker = mtype.form().cachedLambdaForm(MethodTypeForm.LF_REINVOKE);
  1440         if (reinvoker != null)  return reinvoker;
  1441         if (mtype.parameterSlotCount() >= MethodType.MAX_MH_ARITY)
  1442             return makeReinvokerForm(target.type(), target);  // cannot cache this
  1443         reinvoker = makeReinvokerForm(mtype, null);
  1444         return mtype.form().setCachedLambdaForm(MethodTypeForm.LF_REINVOKE, reinvoker);
  1445     }
  1446     private static LambdaForm makeReinvokerForm(MethodType mtype, MethodHandle customTargetOrNull) {
  1447         boolean customized = (customTargetOrNull != null);
  1448         MethodHandle MH_invokeBasic = customized ? null : MethodHandles.basicInvoker(mtype);
  1449         final int THIS_BMH    = 0;
  1450         final int ARG_BASE    = 1;
  1451         final int ARG_LIMIT   = ARG_BASE + mtype.parameterCount();
  1452         int nameCursor = ARG_LIMIT;
  1453         final int NEXT_MH     = customized ? -1 : nameCursor++;
  1454         final int REINVOKE    = nameCursor++;
  1455         LambdaForm.Name[] names = LambdaForm.arguments(nameCursor - ARG_LIMIT, mtype.invokerType());
  1456         Object[] targetArgs;
  1457         MethodHandle targetMH;
  1458         if (customized) {
  1459             targetArgs = Arrays.copyOfRange(names, ARG_BASE, ARG_LIMIT, Object[].class);
  1460             targetMH = customTargetOrNull;
  1461         } else {
  1462             names[NEXT_MH] = new LambdaForm.Name(NF_reinvokerTarget, names[THIS_BMH]);
  1463             targetArgs = Arrays.copyOfRange(names, THIS_BMH, ARG_LIMIT, Object[].class);
  1464             targetArgs[0] = names[NEXT_MH];  // overwrite this MH with next MH
  1465             targetMH = MethodHandles.basicInvoker(mtype);
  1466         }
  1467         names[REINVOKE] = new LambdaForm.Name(targetMH, targetArgs);
  1468         return new LambdaForm("BMH.reinvoke", ARG_LIMIT, names);
  1469     }
  1470 
  1471     private static final LambdaForm.NamedFunction NF_reinvokerTarget;
  1472     static {
  1473         try {
  1474             NF_reinvokerTarget = new LambdaForm.NamedFunction(MethodHandle.class
  1475                 .getDeclaredMethod("reinvokerTarget"));
  1476         } catch (ReflectiveOperationException ex) {
  1477             throw newInternalError(ex);
  1478         }
  1479     }
  1480 
  1481     /**
  1482      * Replace the old lambda form of this method handle with a new one.
  1483      * The new one must be functionally equivalent to the old one.
  1484      * Threads may continue running the old form indefinitely,
  1485      * but it is likely that the new one will be preferred for new executions.
  1486      * Use with discretion.
  1487      */
  1488     /*non-public*/
  1489     void updateForm(LambdaForm newForm) {
  1490         if (form == newForm)  return;
  1491         this.form = newForm;
  1492         this.form.prepare();  // as in MethodHandle.<init>
  1493     }
  1494 }