emul/compact/src/main/java/java/util/Collections.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Mon, 28 Jan 2013 13:52:28 +0100
changeset 599 d0f57d3ea898
parent 597 ee8a922f4268
child 636 8d0be6a9a809
permissions -rw-r--r--
More java classes requested by FX guys
     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.util;
    27 import java.io.Serializable;
    28 import java.io.IOException;
    29 import java.lang.reflect.Array;
    30 import org.apidesign.bck2brwsr.emul.lang.System;
    31 
    32 /**
    33  * This class consists exclusively of static methods that operate on or return
    34  * collections.  It contains polymorphic algorithms that operate on
    35  * collections, "wrappers", which return a new collection backed by a
    36  * specified collection, and a few other odds and ends.
    37  *
    38  * <p>The methods of this class all throw a <tt>NullPointerException</tt>
    39  * if the collections or class objects provided to them are null.
    40  *
    41  * <p>The documentation for the polymorphic algorithms contained in this class
    42  * generally includes a brief description of the <i>implementation</i>.  Such
    43  * descriptions should be regarded as <i>implementation notes</i>, rather than
    44  * parts of the <i>specification</i>.  Implementors should feel free to
    45  * substitute other algorithms, so long as the specification itself is adhered
    46  * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
    47  * a mergesort, but it does have to be <i>stable</i>.)
    48  *
    49  * <p>The "destructive" algorithms contained in this class, that is, the
    50  * algorithms that modify the collection on which they operate, are specified
    51  * to throw <tt>UnsupportedOperationException</tt> if the collection does not
    52  * support the appropriate mutation primitive(s), such as the <tt>set</tt>
    53  * method.  These algorithms may, but are not required to, throw this
    54  * exception if an invocation would have no effect on the collection.  For
    55  * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
    56  * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
    57  *
    58  * <p>This class is a member of the
    59  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
    60  * Java Collections Framework</a>.
    61  *
    62  * @author  Josh Bloch
    63  * @author  Neal Gafter
    64  * @see     Collection
    65  * @see     Set
    66  * @see     List
    67  * @see     Map
    68  * @since   1.2
    69  */
    70 
    71 public class Collections {
    72     // Suppresses default constructor, ensuring non-instantiability.
    73     private Collections() {
    74     }
    75 
    76     // Algorithms
    77 
    78     /*
    79      * Tuning parameters for algorithms - Many of the List algorithms have
    80      * two implementations, one of which is appropriate for RandomAccess
    81      * lists, the other for "sequential."  Often, the random access variant
    82      * yields better performance on small sequential access lists.  The
    83      * tuning parameters below determine the cutoff point for what constitutes
    84      * a "small" sequential access list for each algorithm.  The values below
    85      * were empirically determined to work well for LinkedList. Hopefully
    86      * they should be reasonable for other sequential access List
    87      * implementations.  Those doing performance work on this code would
    88      * do well to validate the values of these parameters from time to time.
    89      * (The first word of each tuning parameter name is the algorithm to which
    90      * it applies.)
    91      */
    92     private static final int BINARYSEARCH_THRESHOLD   = 5000;
    93     private static final int REVERSE_THRESHOLD        =   18;
    94     private static final int SHUFFLE_THRESHOLD        =    5;
    95     private static final int FILL_THRESHOLD           =   25;
    96     private static final int ROTATE_THRESHOLD         =  100;
    97     private static final int COPY_THRESHOLD           =   10;
    98     private static final int REPLACEALL_THRESHOLD     =   11;
    99     private static final int INDEXOFSUBLIST_THRESHOLD =   35;
   100 
   101     /**
   102      * Sorts the specified list into ascending order, according to the
   103      * {@linkplain Comparable natural ordering} of its elements.
   104      * All elements in the list must implement the {@link Comparable}
   105      * interface.  Furthermore, all elements in the list must be
   106      * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
   107      * must not throw a {@code ClassCastException} for any elements
   108      * {@code e1} and {@code e2} in the list).
   109      *
   110      * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
   111      * not be reordered as a result of the sort.
   112      *
   113      * <p>The specified list must be modifiable, but need not be resizable.
   114      *
   115      * <p>Implementation note: This implementation is a stable, adaptive,
   116      * iterative mergesort that requires far fewer than n lg(n) comparisons
   117      * when the input array is partially sorted, while offering the
   118      * performance of a traditional mergesort when the input array is
   119      * randomly ordered.  If the input array is nearly sorted, the
   120      * implementation requires approximately n comparisons.  Temporary
   121      * storage requirements vary from a small constant for nearly sorted
   122      * input arrays to n/2 object references for randomly ordered input
   123      * arrays.
   124      *
   125      * <p>The implementation takes equal advantage of ascending and
   126      * descending order in its input array, and can take advantage of
   127      * ascending and descending order in different parts of the same
   128      * input array.  It is well-suited to merging two or more sorted arrays:
   129      * simply concatenate the arrays and sort the resulting array.
   130      *
   131      * <p>The implementation was adapted from Tim Peters's list sort for Python
   132      * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
   133      * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
   134      * Sorting and Information Theoretic Complexity", in Proceedings of the
   135      * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
   136      * January 1993.
   137      *
   138      * <p>This implementation dumps the specified list into an array, sorts
   139      * the array, and iterates over the list resetting each element
   140      * from the corresponding position in the array.  This avoids the
   141      * n<sup>2</sup> log(n) performance that would result from attempting
   142      * to sort a linked list in place.
   143      *
   144      * @param  list the list to be sorted.
   145      * @throws ClassCastException if the list contains elements that are not
   146      *         <i>mutually comparable</i> (for example, strings and integers).
   147      * @throws UnsupportedOperationException if the specified list's
   148      *         list-iterator does not support the {@code set} operation.
   149      * @throws IllegalArgumentException (optional) if the implementation
   150      *         detects that the natural ordering of the list elements is
   151      *         found to violate the {@link Comparable} contract
   152      */
   153     public static <T extends Comparable<? super T>> void sort(List<T> list) {
   154         Object[] a = list.toArray();
   155         Arrays.sort(a);
   156         ListIterator<T> i = list.listIterator();
   157         for (int j=0; j<a.length; j++) {
   158             i.next();
   159             i.set((T)a[j]);
   160         }
   161     }
   162 
   163     /**
   164      * Sorts the specified list according to the order induced by the
   165      * specified comparator.  All elements in the list must be <i>mutually
   166      * comparable</i> using the specified comparator (that is,
   167      * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
   168      * for any elements {@code e1} and {@code e2} in the list).
   169      *
   170      * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
   171      * not be reordered as a result of the sort.
   172      *
   173      * <p>The specified list must be modifiable, but need not be resizable.
   174      *
   175      * <p>Implementation note: This implementation is a stable, adaptive,
   176      * iterative mergesort that requires far fewer than n lg(n) comparisons
   177      * when the input array is partially sorted, while offering the
   178      * performance of a traditional mergesort when the input array is
   179      * randomly ordered.  If the input array is nearly sorted, the
   180      * implementation requires approximately n comparisons.  Temporary
   181      * storage requirements vary from a small constant for nearly sorted
   182      * input arrays to n/2 object references for randomly ordered input
   183      * arrays.
   184      *
   185      * <p>The implementation takes equal advantage of ascending and
   186      * descending order in its input array, and can take advantage of
   187      * ascending and descending order in different parts of the same
   188      * input array.  It is well-suited to merging two or more sorted arrays:
   189      * simply concatenate the arrays and sort the resulting array.
   190      *
   191      * <p>The implementation was adapted from Tim Peters's list sort for Python
   192      * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
   193      * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
   194      * Sorting and Information Theoretic Complexity", in Proceedings of the
   195      * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
   196      * January 1993.
   197      *
   198      * <p>This implementation dumps the specified list into an array, sorts
   199      * the array, and iterates over the list resetting each element
   200      * from the corresponding position in the array.  This avoids the
   201      * n<sup>2</sup> log(n) performance that would result from attempting
   202      * to sort a linked list in place.
   203      *
   204      * @param  list the list to be sorted.
   205      * @param  c the comparator to determine the order of the list.  A
   206      *        {@code null} value indicates that the elements' <i>natural
   207      *        ordering</i> should be used.
   208      * @throws ClassCastException if the list contains elements that are not
   209      *         <i>mutually comparable</i> using the specified comparator.
   210      * @throws UnsupportedOperationException if the specified list's
   211      *         list-iterator does not support the {@code set} operation.
   212      * @throws IllegalArgumentException (optional) if the comparator is
   213      *         found to violate the {@link Comparator} contract
   214      */
   215     public static <T> void sort(List<T> list, Comparator<? super T> c) {
   216         Object[] a = list.toArray();
   217         Arrays.sort(a, (Comparator)c);
   218         ListIterator i = list.listIterator();
   219         for (int j=0; j<a.length; j++) {
   220             i.next();
   221             i.set(a[j]);
   222         }
   223     }
   224 
   225 
   226     /**
   227      * Searches the specified list for the specified object using the binary
   228      * search algorithm.  The list must be sorted into ascending order
   229      * according to the {@linkplain Comparable natural ordering} of its
   230      * elements (as by the {@link #sort(List)} method) prior to making this
   231      * call.  If it is not sorted, the results are undefined.  If the list
   232      * contains multiple elements equal to the specified object, there is no
   233      * guarantee which one will be found.
   234      *
   235      * <p>This method runs in log(n) time for a "random access" list (which
   236      * provides near-constant-time positional access).  If the specified list
   237      * does not implement the {@link RandomAccess} interface and is large,
   238      * this method will do an iterator-based binary search that performs
   239      * O(n) link traversals and O(log n) element comparisons.
   240      *
   241      * @param  list the list to be searched.
   242      * @param  key the key to be searched for.
   243      * @return the index of the search key, if it is contained in the list;
   244      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
   245      *         <i>insertion point</i> is defined as the point at which the
   246      *         key would be inserted into the list: the index of the first
   247      *         element greater than the key, or <tt>list.size()</tt> if all
   248      *         elements in the list are less than the specified key.  Note
   249      *         that this guarantees that the return value will be &gt;= 0 if
   250      *         and only if the key is found.
   251      * @throws ClassCastException if the list contains elements that are not
   252      *         <i>mutually comparable</i> (for example, strings and
   253      *         integers), or the search key is not mutually comparable
   254      *         with the elements of the list.
   255      */
   256     public static <T>
   257     int binarySearch(List<? extends Comparable<? super T>> list, T key) {
   258         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
   259             return Collections.indexedBinarySearch(list, key);
   260         else
   261             return Collections.iteratorBinarySearch(list, key);
   262     }
   263 
   264     private static <T>
   265     int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
   266     {
   267         int low = 0;
   268         int high = list.size()-1;
   269 
   270         while (low <= high) {
   271             int mid = (low + high) >>> 1;
   272             Comparable<? super T> midVal = list.get(mid);
   273             int cmp = midVal.compareTo(key);
   274 
   275             if (cmp < 0)
   276                 low = mid + 1;
   277             else if (cmp > 0)
   278                 high = mid - 1;
   279             else
   280                 return mid; // key found
   281         }
   282         return -(low + 1);  // key not found
   283     }
   284 
   285     private static <T>
   286     int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
   287     {
   288         int low = 0;
   289         int high = list.size()-1;
   290         ListIterator<? extends Comparable<? super T>> i = list.listIterator();
   291 
   292         while (low <= high) {
   293             int mid = (low + high) >>> 1;
   294             Comparable<? super T> midVal = get(i, mid);
   295             int cmp = midVal.compareTo(key);
   296 
   297             if (cmp < 0)
   298                 low = mid + 1;
   299             else if (cmp > 0)
   300                 high = mid - 1;
   301             else
   302                 return mid; // key found
   303         }
   304         return -(low + 1);  // key not found
   305     }
   306 
   307     /**
   308      * Gets the ith element from the given list by repositioning the specified
   309      * list listIterator.
   310      */
   311     private static <T> T get(ListIterator<? extends T> i, int index) {
   312         T obj = null;
   313         int pos = i.nextIndex();
   314         if (pos <= index) {
   315             do {
   316                 obj = i.next();
   317             } while (pos++ < index);
   318         } else {
   319             do {
   320                 obj = i.previous();
   321             } while (--pos > index);
   322         }
   323         return obj;
   324     }
   325 
   326     /**
   327      * Searches the specified list for the specified object using the binary
   328      * search algorithm.  The list must be sorted into ascending order
   329      * according to the specified comparator (as by the
   330      * {@link #sort(List, Comparator) sort(List, Comparator)}
   331      * method), prior to making this call.  If it is
   332      * not sorted, the results are undefined.  If the list contains multiple
   333      * elements equal to the specified object, there is no guarantee which one
   334      * will be found.
   335      *
   336      * <p>This method runs in log(n) time for a "random access" list (which
   337      * provides near-constant-time positional access).  If the specified list
   338      * does not implement the {@link RandomAccess} interface and is large,
   339      * this method will do an iterator-based binary search that performs
   340      * O(n) link traversals and O(log n) element comparisons.
   341      *
   342      * @param  list the list to be searched.
   343      * @param  key the key to be searched for.
   344      * @param  c the comparator by which the list is ordered.
   345      *         A <tt>null</tt> value indicates that the elements'
   346      *         {@linkplain Comparable natural ordering} should be used.
   347      * @return the index of the search key, if it is contained in the list;
   348      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
   349      *         <i>insertion point</i> is defined as the point at which the
   350      *         key would be inserted into the list: the index of the first
   351      *         element greater than the key, or <tt>list.size()</tt> if all
   352      *         elements in the list are less than the specified key.  Note
   353      *         that this guarantees that the return value will be &gt;= 0 if
   354      *         and only if the key is found.
   355      * @throws ClassCastException if the list contains elements that are not
   356      *         <i>mutually comparable</i> using the specified comparator,
   357      *         or the search key is not mutually comparable with the
   358      *         elements of the list using this comparator.
   359      */
   360     public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
   361         if (c==null)
   362             return binarySearch((List) list, key);
   363 
   364         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
   365             return Collections.indexedBinarySearch(list, key, c);
   366         else
   367             return Collections.iteratorBinarySearch(list, key, c);
   368     }
   369 
   370     private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
   371         int low = 0;
   372         int high = l.size()-1;
   373 
   374         while (low <= high) {
   375             int mid = (low + high) >>> 1;
   376             T midVal = l.get(mid);
   377             int cmp = c.compare(midVal, key);
   378 
   379             if (cmp < 0)
   380                 low = mid + 1;
   381             else if (cmp > 0)
   382                 high = mid - 1;
   383             else
   384                 return mid; // key found
   385         }
   386         return -(low + 1);  // key not found
   387     }
   388 
   389     private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
   390         int low = 0;
   391         int high = l.size()-1;
   392         ListIterator<? extends T> i = l.listIterator();
   393 
   394         while (low <= high) {
   395             int mid = (low + high) >>> 1;
   396             T midVal = get(i, mid);
   397             int cmp = c.compare(midVal, key);
   398 
   399             if (cmp < 0)
   400                 low = mid + 1;
   401             else if (cmp > 0)
   402                 high = mid - 1;
   403             else
   404                 return mid; // key found
   405         }
   406         return -(low + 1);  // key not found
   407     }
   408 
   409     private interface SelfComparable extends Comparable<SelfComparable> {}
   410 
   411 
   412     /**
   413      * Reverses the order of the elements in the specified list.<p>
   414      *
   415      * This method runs in linear time.
   416      *
   417      * @param  list the list whose elements are to be reversed.
   418      * @throws UnsupportedOperationException if the specified list or
   419      *         its list-iterator does not support the <tt>set</tt> operation.
   420      */
   421     public static void reverse(List<?> list) {
   422         int size = list.size();
   423         if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
   424             for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
   425                 swap(list, i, j);
   426         } else {
   427             ListIterator fwd = list.listIterator();
   428             ListIterator rev = list.listIterator(size);
   429             for (int i=0, mid=list.size()>>1; i<mid; i++) {
   430                 Object tmp = fwd.next();
   431                 fwd.set(rev.previous());
   432                 rev.set(tmp);
   433             }
   434         }
   435     }
   436 
   437     /**
   438      * Randomly permutes the specified list using a default source of
   439      * randomness.  All permutations occur with approximately equal
   440      * likelihood.<p>
   441      *
   442      * The hedge "approximately" is used in the foregoing description because
   443      * default source of randomness is only approximately an unbiased source
   444      * of independently chosen bits. If it were a perfect source of randomly
   445      * chosen bits, then the algorithm would choose permutations with perfect
   446      * uniformity.<p>
   447      *
   448      * This implementation traverses the list backwards, from the last element
   449      * up to the second, repeatedly swapping a randomly selected element into
   450      * the "current position".  Elements are randomly selected from the
   451      * portion of the list that runs from the first element to the current
   452      * position, inclusive.<p>
   453      *
   454      * This method runs in linear time.  If the specified list does not
   455      * implement the {@link RandomAccess} interface and is large, this
   456      * implementation dumps the specified list into an array before shuffling
   457      * it, and dumps the shuffled array back into the list.  This avoids the
   458      * quadratic behavior that would result from shuffling a "sequential
   459      * access" list in place.
   460      *
   461      * @param  list the list to be shuffled.
   462      * @throws UnsupportedOperationException if the specified list or
   463      *         its list-iterator does not support the <tt>set</tt> operation.
   464      */
   465     public static void shuffle(List<?> list) {
   466         Random rnd = r;
   467         if (rnd == null)
   468             r = rnd = new Random();
   469         shuffle(list, rnd);
   470     }
   471     private static Random r;
   472 
   473     /**
   474      * Randomly permute the specified list using the specified source of
   475      * randomness.  All permutations occur with equal likelihood
   476      * assuming that the source of randomness is fair.<p>
   477      *
   478      * This implementation traverses the list backwards, from the last element
   479      * up to the second, repeatedly swapping a randomly selected element into
   480      * the "current position".  Elements are randomly selected from the
   481      * portion of the list that runs from the first element to the current
   482      * position, inclusive.<p>
   483      *
   484      * This method runs in linear time.  If the specified list does not
   485      * implement the {@link RandomAccess} interface and is large, this
   486      * implementation dumps the specified list into an array before shuffling
   487      * it, and dumps the shuffled array back into the list.  This avoids the
   488      * quadratic behavior that would result from shuffling a "sequential
   489      * access" list in place.
   490      *
   491      * @param  list the list to be shuffled.
   492      * @param  rnd the source of randomness to use to shuffle the list.
   493      * @throws UnsupportedOperationException if the specified list or its
   494      *         list-iterator does not support the <tt>set</tt> operation.
   495      */
   496     public static void shuffle(List<?> list, Random rnd) {
   497         int size = list.size();
   498         if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
   499             for (int i=size; i>1; i--)
   500                 swap(list, i-1, rnd.nextInt(i));
   501         } else {
   502             Object arr[] = list.toArray();
   503 
   504             // Shuffle array
   505             for (int i=size; i>1; i--)
   506                 swap(arr, i-1, rnd.nextInt(i));
   507 
   508             // Dump array back into list
   509             ListIterator it = list.listIterator();
   510             for (int i=0; i<arr.length; i++) {
   511                 it.next();
   512                 it.set(arr[i]);
   513             }
   514         }
   515     }
   516 
   517     /**
   518      * Swaps the elements at the specified positions in the specified list.
   519      * (If the specified positions are equal, invoking this method leaves
   520      * the list unchanged.)
   521      *
   522      * @param list The list in which to swap elements.
   523      * @param i the index of one element to be swapped.
   524      * @param j the index of the other element to be swapped.
   525      * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
   526      *         is out of range (i &lt; 0 || i &gt;= list.size()
   527      *         || j &lt; 0 || j &gt;= list.size()).
   528      * @since 1.4
   529      */
   530     public static void swap(List<?> list, int i, int j) {
   531         final List l = list;
   532         l.set(i, l.set(j, l.get(i)));
   533     }
   534 
   535     /**
   536      * Swaps the two specified elements in the specified array.
   537      */
   538     private static void swap(Object[] arr, int i, int j) {
   539         Object tmp = arr[i];
   540         arr[i] = arr[j];
   541         arr[j] = tmp;
   542     }
   543 
   544     /**
   545      * Replaces all of the elements of the specified list with the specified
   546      * element. <p>
   547      *
   548      * This method runs in linear time.
   549      *
   550      * @param  list the list to be filled with the specified element.
   551      * @param  obj The element with which to fill the specified list.
   552      * @throws UnsupportedOperationException if the specified list or its
   553      *         list-iterator does not support the <tt>set</tt> operation.
   554      */
   555     public static <T> void fill(List<? super T> list, T obj) {
   556         int size = list.size();
   557 
   558         if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
   559             for (int i=0; i<size; i++)
   560                 list.set(i, obj);
   561         } else {
   562             ListIterator<? super T> itr = list.listIterator();
   563             for (int i=0; i<size; i++) {
   564                 itr.next();
   565                 itr.set(obj);
   566             }
   567         }
   568     }
   569 
   570     /**
   571      * Copies all of the elements from one list into another.  After the
   572      * operation, the index of each copied element in the destination list
   573      * will be identical to its index in the source list.  The destination
   574      * list must be at least as long as the source list.  If it is longer, the
   575      * remaining elements in the destination list are unaffected. <p>
   576      *
   577      * This method runs in linear time.
   578      *
   579      * @param  dest The destination list.
   580      * @param  src The source list.
   581      * @throws IndexOutOfBoundsException if the destination list is too small
   582      *         to contain the entire source List.
   583      * @throws UnsupportedOperationException if the destination list's
   584      *         list-iterator does not support the <tt>set</tt> operation.
   585      */
   586     public static <T> void copy(List<? super T> dest, List<? extends T> src) {
   587         int srcSize = src.size();
   588         if (srcSize > dest.size())
   589             throw new IndexOutOfBoundsException("Source does not fit in dest");
   590 
   591         if (srcSize < COPY_THRESHOLD ||
   592             (src instanceof RandomAccess && dest instanceof RandomAccess)) {
   593             for (int i=0; i<srcSize; i++)
   594                 dest.set(i, src.get(i));
   595         } else {
   596             ListIterator<? super T> di=dest.listIterator();
   597             ListIterator<? extends T> si=src.listIterator();
   598             for (int i=0; i<srcSize; i++) {
   599                 di.next();
   600                 di.set(si.next());
   601             }
   602         }
   603     }
   604 
   605     /**
   606      * Returns the minimum element of the given collection, according to the
   607      * <i>natural ordering</i> of its elements.  All elements in the
   608      * collection must implement the <tt>Comparable</tt> interface.
   609      * Furthermore, all elements in the collection must be <i>mutually
   610      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
   611      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
   612      * <tt>e2</tt> in the collection).<p>
   613      *
   614      * This method iterates over the entire collection, hence it requires
   615      * time proportional to the size of the collection.
   616      *
   617      * @param  coll the collection whose minimum element is to be determined.
   618      * @return the minimum element of the given collection, according
   619      *         to the <i>natural ordering</i> of its elements.
   620      * @throws ClassCastException if the collection contains elements that are
   621      *         not <i>mutually comparable</i> (for example, strings and
   622      *         integers).
   623      * @throws NoSuchElementException if the collection is empty.
   624      * @see Comparable
   625      */
   626     public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
   627         Iterator<? extends T> i = coll.iterator();
   628         T candidate = i.next();
   629 
   630         while (i.hasNext()) {
   631             T next = i.next();
   632             if (next.compareTo(candidate) < 0)
   633                 candidate = next;
   634         }
   635         return candidate;
   636     }
   637 
   638     /**
   639      * Returns the minimum element of the given collection, according to the
   640      * order induced by the specified comparator.  All elements in the
   641      * collection must be <i>mutually comparable</i> by the specified
   642      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
   643      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
   644      * <tt>e2</tt> in the collection).<p>
   645      *
   646      * This method iterates over the entire collection, hence it requires
   647      * time proportional to the size of the collection.
   648      *
   649      * @param  coll the collection whose minimum element is to be determined.
   650      * @param  comp the comparator with which to determine the minimum element.
   651      *         A <tt>null</tt> value indicates that the elements' <i>natural
   652      *         ordering</i> should be used.
   653      * @return the minimum element of the given collection, according
   654      *         to the specified comparator.
   655      * @throws ClassCastException if the collection contains elements that are
   656      *         not <i>mutually comparable</i> using the specified comparator.
   657      * @throws NoSuchElementException if the collection is empty.
   658      * @see Comparable
   659      */
   660     public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
   661         if (comp==null)
   662             return (T)min((Collection<SelfComparable>) (Collection) coll);
   663 
   664         Iterator<? extends T> i = coll.iterator();
   665         T candidate = i.next();
   666 
   667         while (i.hasNext()) {
   668             T next = i.next();
   669             if (comp.compare(next, candidate) < 0)
   670                 candidate = next;
   671         }
   672         return candidate;
   673     }
   674 
   675     /**
   676      * Returns the maximum element of the given collection, according to the
   677      * <i>natural ordering</i> of its elements.  All elements in the
   678      * collection must implement the <tt>Comparable</tt> interface.
   679      * Furthermore, all elements in the collection must be <i>mutually
   680      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
   681      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
   682      * <tt>e2</tt> in the collection).<p>
   683      *
   684      * This method iterates over the entire collection, hence it requires
   685      * time proportional to the size of the collection.
   686      *
   687      * @param  coll the collection whose maximum element is to be determined.
   688      * @return the maximum element of the given collection, according
   689      *         to the <i>natural ordering</i> of its elements.
   690      * @throws ClassCastException if the collection contains elements that are
   691      *         not <i>mutually comparable</i> (for example, strings and
   692      *         integers).
   693      * @throws NoSuchElementException if the collection is empty.
   694      * @see Comparable
   695      */
   696     public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
   697         Iterator<? extends T> i = coll.iterator();
   698         T candidate = i.next();
   699 
   700         while (i.hasNext()) {
   701             T next = i.next();
   702             if (next.compareTo(candidate) > 0)
   703                 candidate = next;
   704         }
   705         return candidate;
   706     }
   707 
   708     /**
   709      * Returns the maximum element of the given collection, according to the
   710      * order induced by the specified comparator.  All elements in the
   711      * collection must be <i>mutually comparable</i> by the specified
   712      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
   713      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
   714      * <tt>e2</tt> in the collection).<p>
   715      *
   716      * This method iterates over the entire collection, hence it requires
   717      * time proportional to the size of the collection.
   718      *
   719      * @param  coll the collection whose maximum element is to be determined.
   720      * @param  comp the comparator with which to determine the maximum element.
   721      *         A <tt>null</tt> value indicates that the elements' <i>natural
   722      *        ordering</i> should be used.
   723      * @return the maximum element of the given collection, according
   724      *         to the specified comparator.
   725      * @throws ClassCastException if the collection contains elements that are
   726      *         not <i>mutually comparable</i> using the specified comparator.
   727      * @throws NoSuchElementException if the collection is empty.
   728      * @see Comparable
   729      */
   730     public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
   731         if (comp==null)
   732             return (T)max((Collection<SelfComparable>) (Collection) coll);
   733 
   734         Iterator<? extends T> i = coll.iterator();
   735         T candidate = i.next();
   736 
   737         while (i.hasNext()) {
   738             T next = i.next();
   739             if (comp.compare(next, candidate) > 0)
   740                 candidate = next;
   741         }
   742         return candidate;
   743     }
   744 
   745     /**
   746      * Rotates the elements in the specified list by the specified distance.
   747      * After calling this method, the element at index <tt>i</tt> will be
   748      * the element previously at index <tt>(i - distance)</tt> mod
   749      * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
   750      * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
   751      * the size of the list.)
   752      *
   753      * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
   754      * After invoking <tt>Collections.rotate(list, 1)</tt> (or
   755      * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
   756      * <tt>[s, t, a, n, k]</tt>.
   757      *
   758      * <p>Note that this method can usefully be applied to sublists to
   759      * move one or more elements within a list while preserving the
   760      * order of the remaining elements.  For example, the following idiom
   761      * moves the element at index <tt>j</tt> forward to position
   762      * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
   763      * <pre>
   764      *     Collections.rotate(list.subList(j, k+1), -1);
   765      * </pre>
   766      * To make this concrete, suppose <tt>list</tt> comprises
   767      * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
   768      * (<tt>b</tt>) forward two positions, perform the following invocation:
   769      * <pre>
   770      *     Collections.rotate(l.subList(1, 4), -1);
   771      * </pre>
   772      * The resulting list is <tt>[a, c, d, b, e]</tt>.
   773      *
   774      * <p>To move more than one element forward, increase the absolute value
   775      * of the rotation distance.  To move elements backward, use a positive
   776      * shift distance.
   777      *
   778      * <p>If the specified list is small or implements the {@link
   779      * RandomAccess} interface, this implementation exchanges the first
   780      * element into the location it should go, and then repeatedly exchanges
   781      * the displaced element into the location it should go until a displaced
   782      * element is swapped into the first element.  If necessary, the process
   783      * is repeated on the second and successive elements, until the rotation
   784      * is complete.  If the specified list is large and doesn't implement the
   785      * <tt>RandomAccess</tt> interface, this implementation breaks the
   786      * list into two sublist views around index <tt>-distance mod size</tt>.
   787      * Then the {@link #reverse(List)} method is invoked on each sublist view,
   788      * and finally it is invoked on the entire list.  For a more complete
   789      * description of both algorithms, see Section 2.3 of Jon Bentley's
   790      * <i>Programming Pearls</i> (Addison-Wesley, 1986).
   791      *
   792      * @param list the list to be rotated.
   793      * @param distance the distance to rotate the list.  There are no
   794      *        constraints on this value; it may be zero, negative, or
   795      *        greater than <tt>list.size()</tt>.
   796      * @throws UnsupportedOperationException if the specified list or
   797      *         its list-iterator does not support the <tt>set</tt> operation.
   798      * @since 1.4
   799      */
   800     public static void rotate(List<?> list, int distance) {
   801         if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
   802             rotate1(list, distance);
   803         else
   804             rotate2(list, distance);
   805     }
   806 
   807     private static <T> void rotate1(List<T> list, int distance) {
   808         int size = list.size();
   809         if (size == 0)
   810             return;
   811         distance = distance % size;
   812         if (distance < 0)
   813             distance += size;
   814         if (distance == 0)
   815             return;
   816 
   817         for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
   818             T displaced = list.get(cycleStart);
   819             int i = cycleStart;
   820             do {
   821                 i += distance;
   822                 if (i >= size)
   823                     i -= size;
   824                 displaced = list.set(i, displaced);
   825                 nMoved ++;
   826             } while (i != cycleStart);
   827         }
   828     }
   829 
   830     private static void rotate2(List<?> list, int distance) {
   831         int size = list.size();
   832         if (size == 0)
   833             return;
   834         int mid =  -distance % size;
   835         if (mid < 0)
   836             mid += size;
   837         if (mid == 0)
   838             return;
   839 
   840         reverse(list.subList(0, mid));
   841         reverse(list.subList(mid, size));
   842         reverse(list);
   843     }
   844 
   845     /**
   846      * Replaces all occurrences of one specified value in a list with another.
   847      * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
   848      * in <tt>list</tt> such that
   849      * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
   850      * (This method has no effect on the size of the list.)
   851      *
   852      * @param list the list in which replacement is to occur.
   853      * @param oldVal the old value to be replaced.
   854      * @param newVal the new value with which <tt>oldVal</tt> is to be
   855      *        replaced.
   856      * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
   857      *         <tt>e</tt> such that
   858      *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
   859      * @throws UnsupportedOperationException if the specified list or
   860      *         its list-iterator does not support the <tt>set</tt> operation.
   861      * @since  1.4
   862      */
   863     public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
   864         boolean result = false;
   865         int size = list.size();
   866         if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
   867             if (oldVal==null) {
   868                 for (int i=0; i<size; i++) {
   869                     if (list.get(i)==null) {
   870                         list.set(i, newVal);
   871                         result = true;
   872                     }
   873                 }
   874             } else {
   875                 for (int i=0; i<size; i++) {
   876                     if (oldVal.equals(list.get(i))) {
   877                         list.set(i, newVal);
   878                         result = true;
   879                     }
   880                 }
   881             }
   882         } else {
   883             ListIterator<T> itr=list.listIterator();
   884             if (oldVal==null) {
   885                 for (int i=0; i<size; i++) {
   886                     if (itr.next()==null) {
   887                         itr.set(newVal);
   888                         result = true;
   889                     }
   890                 }
   891             } else {
   892                 for (int i=0; i<size; i++) {
   893                     if (oldVal.equals(itr.next())) {
   894                         itr.set(newVal);
   895                         result = true;
   896                     }
   897                 }
   898             }
   899         }
   900         return result;
   901     }
   902 
   903     /**
   904      * Returns the starting position of the first occurrence of the specified
   905      * target list within the specified source list, or -1 if there is no
   906      * such occurrence.  More formally, returns the lowest index <tt>i</tt>
   907      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
   908      * or -1 if there is no such index.  (Returns -1 if
   909      * <tt>target.size() > source.size()</tt>.)
   910      *
   911      * <p>This implementation uses the "brute force" technique of scanning
   912      * over the source list, looking for a match with the target at each
   913      * location in turn.
   914      *
   915      * @param source the list in which to search for the first occurrence
   916      *        of <tt>target</tt>.
   917      * @param target the list to search for as a subList of <tt>source</tt>.
   918      * @return the starting position of the first occurrence of the specified
   919      *         target list within the specified source list, or -1 if there
   920      *         is no such occurrence.
   921      * @since  1.4
   922      */
   923     public static int indexOfSubList(List<?> source, List<?> target) {
   924         int sourceSize = source.size();
   925         int targetSize = target.size();
   926         int maxCandidate = sourceSize - targetSize;
   927 
   928         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
   929             (source instanceof RandomAccess&&target instanceof RandomAccess)) {
   930         nextCand:
   931             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
   932                 for (int i=0, j=candidate; i<targetSize; i++, j++)
   933                     if (!eq(target.get(i), source.get(j)))
   934                         continue nextCand;  // Element mismatch, try next cand
   935                 return candidate;  // All elements of candidate matched target
   936             }
   937         } else {  // Iterator version of above algorithm
   938             ListIterator<?> si = source.listIterator();
   939         nextCand:
   940             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
   941                 ListIterator<?> ti = target.listIterator();
   942                 for (int i=0; i<targetSize; i++) {
   943                     if (!eq(ti.next(), si.next())) {
   944                         // Back up source iterator to next candidate
   945                         for (int j=0; j<i; j++)
   946                             si.previous();
   947                         continue nextCand;
   948                     }
   949                 }
   950                 return candidate;
   951             }
   952         }
   953         return -1;  // No candidate matched the target
   954     }
   955 
   956     /**
   957      * Returns the starting position of the last occurrence of the specified
   958      * target list within the specified source list, or -1 if there is no such
   959      * occurrence.  More formally, returns the highest index <tt>i</tt>
   960      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
   961      * or -1 if there is no such index.  (Returns -1 if
   962      * <tt>target.size() > source.size()</tt>.)
   963      *
   964      * <p>This implementation uses the "brute force" technique of iterating
   965      * over the source list, looking for a match with the target at each
   966      * location in turn.
   967      *
   968      * @param source the list in which to search for the last occurrence
   969      *        of <tt>target</tt>.
   970      * @param target the list to search for as a subList of <tt>source</tt>.
   971      * @return the starting position of the last occurrence of the specified
   972      *         target list within the specified source list, or -1 if there
   973      *         is no such occurrence.
   974      * @since  1.4
   975      */
   976     public static int lastIndexOfSubList(List<?> source, List<?> target) {
   977         int sourceSize = source.size();
   978         int targetSize = target.size();
   979         int maxCandidate = sourceSize - targetSize;
   980 
   981         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
   982             source instanceof RandomAccess) {   // Index access version
   983         nextCand:
   984             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
   985                 for (int i=0, j=candidate; i<targetSize; i++, j++)
   986                     if (!eq(target.get(i), source.get(j)))
   987                         continue nextCand;  // Element mismatch, try next cand
   988                 return candidate;  // All elements of candidate matched target
   989             }
   990         } else {  // Iterator version of above algorithm
   991             if (maxCandidate < 0)
   992                 return -1;
   993             ListIterator<?> si = source.listIterator(maxCandidate);
   994         nextCand:
   995             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
   996                 ListIterator<?> ti = target.listIterator();
   997                 for (int i=0; i<targetSize; i++) {
   998                     if (!eq(ti.next(), si.next())) {
   999                         if (candidate != 0) {
  1000                             // Back up source iterator to next candidate
  1001                             for (int j=0; j<=i+1; j++)
  1002                                 si.previous();
  1003                         }
  1004                         continue nextCand;
  1005                     }
  1006                 }
  1007                 return candidate;
  1008             }
  1009         }
  1010         return -1;  // No candidate matched the target
  1011     }
  1012 
  1013 
  1014     // Unmodifiable Wrappers
  1015 
  1016     /**
  1017      * Returns an unmodifiable view of the specified collection.  This method
  1018      * allows modules to provide users with "read-only" access to internal
  1019      * collections.  Query operations on the returned collection "read through"
  1020      * to the specified collection, and attempts to modify the returned
  1021      * collection, whether direct or via its iterator, result in an
  1022      * <tt>UnsupportedOperationException</tt>.<p>
  1023      *
  1024      * The returned collection does <i>not</i> pass the hashCode and equals
  1025      * operations through to the backing collection, but relies on
  1026      * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
  1027      * is necessary to preserve the contracts of these operations in the case
  1028      * that the backing collection is a set or a list.<p>
  1029      *
  1030      * The returned collection will be serializable if the specified collection
  1031      * is serializable.
  1032      *
  1033      * @param  c the collection for which an unmodifiable view is to be
  1034      *         returned.
  1035      * @return an unmodifiable view of the specified collection.
  1036      */
  1037     public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
  1038         return new UnmodifiableCollection<>(c);
  1039     }
  1040 
  1041     /**
  1042      * @serial include
  1043      */
  1044     static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
  1045         private static final long serialVersionUID = 1820017752578914078L;
  1046 
  1047         final Collection<? extends E> c;
  1048 
  1049         UnmodifiableCollection(Collection<? extends E> c) {
  1050             if (c==null)
  1051                 throw new NullPointerException();
  1052             this.c = c;
  1053         }
  1054 
  1055         public int size()                   {return c.size();}
  1056         public boolean isEmpty()            {return c.isEmpty();}
  1057         public boolean contains(Object o)   {return c.contains(o);}
  1058         public Object[] toArray()           {return c.toArray();}
  1059         public <T> T[] toArray(T[] a)       {return c.toArray(a);}
  1060         public String toString()            {return c.toString();}
  1061 
  1062         public Iterator<E> iterator() {
  1063             return new Iterator<E>() {
  1064                 private final Iterator<? extends E> i = c.iterator();
  1065 
  1066                 public boolean hasNext() {return i.hasNext();}
  1067                 public E next()          {return i.next();}
  1068                 public void remove() {
  1069                     throw new UnsupportedOperationException();
  1070                 }
  1071             };
  1072         }
  1073 
  1074         public boolean add(E e) {
  1075             throw new UnsupportedOperationException();
  1076         }
  1077         public boolean remove(Object o) {
  1078             throw new UnsupportedOperationException();
  1079         }
  1080 
  1081         public boolean containsAll(Collection<?> coll) {
  1082             return c.containsAll(coll);
  1083         }
  1084         public boolean addAll(Collection<? extends E> coll) {
  1085             throw new UnsupportedOperationException();
  1086         }
  1087         public boolean removeAll(Collection<?> coll) {
  1088             throw new UnsupportedOperationException();
  1089         }
  1090         public boolean retainAll(Collection<?> coll) {
  1091             throw new UnsupportedOperationException();
  1092         }
  1093         public void clear() {
  1094             throw new UnsupportedOperationException();
  1095         }
  1096     }
  1097 
  1098     /**
  1099      * Returns an unmodifiable view of the specified set.  This method allows
  1100      * modules to provide users with "read-only" access to internal sets.
  1101      * Query operations on the returned set "read through" to the specified
  1102      * set, and attempts to modify the returned set, whether direct or via its
  1103      * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
  1104      *
  1105      * The returned set will be serializable if the specified set
  1106      * is serializable.
  1107      *
  1108      * @param  s the set for which an unmodifiable view is to be returned.
  1109      * @return an unmodifiable view of the specified set.
  1110      */
  1111     public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
  1112         return new UnmodifiableSet<>(s);
  1113     }
  1114 
  1115     /**
  1116      * @serial include
  1117      */
  1118     static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
  1119                                  implements Set<E>, Serializable {
  1120         private static final long serialVersionUID = -9215047833775013803L;
  1121 
  1122         UnmodifiableSet(Set<? extends E> s)     {super(s);}
  1123         public boolean equals(Object o) {return o == this || c.equals(o);}
  1124         public int hashCode()           {return c.hashCode();}
  1125     }
  1126 
  1127     /**
  1128      * Returns an unmodifiable view of the specified sorted set.  This method
  1129      * allows modules to provide users with "read-only" access to internal
  1130      * sorted sets.  Query operations on the returned sorted set "read
  1131      * through" to the specified sorted set.  Attempts to modify the returned
  1132      * sorted set, whether direct, via its iterator, or via its
  1133      * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
  1134      * an <tt>UnsupportedOperationException</tt>.<p>
  1135      *
  1136      * The returned sorted set will be serializable if the specified sorted set
  1137      * is serializable.
  1138      *
  1139      * @param s the sorted set for which an unmodifiable view is to be
  1140      *        returned.
  1141      * @return an unmodifiable view of the specified sorted set.
  1142      */
  1143     public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
  1144         return new UnmodifiableSortedSet<>(s);
  1145     }
  1146 
  1147     /**
  1148      * @serial include
  1149      */
  1150     static class UnmodifiableSortedSet<E>
  1151                              extends UnmodifiableSet<E>
  1152                              implements SortedSet<E>, Serializable {
  1153         private static final long serialVersionUID = -4929149591599911165L;
  1154         private final SortedSet<E> ss;
  1155 
  1156         UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
  1157 
  1158         public Comparator<? super E> comparator() {return ss.comparator();}
  1159 
  1160         public SortedSet<E> subSet(E fromElement, E toElement) {
  1161             return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));
  1162         }
  1163         public SortedSet<E> headSet(E toElement) {
  1164             return new UnmodifiableSortedSet<>(ss.headSet(toElement));
  1165         }
  1166         public SortedSet<E> tailSet(E fromElement) {
  1167             return new UnmodifiableSortedSet<>(ss.tailSet(fromElement));
  1168         }
  1169 
  1170         public E first()                   {return ss.first();}
  1171         public E last()                    {return ss.last();}
  1172     }
  1173 
  1174     /**
  1175      * Returns an unmodifiable view of the specified list.  This method allows
  1176      * modules to provide users with "read-only" access to internal
  1177      * lists.  Query operations on the returned list "read through" to the
  1178      * specified list, and attempts to modify the returned list, whether
  1179      * direct or via its iterator, result in an
  1180      * <tt>UnsupportedOperationException</tt>.<p>
  1181      *
  1182      * The returned list will be serializable if the specified list
  1183      * is serializable. Similarly, the returned list will implement
  1184      * {@link RandomAccess} if the specified list does.
  1185      *
  1186      * @param  list the list for which an unmodifiable view is to be returned.
  1187      * @return an unmodifiable view of the specified list.
  1188      */
  1189     public static <T> List<T> unmodifiableList(List<? extends T> list) {
  1190         return (list instanceof RandomAccess ?
  1191                 new UnmodifiableRandomAccessList<>(list) :
  1192                 new UnmodifiableList<>(list));
  1193     }
  1194 
  1195     /**
  1196      * @serial include
  1197      */
  1198     static class UnmodifiableList<E> extends UnmodifiableCollection<E>
  1199                                   implements List<E> {
  1200         private static final long serialVersionUID = -283967356065247728L;
  1201         final List<? extends E> list;
  1202 
  1203         UnmodifiableList(List<? extends E> list) {
  1204             super(list);
  1205             this.list = list;
  1206         }
  1207 
  1208         public boolean equals(Object o) {return o == this || list.equals(o);}
  1209         public int hashCode()           {return list.hashCode();}
  1210 
  1211         public E get(int index) {return list.get(index);}
  1212         public E set(int index, E element) {
  1213             throw new UnsupportedOperationException();
  1214         }
  1215         public void add(int index, E element) {
  1216             throw new UnsupportedOperationException();
  1217         }
  1218         public E remove(int index) {
  1219             throw new UnsupportedOperationException();
  1220         }
  1221         public int indexOf(Object o)            {return list.indexOf(o);}
  1222         public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
  1223         public boolean addAll(int index, Collection<? extends E> c) {
  1224             throw new UnsupportedOperationException();
  1225         }
  1226         public ListIterator<E> listIterator()   {return listIterator(0);}
  1227 
  1228         public ListIterator<E> listIterator(final int index) {
  1229             return new ListIterator<E>() {
  1230                 private final ListIterator<? extends E> i
  1231                     = list.listIterator(index);
  1232 
  1233                 public boolean hasNext()     {return i.hasNext();}
  1234                 public E next()              {return i.next();}
  1235                 public boolean hasPrevious() {return i.hasPrevious();}
  1236                 public E previous()          {return i.previous();}
  1237                 public int nextIndex()       {return i.nextIndex();}
  1238                 public int previousIndex()   {return i.previousIndex();}
  1239 
  1240                 public void remove() {
  1241                     throw new UnsupportedOperationException();
  1242                 }
  1243                 public void set(E e) {
  1244                     throw new UnsupportedOperationException();
  1245                 }
  1246                 public void add(E e) {
  1247                     throw new UnsupportedOperationException();
  1248                 }
  1249             };
  1250         }
  1251 
  1252         public List<E> subList(int fromIndex, int toIndex) {
  1253             return new UnmodifiableList<>(list.subList(fromIndex, toIndex));
  1254         }
  1255 
  1256         /**
  1257          * UnmodifiableRandomAccessList instances are serialized as
  1258          * UnmodifiableList instances to allow them to be deserialized
  1259          * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
  1260          * This method inverts the transformation.  As a beneficial
  1261          * side-effect, it also grafts the RandomAccess marker onto
  1262          * UnmodifiableList instances that were serialized in pre-1.4 JREs.
  1263          *
  1264          * Note: Unfortunately, UnmodifiableRandomAccessList instances
  1265          * serialized in 1.4.1 and deserialized in 1.4 will become
  1266          * UnmodifiableList instances, as this method was missing in 1.4.
  1267          */
  1268         private Object readResolve() {
  1269             return (list instanceof RandomAccess
  1270                     ? new UnmodifiableRandomAccessList<>(list)
  1271                     : this);
  1272         }
  1273     }
  1274 
  1275     /**
  1276      * @serial include
  1277      */
  1278     static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
  1279                                               implements RandomAccess
  1280     {
  1281         UnmodifiableRandomAccessList(List<? extends E> list) {
  1282             super(list);
  1283         }
  1284 
  1285         public List<E> subList(int fromIndex, int toIndex) {
  1286             return new UnmodifiableRandomAccessList<>(
  1287                 list.subList(fromIndex, toIndex));
  1288         }
  1289 
  1290         private static final long serialVersionUID = -2542308836966382001L;
  1291 
  1292         /**
  1293          * Allows instances to be deserialized in pre-1.4 JREs (which do
  1294          * not have UnmodifiableRandomAccessList).  UnmodifiableList has
  1295          * a readResolve method that inverts this transformation upon
  1296          * deserialization.
  1297          */
  1298         private Object writeReplace() {
  1299             return new UnmodifiableList<>(list);
  1300         }
  1301     }
  1302 
  1303     /**
  1304      * Returns an unmodifiable view of the specified map.  This method
  1305      * allows modules to provide users with "read-only" access to internal
  1306      * maps.  Query operations on the returned map "read through"
  1307      * to the specified map, and attempts to modify the returned
  1308      * map, whether direct or via its collection views, result in an
  1309      * <tt>UnsupportedOperationException</tt>.<p>
  1310      *
  1311      * The returned map will be serializable if the specified map
  1312      * is serializable.
  1313      *
  1314      * @param  m the map for which an unmodifiable view is to be returned.
  1315      * @return an unmodifiable view of the specified map.
  1316      */
  1317     public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
  1318         return new UnmodifiableMap<>(m);
  1319     }
  1320 
  1321     /**
  1322      * @serial include
  1323      */
  1324     private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
  1325         private static final long serialVersionUID = -1034234728574286014L;
  1326 
  1327         private final Map<? extends K, ? extends V> m;
  1328 
  1329         UnmodifiableMap(Map<? extends K, ? extends V> m) {
  1330             if (m==null)
  1331                 throw new NullPointerException();
  1332             this.m = m;
  1333         }
  1334 
  1335         public int size()                        {return m.size();}
  1336         public boolean isEmpty()                 {return m.isEmpty();}
  1337         public boolean containsKey(Object key)   {return m.containsKey(key);}
  1338         public boolean containsValue(Object val) {return m.containsValue(val);}
  1339         public V get(Object key)                 {return m.get(key);}
  1340 
  1341         public V put(K key, V value) {
  1342             throw new UnsupportedOperationException();
  1343         }
  1344         public V remove(Object key) {
  1345             throw new UnsupportedOperationException();
  1346         }
  1347         public void putAll(Map<? extends K, ? extends V> m) {
  1348             throw new UnsupportedOperationException();
  1349         }
  1350         public void clear() {
  1351             throw new UnsupportedOperationException();
  1352         }
  1353 
  1354         private transient Set<K> keySet = null;
  1355         private transient Set<Map.Entry<K,V>> entrySet = null;
  1356         private transient Collection<V> values = null;
  1357 
  1358         public Set<K> keySet() {
  1359             if (keySet==null)
  1360                 keySet = unmodifiableSet(m.keySet());
  1361             return keySet;
  1362         }
  1363 
  1364         public Set<Map.Entry<K,V>> entrySet() {
  1365             if (entrySet==null)
  1366                 entrySet = new UnmodifiableEntrySet<>(m.entrySet());
  1367             return entrySet;
  1368         }
  1369 
  1370         public Collection<V> values() {
  1371             if (values==null)
  1372                 values = unmodifiableCollection(m.values());
  1373             return values;
  1374         }
  1375 
  1376         public boolean equals(Object o) {return o == this || m.equals(o);}
  1377         public int hashCode()           {return m.hashCode();}
  1378         public String toString()        {return m.toString();}
  1379 
  1380         /**
  1381          * We need this class in addition to UnmodifiableSet as
  1382          * Map.Entries themselves permit modification of the backing Map
  1383          * via their setValue operation.  This class is subtle: there are
  1384          * many possible attacks that must be thwarted.
  1385          *
  1386          * @serial include
  1387          */
  1388         static class UnmodifiableEntrySet<K,V>
  1389             extends UnmodifiableSet<Map.Entry<K,V>> {
  1390             private static final long serialVersionUID = 7854390611657943733L;
  1391 
  1392             UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
  1393                 super((Set)s);
  1394             }
  1395             public Iterator<Map.Entry<K,V>> iterator() {
  1396                 return new Iterator<Map.Entry<K,V>>() {
  1397                     private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
  1398 
  1399                     public boolean hasNext() {
  1400                         return i.hasNext();
  1401                     }
  1402                     public Map.Entry<K,V> next() {
  1403                         return new UnmodifiableEntry<>(i.next());
  1404                     }
  1405                     public void remove() {
  1406                         throw new UnsupportedOperationException();
  1407                     }
  1408                 };
  1409             }
  1410 
  1411             public Object[] toArray() {
  1412                 Object[] a = c.toArray();
  1413                 for (int i=0; i<a.length; i++)
  1414                     a[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)a[i]);
  1415                 return a;
  1416             }
  1417 
  1418             public <T> T[] toArray(T[] a) {
  1419                 // We don't pass a to c.toArray, to avoid window of
  1420                 // vulnerability wherein an unscrupulous multithreaded client
  1421                 // could get his hands on raw (unwrapped) Entries from c.
  1422                 Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
  1423 
  1424                 for (int i=0; i<arr.length; i++)
  1425                     arr[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)arr[i]);
  1426 
  1427                 if (arr.length > a.length)
  1428                     return (T[])arr;
  1429 
  1430                 System.arraycopy(arr, 0, a, 0, arr.length);
  1431                 if (a.length > arr.length)
  1432                     a[arr.length] = null;
  1433                 return a;
  1434             }
  1435 
  1436             /**
  1437              * This method is overridden to protect the backing set against
  1438              * an object with a nefarious equals function that senses
  1439              * that the equality-candidate is Map.Entry and calls its
  1440              * setValue method.
  1441              */
  1442             public boolean contains(Object o) {
  1443                 if (!(o instanceof Map.Entry))
  1444                     return false;
  1445                 return c.contains(
  1446                     new UnmodifiableEntry<>((Map.Entry<?,?>) o));
  1447             }
  1448 
  1449             /**
  1450              * The next two methods are overridden to protect against
  1451              * an unscrupulous List whose contains(Object o) method senses
  1452              * when o is a Map.Entry, and calls o.setValue.
  1453              */
  1454             public boolean containsAll(Collection<?> coll) {
  1455                 for (Object e : coll) {
  1456                     if (!contains(e)) // Invokes safe contains() above
  1457                         return false;
  1458                 }
  1459                 return true;
  1460             }
  1461             public boolean equals(Object o) {
  1462                 if (o == this)
  1463                     return true;
  1464 
  1465                 if (!(o instanceof Set))
  1466                     return false;
  1467                 Set s = (Set) o;
  1468                 if (s.size() != c.size())
  1469                     return false;
  1470                 return containsAll(s); // Invokes safe containsAll() above
  1471             }
  1472 
  1473             /**
  1474              * This "wrapper class" serves two purposes: it prevents
  1475              * the client from modifying the backing Map, by short-circuiting
  1476              * the setValue method, and it protects the backing Map against
  1477              * an ill-behaved Map.Entry that attempts to modify another
  1478              * Map Entry when asked to perform an equality check.
  1479              */
  1480             private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
  1481                 private Map.Entry<? extends K, ? extends V> e;
  1482 
  1483                 UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
  1484 
  1485                 public K getKey()        {return e.getKey();}
  1486                 public V getValue()      {return e.getValue();}
  1487                 public V setValue(V value) {
  1488                     throw new UnsupportedOperationException();
  1489                 }
  1490                 public int hashCode()    {return e.hashCode();}
  1491                 public boolean equals(Object o) {
  1492                     if (!(o instanceof Map.Entry))
  1493                         return false;
  1494                     Map.Entry t = (Map.Entry)o;
  1495                     return eq(e.getKey(),   t.getKey()) &&
  1496                            eq(e.getValue(), t.getValue());
  1497                 }
  1498                 public String toString() {return e.toString();}
  1499             }
  1500         }
  1501     }
  1502 
  1503     /**
  1504      * Returns an unmodifiable view of the specified sorted map.  This method
  1505      * allows modules to provide users with "read-only" access to internal
  1506      * sorted maps.  Query operations on the returned sorted map "read through"
  1507      * to the specified sorted map.  Attempts to modify the returned
  1508      * sorted map, whether direct, via its collection views, or via its
  1509      * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
  1510      * an <tt>UnsupportedOperationException</tt>.<p>
  1511      *
  1512      * The returned sorted map will be serializable if the specified sorted map
  1513      * is serializable.
  1514      *
  1515      * @param m the sorted map for which an unmodifiable view is to be
  1516      *        returned.
  1517      * @return an unmodifiable view of the specified sorted map.
  1518      */
  1519     public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
  1520         return new UnmodifiableSortedMap<>(m);
  1521     }
  1522 
  1523     /**
  1524      * @serial include
  1525      */
  1526     static class UnmodifiableSortedMap<K,V>
  1527           extends UnmodifiableMap<K,V>
  1528           implements SortedMap<K,V>, Serializable {
  1529         private static final long serialVersionUID = -8806743815996713206L;
  1530 
  1531         private final SortedMap<K, ? extends V> sm;
  1532 
  1533         UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
  1534 
  1535         public Comparator<? super K> comparator() {return sm.comparator();}
  1536 
  1537         public SortedMap<K,V> subMap(K fromKey, K toKey) {
  1538             return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey));
  1539         }
  1540         public SortedMap<K,V> headMap(K toKey) {
  1541             return new UnmodifiableSortedMap<>(sm.headMap(toKey));
  1542         }
  1543         public SortedMap<K,V> tailMap(K fromKey) {
  1544             return new UnmodifiableSortedMap<>(sm.tailMap(fromKey));
  1545         }
  1546 
  1547         public K firstKey()           {return sm.firstKey();}
  1548         public K lastKey()            {return sm.lastKey();}
  1549     }
  1550 
  1551 
  1552     // Synch Wrappers
  1553 
  1554     /**
  1555      * Returns a synchronized (thread-safe) collection backed by the specified
  1556      * collection.  In order to guarantee serial access, it is critical that
  1557      * <strong>all</strong> access to the backing collection is accomplished
  1558      * through the returned collection.<p>
  1559      *
  1560      * It is imperative that the user manually synchronize on the returned
  1561      * collection when iterating over it:
  1562      * <pre>
  1563      *  Collection c = Collections.synchronizedCollection(myCollection);
  1564      *     ...
  1565      *  synchronized (c) {
  1566      *      Iterator i = c.iterator(); // Must be in the synchronized block
  1567      *      while (i.hasNext())
  1568      *         foo(i.next());
  1569      *  }
  1570      * </pre>
  1571      * Failure to follow this advice may result in non-deterministic behavior.
  1572      *
  1573      * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
  1574      * and <tt>equals</tt> operations through to the backing collection, but
  1575      * relies on <tt>Object</tt>'s equals and hashCode methods.  This is
  1576      * necessary to preserve the contracts of these operations in the case
  1577      * that the backing collection is a set or a list.<p>
  1578      *
  1579      * The returned collection will be serializable if the specified collection
  1580      * is serializable.
  1581      *
  1582      * @param  c the collection to be "wrapped" in a synchronized collection.
  1583      * @return a synchronized view of the specified collection.
  1584      */
  1585     public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
  1586         return new SynchronizedCollection<>(c);
  1587     }
  1588 
  1589     static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
  1590         return new SynchronizedCollection<>(c, mutex);
  1591     }
  1592 
  1593     /**
  1594      * @serial include
  1595      */
  1596     static class SynchronizedCollection<E> implements Collection<E>, Serializable {
  1597         private static final long serialVersionUID = 3053995032091335093L;
  1598 
  1599         final Collection<E> c;  // Backing Collection
  1600         final Object mutex;     // Object on which to synchronize
  1601 
  1602         SynchronizedCollection(Collection<E> c) {
  1603             if (c==null)
  1604                 throw new NullPointerException();
  1605             this.c = c;
  1606             mutex = this;
  1607         }
  1608         SynchronizedCollection(Collection<E> c, Object mutex) {
  1609             this.c = c;
  1610             this.mutex = mutex;
  1611         }
  1612 
  1613         public int size() {
  1614             synchronized (mutex) {return c.size();}
  1615         }
  1616         public boolean isEmpty() {
  1617             synchronized (mutex) {return c.isEmpty();}
  1618         }
  1619         public boolean contains(Object o) {
  1620             synchronized (mutex) {return c.contains(o);}
  1621         }
  1622         public Object[] toArray() {
  1623             synchronized (mutex) {return c.toArray();}
  1624         }
  1625         public <T> T[] toArray(T[] a) {
  1626             synchronized (mutex) {return c.toArray(a);}
  1627         }
  1628 
  1629         public Iterator<E> iterator() {
  1630             return c.iterator(); // Must be manually synched by user!
  1631         }
  1632 
  1633         public boolean add(E e) {
  1634             synchronized (mutex) {return c.add(e);}
  1635         }
  1636         public boolean remove(Object o) {
  1637             synchronized (mutex) {return c.remove(o);}
  1638         }
  1639 
  1640         public boolean containsAll(Collection<?> coll) {
  1641             synchronized (mutex) {return c.containsAll(coll);}
  1642         }
  1643         public boolean addAll(Collection<? extends E> coll) {
  1644             synchronized (mutex) {return c.addAll(coll);}
  1645         }
  1646         public boolean removeAll(Collection<?> coll) {
  1647             synchronized (mutex) {return c.removeAll(coll);}
  1648         }
  1649         public boolean retainAll(Collection<?> coll) {
  1650             synchronized (mutex) {return c.retainAll(coll);}
  1651         }
  1652         public void clear() {
  1653             synchronized (mutex) {c.clear();}
  1654         }
  1655         public String toString() {
  1656             synchronized (mutex) {return c.toString();}
  1657         }
  1658     }
  1659 
  1660     /**
  1661      * Returns a synchronized (thread-safe) set backed by the specified
  1662      * set.  In order to guarantee serial access, it is critical that
  1663      * <strong>all</strong> access to the backing set is accomplished
  1664      * through the returned set.<p>
  1665      *
  1666      * It is imperative that the user manually synchronize on the returned
  1667      * set when iterating over it:
  1668      * <pre>
  1669      *  Set s = Collections.synchronizedSet(new HashSet());
  1670      *      ...
  1671      *  synchronized (s) {
  1672      *      Iterator i = s.iterator(); // Must be in the synchronized block
  1673      *      while (i.hasNext())
  1674      *          foo(i.next());
  1675      *  }
  1676      * </pre>
  1677      * Failure to follow this advice may result in non-deterministic behavior.
  1678      *
  1679      * <p>The returned set will be serializable if the specified set is
  1680      * serializable.
  1681      *
  1682      * @param  s the set to be "wrapped" in a synchronized set.
  1683      * @return a synchronized view of the specified set.
  1684      */
  1685     public static <T> Set<T> synchronizedSet(Set<T> s) {
  1686         return new SynchronizedSet<>(s);
  1687     }
  1688 
  1689     static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
  1690         return new SynchronizedSet<>(s, mutex);
  1691     }
  1692 
  1693     /**
  1694      * @serial include
  1695      */
  1696     static class SynchronizedSet<E>
  1697           extends SynchronizedCollection<E>
  1698           implements Set<E> {
  1699         private static final long serialVersionUID = 487447009682186044L;
  1700 
  1701         SynchronizedSet(Set<E> s) {
  1702             super(s);
  1703         }
  1704         SynchronizedSet(Set<E> s, Object mutex) {
  1705             super(s, mutex);
  1706         }
  1707 
  1708         public boolean equals(Object o) {
  1709             synchronized (mutex) {return c.equals(o);}
  1710         }
  1711         public int hashCode() {
  1712             synchronized (mutex) {return c.hashCode();}
  1713         }
  1714     }
  1715 
  1716     /**
  1717      * Returns a synchronized (thread-safe) sorted set backed by the specified
  1718      * sorted set.  In order to guarantee serial access, it is critical that
  1719      * <strong>all</strong> access to the backing sorted set is accomplished
  1720      * through the returned sorted set (or its views).<p>
  1721      *
  1722      * It is imperative that the user manually synchronize on the returned
  1723      * sorted set when iterating over it or any of its <tt>subSet</tt>,
  1724      * <tt>headSet</tt>, or <tt>tailSet</tt> views.
  1725      * <pre>
  1726      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
  1727      *      ...
  1728      *  synchronized (s) {
  1729      *      Iterator i = s.iterator(); // Must be in the synchronized block
  1730      *      while (i.hasNext())
  1731      *          foo(i.next());
  1732      *  }
  1733      * </pre>
  1734      * or:
  1735      * <pre>
  1736      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
  1737      *  SortedSet s2 = s.headSet(foo);
  1738      *      ...
  1739      *  synchronized (s) {  // Note: s, not s2!!!
  1740      *      Iterator i = s2.iterator(); // Must be in the synchronized block
  1741      *      while (i.hasNext())
  1742      *          foo(i.next());
  1743      *  }
  1744      * </pre>
  1745      * Failure to follow this advice may result in non-deterministic behavior.
  1746      *
  1747      * <p>The returned sorted set will be serializable if the specified
  1748      * sorted set is serializable.
  1749      *
  1750      * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
  1751      * @return a synchronized view of the specified sorted set.
  1752      */
  1753     public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
  1754         return new SynchronizedSortedSet<>(s);
  1755     }
  1756 
  1757     /**
  1758      * @serial include
  1759      */
  1760     static class SynchronizedSortedSet<E>
  1761         extends SynchronizedSet<E>
  1762         implements SortedSet<E>
  1763     {
  1764         private static final long serialVersionUID = 8695801310862127406L;
  1765 
  1766         private final SortedSet<E> ss;
  1767 
  1768         SynchronizedSortedSet(SortedSet<E> s) {
  1769             super(s);
  1770             ss = s;
  1771         }
  1772         SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
  1773             super(s, mutex);
  1774             ss = s;
  1775         }
  1776 
  1777         public Comparator<? super E> comparator() {
  1778             synchronized (mutex) {return ss.comparator();}
  1779         }
  1780 
  1781         public SortedSet<E> subSet(E fromElement, E toElement) {
  1782             synchronized (mutex) {
  1783                 return new SynchronizedSortedSet<>(
  1784                     ss.subSet(fromElement, toElement), mutex);
  1785             }
  1786         }
  1787         public SortedSet<E> headSet(E toElement) {
  1788             synchronized (mutex) {
  1789                 return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
  1790             }
  1791         }
  1792         public SortedSet<E> tailSet(E fromElement) {
  1793             synchronized (mutex) {
  1794                return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex);
  1795             }
  1796         }
  1797 
  1798         public E first() {
  1799             synchronized (mutex) {return ss.first();}
  1800         }
  1801         public E last() {
  1802             synchronized (mutex) {return ss.last();}
  1803         }
  1804     }
  1805 
  1806     /**
  1807      * Returns a synchronized (thread-safe) list backed by the specified
  1808      * list.  In order to guarantee serial access, it is critical that
  1809      * <strong>all</strong> access to the backing list is accomplished
  1810      * through the returned list.<p>
  1811      *
  1812      * It is imperative that the user manually synchronize on the returned
  1813      * list when iterating over it:
  1814      * <pre>
  1815      *  List list = Collections.synchronizedList(new ArrayList());
  1816      *      ...
  1817      *  synchronized (list) {
  1818      *      Iterator i = list.iterator(); // Must be in synchronized block
  1819      *      while (i.hasNext())
  1820      *          foo(i.next());
  1821      *  }
  1822      * </pre>
  1823      * Failure to follow this advice may result in non-deterministic behavior.
  1824      *
  1825      * <p>The returned list will be serializable if the specified list is
  1826      * serializable.
  1827      *
  1828      * @param  list the list to be "wrapped" in a synchronized list.
  1829      * @return a synchronized view of the specified list.
  1830      */
  1831     public static <T> List<T> synchronizedList(List<T> list) {
  1832         return (list instanceof RandomAccess ?
  1833                 new SynchronizedRandomAccessList<>(list) :
  1834                 new SynchronizedList<>(list));
  1835     }
  1836 
  1837     static <T> List<T> synchronizedList(List<T> list, Object mutex) {
  1838         return (list instanceof RandomAccess ?
  1839                 new SynchronizedRandomAccessList<>(list, mutex) :
  1840                 new SynchronizedList<>(list, mutex));
  1841     }
  1842 
  1843     /**
  1844      * @serial include
  1845      */
  1846     static class SynchronizedList<E>
  1847         extends SynchronizedCollection<E>
  1848         implements List<E> {
  1849         private static final long serialVersionUID = -7754090372962971524L;
  1850 
  1851         final List<E> list;
  1852 
  1853         SynchronizedList(List<E> list) {
  1854             super(list);
  1855             this.list = list;
  1856         }
  1857         SynchronizedList(List<E> list, Object mutex) {
  1858             super(list, mutex);
  1859             this.list = list;
  1860         }
  1861 
  1862         public boolean equals(Object o) {
  1863             synchronized (mutex) {return list.equals(o);}
  1864         }
  1865         public int hashCode() {
  1866             synchronized (mutex) {return list.hashCode();}
  1867         }
  1868 
  1869         public E get(int index) {
  1870             synchronized (mutex) {return list.get(index);}
  1871         }
  1872         public E set(int index, E element) {
  1873             synchronized (mutex) {return list.set(index, element);}
  1874         }
  1875         public void add(int index, E element) {
  1876             synchronized (mutex) {list.add(index, element);}
  1877         }
  1878         public E remove(int index) {
  1879             synchronized (mutex) {return list.remove(index);}
  1880         }
  1881 
  1882         public int indexOf(Object o) {
  1883             synchronized (mutex) {return list.indexOf(o);}
  1884         }
  1885         public int lastIndexOf(Object o) {
  1886             synchronized (mutex) {return list.lastIndexOf(o);}
  1887         }
  1888 
  1889         public boolean addAll(int index, Collection<? extends E> c) {
  1890             synchronized (mutex) {return list.addAll(index, c);}
  1891         }
  1892 
  1893         public ListIterator<E> listIterator() {
  1894             return list.listIterator(); // Must be manually synched by user
  1895         }
  1896 
  1897         public ListIterator<E> listIterator(int index) {
  1898             return list.listIterator(index); // Must be manually synched by user
  1899         }
  1900 
  1901         public List<E> subList(int fromIndex, int toIndex) {
  1902             synchronized (mutex) {
  1903                 return new SynchronizedList<>(list.subList(fromIndex, toIndex),
  1904                                             mutex);
  1905             }
  1906         }
  1907 
  1908         /**
  1909          * SynchronizedRandomAccessList instances are serialized as
  1910          * SynchronizedList instances to allow them to be deserialized
  1911          * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
  1912          * This method inverts the transformation.  As a beneficial
  1913          * side-effect, it also grafts the RandomAccess marker onto
  1914          * SynchronizedList instances that were serialized in pre-1.4 JREs.
  1915          *
  1916          * Note: Unfortunately, SynchronizedRandomAccessList instances
  1917          * serialized in 1.4.1 and deserialized in 1.4 will become
  1918          * SynchronizedList instances, as this method was missing in 1.4.
  1919          */
  1920         private Object readResolve() {
  1921             return (list instanceof RandomAccess
  1922                     ? new SynchronizedRandomAccessList<>(list)
  1923                     : this);
  1924         }
  1925     }
  1926 
  1927     /**
  1928      * @serial include
  1929      */
  1930     static class SynchronizedRandomAccessList<E>
  1931         extends SynchronizedList<E>
  1932         implements RandomAccess {
  1933 
  1934         SynchronizedRandomAccessList(List<E> list) {
  1935             super(list);
  1936         }
  1937 
  1938         SynchronizedRandomAccessList(List<E> list, Object mutex) {
  1939             super(list, mutex);
  1940         }
  1941 
  1942         public List<E> subList(int fromIndex, int toIndex) {
  1943             synchronized (mutex) {
  1944                 return new SynchronizedRandomAccessList<>(
  1945                     list.subList(fromIndex, toIndex), mutex);
  1946             }
  1947         }
  1948 
  1949         private static final long serialVersionUID = 1530674583602358482L;
  1950 
  1951         /**
  1952          * Allows instances to be deserialized in pre-1.4 JREs (which do
  1953          * not have SynchronizedRandomAccessList).  SynchronizedList has
  1954          * a readResolve method that inverts this transformation upon
  1955          * deserialization.
  1956          */
  1957         private Object writeReplace() {
  1958             return new SynchronizedList<>(list);
  1959         }
  1960     }
  1961 
  1962     /**
  1963      * Returns a synchronized (thread-safe) map backed by the specified
  1964      * map.  In order to guarantee serial access, it is critical that
  1965      * <strong>all</strong> access to the backing map is accomplished
  1966      * through the returned map.<p>
  1967      *
  1968      * It is imperative that the user manually synchronize on the returned
  1969      * map when iterating over any of its collection views:
  1970      * <pre>
  1971      *  Map m = Collections.synchronizedMap(new HashMap());
  1972      *      ...
  1973      *  Set s = m.keySet();  // Needn't be in synchronized block
  1974      *      ...
  1975      *  synchronized (m) {  // Synchronizing on m, not s!
  1976      *      Iterator i = s.iterator(); // Must be in synchronized block
  1977      *      while (i.hasNext())
  1978      *          foo(i.next());
  1979      *  }
  1980      * </pre>
  1981      * Failure to follow this advice may result in non-deterministic behavior.
  1982      *
  1983      * <p>The returned map will be serializable if the specified map is
  1984      * serializable.
  1985      *
  1986      * @param  m the map to be "wrapped" in a synchronized map.
  1987      * @return a synchronized view of the specified map.
  1988      */
  1989     public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
  1990         return new SynchronizedMap<>(m);
  1991     }
  1992 
  1993     /**
  1994      * @serial include
  1995      */
  1996     private static class SynchronizedMap<K,V>
  1997         implements Map<K,V>, Serializable {
  1998         private static final long serialVersionUID = 1978198479659022715L;
  1999 
  2000         private final Map<K,V> m;     // Backing Map
  2001         final Object      mutex;        // Object on which to synchronize
  2002 
  2003         SynchronizedMap(Map<K,V> m) {
  2004             if (m==null)
  2005                 throw new NullPointerException();
  2006             this.m = m;
  2007             mutex = this;
  2008         }
  2009 
  2010         SynchronizedMap(Map<K,V> m, Object mutex) {
  2011             this.m = m;
  2012             this.mutex = mutex;
  2013         }
  2014 
  2015         public int size() {
  2016             synchronized (mutex) {return m.size();}
  2017         }
  2018         public boolean isEmpty() {
  2019             synchronized (mutex) {return m.isEmpty();}
  2020         }
  2021         public boolean containsKey(Object key) {
  2022             synchronized (mutex) {return m.containsKey(key);}
  2023         }
  2024         public boolean containsValue(Object value) {
  2025             synchronized (mutex) {return m.containsValue(value);}
  2026         }
  2027         public V get(Object key) {
  2028             synchronized (mutex) {return m.get(key);}
  2029         }
  2030 
  2031         public V put(K key, V value) {
  2032             synchronized (mutex) {return m.put(key, value);}
  2033         }
  2034         public V remove(Object key) {
  2035             synchronized (mutex) {return m.remove(key);}
  2036         }
  2037         public void putAll(Map<? extends K, ? extends V> map) {
  2038             synchronized (mutex) {m.putAll(map);}
  2039         }
  2040         public void clear() {
  2041             synchronized (mutex) {m.clear();}
  2042         }
  2043 
  2044         private transient Set<K> keySet = null;
  2045         private transient Set<Map.Entry<K,V>> entrySet = null;
  2046         private transient Collection<V> values = null;
  2047 
  2048         public Set<K> keySet() {
  2049             synchronized (mutex) {
  2050                 if (keySet==null)
  2051                     keySet = new SynchronizedSet<>(m.keySet(), mutex);
  2052                 return keySet;
  2053             }
  2054         }
  2055 
  2056         public Set<Map.Entry<K,V>> entrySet() {
  2057             synchronized (mutex) {
  2058                 if (entrySet==null)
  2059                     entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
  2060                 return entrySet;
  2061             }
  2062         }
  2063 
  2064         public Collection<V> values() {
  2065             synchronized (mutex) {
  2066                 if (values==null)
  2067                     values = new SynchronizedCollection<>(m.values(), mutex);
  2068                 return values;
  2069             }
  2070         }
  2071 
  2072         public boolean equals(Object o) {
  2073             synchronized (mutex) {return m.equals(o);}
  2074         }
  2075         public int hashCode() {
  2076             synchronized (mutex) {return m.hashCode();}
  2077         }
  2078         public String toString() {
  2079             synchronized (mutex) {return m.toString();}
  2080         }
  2081     }
  2082 
  2083     /**
  2084      * Returns a synchronized (thread-safe) sorted map backed by the specified
  2085      * sorted map.  In order to guarantee serial access, it is critical that
  2086      * <strong>all</strong> access to the backing sorted map is accomplished
  2087      * through the returned sorted map (or its views).<p>
  2088      *
  2089      * It is imperative that the user manually synchronize on the returned
  2090      * sorted map when iterating over any of its collection views, or the
  2091      * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
  2092      * <tt>tailMap</tt> views.
  2093      * <pre>
  2094      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
  2095      *      ...
  2096      *  Set s = m.keySet();  // Needn't be in synchronized block
  2097      *      ...
  2098      *  synchronized (m) {  // Synchronizing on m, not s!
  2099      *      Iterator i = s.iterator(); // Must be in synchronized block
  2100      *      while (i.hasNext())
  2101      *          foo(i.next());
  2102      *  }
  2103      * </pre>
  2104      * or:
  2105      * <pre>
  2106      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
  2107      *  SortedMap m2 = m.subMap(foo, bar);
  2108      *      ...
  2109      *  Set s2 = m2.keySet();  // Needn't be in synchronized block
  2110      *      ...
  2111      *  synchronized (m) {  // Synchronizing on m, not m2 or s2!
  2112      *      Iterator i = s.iterator(); // Must be in synchronized block
  2113      *      while (i.hasNext())
  2114      *          foo(i.next());
  2115      *  }
  2116      * </pre>
  2117      * Failure to follow this advice may result in non-deterministic behavior.
  2118      *
  2119      * <p>The returned sorted map will be serializable if the specified
  2120      * sorted map is serializable.
  2121      *
  2122      * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
  2123      * @return a synchronized view of the specified sorted map.
  2124      */
  2125     public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
  2126         return new SynchronizedSortedMap<>(m);
  2127     }
  2128 
  2129 
  2130     /**
  2131      * @serial include
  2132      */
  2133     static class SynchronizedSortedMap<K,V>
  2134         extends SynchronizedMap<K,V>
  2135         implements SortedMap<K,V>
  2136     {
  2137         private static final long serialVersionUID = -8798146769416483793L;
  2138 
  2139         private final SortedMap<K,V> sm;
  2140 
  2141         SynchronizedSortedMap(SortedMap<K,V> m) {
  2142             super(m);
  2143             sm = m;
  2144         }
  2145         SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
  2146             super(m, mutex);
  2147             sm = m;
  2148         }
  2149 
  2150         public Comparator<? super K> comparator() {
  2151             synchronized (mutex) {return sm.comparator();}
  2152         }
  2153 
  2154         public SortedMap<K,V> subMap(K fromKey, K toKey) {
  2155             synchronized (mutex) {
  2156                 return new SynchronizedSortedMap<>(
  2157                     sm.subMap(fromKey, toKey), mutex);
  2158             }
  2159         }
  2160         public SortedMap<K,V> headMap(K toKey) {
  2161             synchronized (mutex) {
  2162                 return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
  2163             }
  2164         }
  2165         public SortedMap<K,V> tailMap(K fromKey) {
  2166             synchronized (mutex) {
  2167                return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex);
  2168             }
  2169         }
  2170 
  2171         public K firstKey() {
  2172             synchronized (mutex) {return sm.firstKey();}
  2173         }
  2174         public K lastKey() {
  2175             synchronized (mutex) {return sm.lastKey();}
  2176         }
  2177     }
  2178 
  2179     // Dynamically typesafe collection wrappers
  2180 
  2181     /**
  2182      * Returns a dynamically typesafe view of the specified collection.
  2183      * Any attempt to insert an element of the wrong type will result in an
  2184      * immediate {@link ClassCastException}.  Assuming a collection
  2185      * contains no incorrectly typed elements prior to the time a
  2186      * dynamically typesafe view is generated, and that all subsequent
  2187      * access to the collection takes place through the view, it is
  2188      * <i>guaranteed</i> that the collection cannot contain an incorrectly
  2189      * typed element.
  2190      *
  2191      * <p>The generics mechanism in the language provides compile-time
  2192      * (static) type checking, but it is possible to defeat this mechanism
  2193      * with unchecked casts.  Usually this is not a problem, as the compiler
  2194      * issues warnings on all such unchecked operations.  There are, however,
  2195      * times when static type checking alone is not sufficient.  For example,
  2196      * suppose a collection is passed to a third-party library and it is
  2197      * imperative that the library code not corrupt the collection by
  2198      * inserting an element of the wrong type.
  2199      *
  2200      * <p>Another use of dynamically typesafe views is debugging.  Suppose a
  2201      * program fails with a {@code ClassCastException}, indicating that an
  2202      * incorrectly typed element was put into a parameterized collection.
  2203      * Unfortunately, the exception can occur at any time after the erroneous
  2204      * element is inserted, so it typically provides little or no information
  2205      * as to the real source of the problem.  If the problem is reproducible,
  2206      * one can quickly determine its source by temporarily modifying the
  2207      * program to wrap the collection with a dynamically typesafe view.
  2208      * For example, this declaration:
  2209      *  <pre> {@code
  2210      *     Collection<String> c = new HashSet<String>();
  2211      * }</pre>
  2212      * may be replaced temporarily by this one:
  2213      *  <pre> {@code
  2214      *     Collection<String> c = Collections.checkedCollection(
  2215      *         new HashSet<String>(), String.class);
  2216      * }</pre>
  2217      * Running the program again will cause it to fail at the point where
  2218      * an incorrectly typed element is inserted into the collection, clearly
  2219      * identifying the source of the problem.  Once the problem is fixed, the
  2220      * modified declaration may be reverted back to the original.
  2221      *
  2222      * <p>The returned collection does <i>not</i> pass the hashCode and equals
  2223      * operations through to the backing collection, but relies on
  2224      * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
  2225      * is necessary to preserve the contracts of these operations in the case
  2226      * that the backing collection is a set or a list.
  2227      *
  2228      * <p>The returned collection will be serializable if the specified
  2229      * collection is serializable.
  2230      *
  2231      * <p>Since {@code null} is considered to be a value of any reference
  2232      * type, the returned collection permits insertion of null elements
  2233      * whenever the backing collection does.
  2234      *
  2235      * @param c the collection for which a dynamically typesafe view is to be
  2236      *          returned
  2237      * @param type the type of element that {@code c} is permitted to hold
  2238      * @return a dynamically typesafe view of the specified collection
  2239      * @since 1.5
  2240      */
  2241     public static <E> Collection<E> checkedCollection(Collection<E> c,
  2242                                                       Class<E> type) {
  2243         return new CheckedCollection<>(c, type);
  2244     }
  2245 
  2246     @SuppressWarnings("unchecked")
  2247     static <T> T[] zeroLengthArray(Class<T> type) {
  2248         return (T[]) Array.newInstance(type, 0);
  2249     }
  2250 
  2251     /**
  2252      * @serial include
  2253      */
  2254     static class CheckedCollection<E> implements Collection<E>, Serializable {
  2255         private static final long serialVersionUID = 1578914078182001775L;
  2256 
  2257         final Collection<E> c;
  2258         final Class<E> type;
  2259 
  2260         void typeCheck(Object o) {
  2261             if (o != null && !type.isInstance(o))
  2262                 throw new ClassCastException(badElementMsg(o));
  2263         }
  2264 
  2265         private String badElementMsg(Object o) {
  2266             return "Attempt to insert " + o.getClass() +
  2267                 " element into collection with element type " + type;
  2268         }
  2269 
  2270         CheckedCollection(Collection<E> c, Class<E> type) {
  2271             if (c==null || type == null)
  2272                 throw new NullPointerException();
  2273             this.c = c;
  2274             this.type = type;
  2275         }
  2276 
  2277         public int size()                 { return c.size(); }
  2278         public boolean isEmpty()          { return c.isEmpty(); }
  2279         public boolean contains(Object o) { return c.contains(o); }
  2280         public Object[] toArray()         { return c.toArray(); }
  2281         public <T> T[] toArray(T[] a)     { return c.toArray(a); }
  2282         public String toString()          { return c.toString(); }
  2283         public boolean remove(Object o)   { return c.remove(o); }
  2284         public void clear()               {        c.clear(); }
  2285 
  2286         public boolean containsAll(Collection<?> coll) {
  2287             return c.containsAll(coll);
  2288         }
  2289         public boolean removeAll(Collection<?> coll) {
  2290             return c.removeAll(coll);
  2291         }
  2292         public boolean retainAll(Collection<?> coll) {
  2293             return c.retainAll(coll);
  2294         }
  2295 
  2296         public Iterator<E> iterator() {
  2297             final Iterator<E> it = c.iterator();
  2298             return new Iterator<E>() {
  2299                 public boolean hasNext() { return it.hasNext(); }
  2300                 public E next()          { return it.next(); }
  2301                 public void remove()     {        it.remove(); }};
  2302         }
  2303 
  2304         public boolean add(E e) {
  2305             typeCheck(e);
  2306             return c.add(e);
  2307         }
  2308 
  2309         private E[] zeroLengthElementArray = null; // Lazily initialized
  2310 
  2311         private E[] zeroLengthElementArray() {
  2312             return zeroLengthElementArray != null ? zeroLengthElementArray :
  2313                 (zeroLengthElementArray = zeroLengthArray(type));
  2314         }
  2315 
  2316         @SuppressWarnings("unchecked")
  2317         Collection<E> checkedCopyOf(Collection<? extends E> coll) {
  2318             Object[] a = null;
  2319             try {
  2320                 E[] z = zeroLengthElementArray();
  2321                 a = coll.toArray(z);
  2322                 // Defend against coll violating the toArray contract
  2323                 if (a.getClass() != z.getClass())
  2324                     a = Arrays.copyOf(a, a.length, z.getClass());
  2325             } catch (ArrayStoreException ignore) {
  2326                 // To get better and consistent diagnostics,
  2327                 // we call typeCheck explicitly on each element.
  2328                 // We call clone() to defend against coll retaining a
  2329                 // reference to the returned array and storing a bad
  2330                 // element into it after it has been type checked.
  2331                 a = coll.toArray().clone();
  2332                 for (Object o : a)
  2333                     typeCheck(o);
  2334             }
  2335             // A slight abuse of the type system, but safe here.
  2336             return (Collection<E>) Arrays.asList(a);
  2337         }
  2338 
  2339         public boolean addAll(Collection<? extends E> coll) {
  2340             // Doing things this way insulates us from concurrent changes
  2341             // in the contents of coll and provides all-or-nothing
  2342             // semantics (which we wouldn't get if we type-checked each
  2343             // element as we added it)
  2344             return c.addAll(checkedCopyOf(coll));
  2345         }
  2346     }
  2347 
  2348     /**
  2349      * Returns a dynamically typesafe view of the specified set.
  2350      * Any attempt to insert an element of the wrong type will result in
  2351      * an immediate {@link ClassCastException}.  Assuming a set contains
  2352      * no incorrectly typed elements prior to the time a dynamically typesafe
  2353      * view is generated, and that all subsequent access to the set
  2354      * takes place through the view, it is <i>guaranteed</i> that the
  2355      * set cannot contain an incorrectly typed element.
  2356      *
  2357      * <p>A discussion of the use of dynamically typesafe views may be
  2358      * found in the documentation for the {@link #checkedCollection
  2359      * checkedCollection} method.
  2360      *
  2361      * <p>The returned set will be serializable if the specified set is
  2362      * serializable.
  2363      *
  2364      * <p>Since {@code null} is considered to be a value of any reference
  2365      * type, the returned set permits insertion of null elements whenever
  2366      * the backing set does.
  2367      *
  2368      * @param s the set for which a dynamically typesafe view is to be
  2369      *          returned
  2370      * @param type the type of element that {@code s} is permitted to hold
  2371      * @return a dynamically typesafe view of the specified set
  2372      * @since 1.5
  2373      */
  2374     public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
  2375         return new CheckedSet<>(s, type);
  2376     }
  2377 
  2378     /**
  2379      * @serial include
  2380      */
  2381     static class CheckedSet<E> extends CheckedCollection<E>
  2382                                  implements Set<E>, Serializable
  2383     {
  2384         private static final long serialVersionUID = 4694047833775013803L;
  2385 
  2386         CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
  2387 
  2388         public boolean equals(Object o) { return o == this || c.equals(o); }
  2389         public int hashCode()           { return c.hashCode(); }
  2390     }
  2391 
  2392     /**
  2393      * Returns a dynamically typesafe view of the specified sorted set.
  2394      * Any attempt to insert an element of the wrong type will result in an
  2395      * immediate {@link ClassCastException}.  Assuming a sorted set
  2396      * contains no incorrectly typed elements prior to the time a
  2397      * dynamically typesafe view is generated, and that all subsequent
  2398      * access to the sorted set takes place through the view, it is
  2399      * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
  2400      * typed element.
  2401      *
  2402      * <p>A discussion of the use of dynamically typesafe views may be
  2403      * found in the documentation for the {@link #checkedCollection
  2404      * checkedCollection} method.
  2405      *
  2406      * <p>The returned sorted set will be serializable if the specified sorted
  2407      * set is serializable.
  2408      *
  2409      * <p>Since {@code null} is considered to be a value of any reference
  2410      * type, the returned sorted set permits insertion of null elements
  2411      * whenever the backing sorted set does.
  2412      *
  2413      * @param s the sorted set for which a dynamically typesafe view is to be
  2414      *          returned
  2415      * @param type the type of element that {@code s} is permitted to hold
  2416      * @return a dynamically typesafe view of the specified sorted set
  2417      * @since 1.5
  2418      */
  2419     public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
  2420                                                     Class<E> type) {
  2421         return new CheckedSortedSet<>(s, type);
  2422     }
  2423 
  2424     /**
  2425      * @serial include
  2426      */
  2427     static class CheckedSortedSet<E> extends CheckedSet<E>
  2428         implements SortedSet<E>, Serializable
  2429     {
  2430         private static final long serialVersionUID = 1599911165492914959L;
  2431         private final SortedSet<E> ss;
  2432 
  2433         CheckedSortedSet(SortedSet<E> s, Class<E> type) {
  2434             super(s, type);
  2435             ss = s;
  2436         }
  2437 
  2438         public Comparator<? super E> comparator() { return ss.comparator(); }
  2439         public E first()                   { return ss.first(); }
  2440         public E last()                    { return ss.last(); }
  2441 
  2442         public SortedSet<E> subSet(E fromElement, E toElement) {
  2443             return checkedSortedSet(ss.subSet(fromElement,toElement), type);
  2444         }
  2445         public SortedSet<E> headSet(E toElement) {
  2446             return checkedSortedSet(ss.headSet(toElement), type);
  2447         }
  2448         public SortedSet<E> tailSet(E fromElement) {
  2449             return checkedSortedSet(ss.tailSet(fromElement), type);
  2450         }
  2451     }
  2452 
  2453     /**
  2454      * Returns a dynamically typesafe view of the specified list.
  2455      * Any attempt to insert an element of the wrong type will result in
  2456      * an immediate {@link ClassCastException}.  Assuming a list contains
  2457      * no incorrectly typed elements prior to the time a dynamically typesafe
  2458      * view is generated, and that all subsequent access to the list
  2459      * takes place through the view, it is <i>guaranteed</i> that the
  2460      * list cannot contain an incorrectly typed element.
  2461      *
  2462      * <p>A discussion of the use of dynamically typesafe views may be
  2463      * found in the documentation for the {@link #checkedCollection
  2464      * checkedCollection} method.
  2465      *
  2466      * <p>The returned list will be serializable if the specified list
  2467      * is serializable.
  2468      *
  2469      * <p>Since {@code null} is considered to be a value of any reference
  2470      * type, the returned list permits insertion of null elements whenever
  2471      * the backing list does.
  2472      *
  2473      * @param list the list for which a dynamically typesafe view is to be
  2474      *             returned
  2475      * @param type the type of element that {@code list} is permitted to hold
  2476      * @return a dynamically typesafe view of the specified list
  2477      * @since 1.5
  2478      */
  2479     public static <E> List<E> checkedList(List<E> list, Class<E> type) {
  2480         return (list instanceof RandomAccess ?
  2481                 new CheckedRandomAccessList<>(list, type) :
  2482                 new CheckedList<>(list, type));
  2483     }
  2484 
  2485     /**
  2486      * @serial include
  2487      */
  2488     static class CheckedList<E>
  2489         extends CheckedCollection<E>
  2490         implements List<E>
  2491     {
  2492         private static final long serialVersionUID = 65247728283967356L;
  2493         final List<E> list;
  2494 
  2495         CheckedList(List<E> list, Class<E> type) {
  2496             super(list, type);
  2497             this.list = list;
  2498         }
  2499 
  2500         public boolean equals(Object o)  { return o == this || list.equals(o); }
  2501         public int hashCode()            { return list.hashCode(); }
  2502         public E get(int index)          { return list.get(index); }
  2503         public E remove(int index)       { return list.remove(index); }
  2504         public int indexOf(Object o)     { return list.indexOf(o); }
  2505         public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
  2506 
  2507         public E set(int index, E element) {
  2508             typeCheck(element);
  2509             return list.set(index, element);
  2510         }
  2511 
  2512         public void add(int index, E element) {
  2513             typeCheck(element);
  2514             list.add(index, element);
  2515         }
  2516 
  2517         public boolean addAll(int index, Collection<? extends E> c) {
  2518             return list.addAll(index, checkedCopyOf(c));
  2519         }
  2520         public ListIterator<E> listIterator()   { return listIterator(0); }
  2521 
  2522         public ListIterator<E> listIterator(final int index) {
  2523             final ListIterator<E> i = list.listIterator(index);
  2524 
  2525             return new ListIterator<E>() {
  2526                 public boolean hasNext()     { return i.hasNext(); }
  2527                 public E next()              { return i.next(); }
  2528                 public boolean hasPrevious() { return i.hasPrevious(); }
  2529                 public E previous()          { return i.previous(); }
  2530                 public int nextIndex()       { return i.nextIndex(); }
  2531                 public int previousIndex()   { return i.previousIndex(); }
  2532                 public void remove()         {        i.remove(); }
  2533 
  2534                 public void set(E e) {
  2535                     typeCheck(e);
  2536                     i.set(e);
  2537                 }
  2538 
  2539                 public void add(E e) {
  2540                     typeCheck(e);
  2541                     i.add(e);
  2542                 }
  2543             };
  2544         }
  2545 
  2546         public List<E> subList(int fromIndex, int toIndex) {
  2547             return new CheckedList<>(list.subList(fromIndex, toIndex), type);
  2548         }
  2549     }
  2550 
  2551     /**
  2552      * @serial include
  2553      */
  2554     static class CheckedRandomAccessList<E> extends CheckedList<E>
  2555                                             implements RandomAccess
  2556     {
  2557         private static final long serialVersionUID = 1638200125423088369L;
  2558 
  2559         CheckedRandomAccessList(List<E> list, Class<E> type) {
  2560             super(list, type);
  2561         }
  2562 
  2563         public List<E> subList(int fromIndex, int toIndex) {
  2564             return new CheckedRandomAccessList<>(
  2565                 list.subList(fromIndex, toIndex), type);
  2566         }
  2567     }
  2568 
  2569     /**
  2570      * Returns a dynamically typesafe view of the specified map.
  2571      * Any attempt to insert a mapping whose key or value have the wrong
  2572      * type will result in an immediate {@link ClassCastException}.
  2573      * Similarly, any attempt to modify the value currently associated with
  2574      * a key will result in an immediate {@link ClassCastException},
  2575      * whether the modification is attempted directly through the map
  2576      * itself, or through a {@link Map.Entry} instance obtained from the
  2577      * map's {@link Map#entrySet() entry set} view.
  2578      *
  2579      * <p>Assuming a map contains no incorrectly typed keys or values
  2580      * prior to the time a dynamically typesafe view is generated, and
  2581      * that all subsequent access to the map takes place through the view
  2582      * (or one of its collection views), it is <i>guaranteed</i> that the
  2583      * map cannot contain an incorrectly typed key or value.
  2584      *
  2585      * <p>A discussion of the use of dynamically typesafe views may be
  2586      * found in the documentation for the {@link #checkedCollection
  2587      * checkedCollection} method.
  2588      *
  2589      * <p>The returned map will be serializable if the specified map is
  2590      * serializable.
  2591      *
  2592      * <p>Since {@code null} is considered to be a value of any reference
  2593      * type, the returned map permits insertion of null keys or values
  2594      * whenever the backing map does.
  2595      *
  2596      * @param m the map for which a dynamically typesafe view is to be
  2597      *          returned
  2598      * @param keyType the type of key that {@code m} is permitted to hold
  2599      * @param valueType the type of value that {@code m} is permitted to hold
  2600      * @return a dynamically typesafe view of the specified map
  2601      * @since 1.5
  2602      */
  2603     public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
  2604                                               Class<K> keyType,
  2605                                               Class<V> valueType) {
  2606         return new CheckedMap<>(m, keyType, valueType);
  2607     }
  2608 
  2609 
  2610     /**
  2611      * @serial include
  2612      */
  2613     private static class CheckedMap<K,V>
  2614         implements Map<K,V>, Serializable
  2615     {
  2616         private static final long serialVersionUID = 5742860141034234728L;
  2617 
  2618         private final Map<K, V> m;
  2619         final Class<K> keyType;
  2620         final Class<V> valueType;
  2621 
  2622         private void typeCheck(Object key, Object value) {
  2623             if (key != null && !keyType.isInstance(key))
  2624                 throw new ClassCastException(badKeyMsg(key));
  2625 
  2626             if (value != null && !valueType.isInstance(value))
  2627                 throw new ClassCastException(badValueMsg(value));
  2628         }
  2629 
  2630         private String badKeyMsg(Object key) {
  2631             return "Attempt to insert " + key.getClass() +
  2632                 " key into map with key type " + keyType;
  2633         }
  2634 
  2635         private String badValueMsg(Object value) {
  2636             return "Attempt to insert " + value.getClass() +
  2637                 " value into map with value type " + valueType;
  2638         }
  2639 
  2640         CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
  2641             if (m == null || keyType == null || valueType == null)
  2642                 throw new NullPointerException();
  2643             this.m = m;
  2644             this.keyType = keyType;
  2645             this.valueType = valueType;
  2646         }
  2647 
  2648         public int size()                      { return m.size(); }
  2649         public boolean isEmpty()               { return m.isEmpty(); }
  2650         public boolean containsKey(Object key) { return m.containsKey(key); }
  2651         public boolean containsValue(Object v) { return m.containsValue(v); }
  2652         public V get(Object key)               { return m.get(key); }
  2653         public V remove(Object key)            { return m.remove(key); }
  2654         public void clear()                    { m.clear(); }
  2655         public Set<K> keySet()                 { return m.keySet(); }
  2656         public Collection<V> values()          { return m.values(); }
  2657         public boolean equals(Object o)        { return o == this || m.equals(o); }
  2658         public int hashCode()                  { return m.hashCode(); }
  2659         public String toString()               { return m.toString(); }
  2660 
  2661         public V put(K key, V value) {
  2662             typeCheck(key, value);
  2663             return m.put(key, value);
  2664         }
  2665 
  2666         @SuppressWarnings("unchecked")
  2667         public void putAll(Map<? extends K, ? extends V> t) {
  2668             // Satisfy the following goals:
  2669             // - good diagnostics in case of type mismatch
  2670             // - all-or-nothing semantics
  2671             // - protection from malicious t
  2672             // - correct behavior if t is a concurrent map
  2673             Object[] entries = t.entrySet().toArray();
  2674             List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
  2675             for (Object o : entries) {
  2676                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
  2677                 Object k = e.getKey();
  2678                 Object v = e.getValue();
  2679                 typeCheck(k, v);
  2680                 checked.add(
  2681                     new AbstractMap.SimpleImmutableEntry<>((K) k, (V) v));
  2682             }
  2683             for (Map.Entry<K,V> e : checked)
  2684                 m.put(e.getKey(), e.getValue());
  2685         }
  2686 
  2687         private transient Set<Map.Entry<K,V>> entrySet = null;
  2688 
  2689         public Set<Map.Entry<K,V>> entrySet() {
  2690             if (entrySet==null)
  2691                 entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);
  2692             return entrySet;
  2693         }
  2694 
  2695         /**
  2696          * We need this class in addition to CheckedSet as Map.Entry permits
  2697          * modification of the backing Map via the setValue operation.  This
  2698          * class is subtle: there are many possible attacks that must be
  2699          * thwarted.
  2700          *
  2701          * @serial exclude
  2702          */
  2703         static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
  2704             private final Set<Map.Entry<K,V>> s;
  2705             private final Class<V> valueType;
  2706 
  2707             CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
  2708                 this.s = s;
  2709                 this.valueType = valueType;
  2710             }
  2711 
  2712             public int size()        { return s.size(); }
  2713             public boolean isEmpty() { return s.isEmpty(); }
  2714             public String toString() { return s.toString(); }
  2715             public int hashCode()    { return s.hashCode(); }
  2716             public void clear()      {        s.clear(); }
  2717 
  2718             public boolean add(Map.Entry<K, V> e) {
  2719                 throw new UnsupportedOperationException();
  2720             }
  2721             public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
  2722                 throw new UnsupportedOperationException();
  2723             }
  2724 
  2725             public Iterator<Map.Entry<K,V>> iterator() {
  2726                 final Iterator<Map.Entry<K, V>> i = s.iterator();
  2727                 final Class<V> valueType = this.valueType;
  2728 
  2729                 return new Iterator<Map.Entry<K,V>>() {
  2730                     public boolean hasNext() { return i.hasNext(); }
  2731                     public void remove()     { i.remove(); }
  2732 
  2733                     public Map.Entry<K,V> next() {
  2734                         return checkedEntry(i.next(), valueType);
  2735                     }
  2736                 };
  2737             }
  2738 
  2739             @SuppressWarnings("unchecked")
  2740             public Object[] toArray() {
  2741                 Object[] source = s.toArray();
  2742 
  2743                 /*
  2744                  * Ensure that we don't get an ArrayStoreException even if
  2745                  * s.toArray returns an array of something other than Object
  2746                  */
  2747                 Object[] dest = (CheckedEntry.class.isInstance(
  2748                     source.getClass().getComponentType()) ? source :
  2749                                  new Object[source.length]);
  2750 
  2751                 for (int i = 0; i < source.length; i++)
  2752                     dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
  2753                                            valueType);
  2754                 return dest;
  2755             }
  2756 
  2757             @SuppressWarnings("unchecked")
  2758             public <T> T[] toArray(T[] a) {
  2759                 // We don't pass a to s.toArray, to avoid window of
  2760                 // vulnerability wherein an unscrupulous multithreaded client
  2761                 // could get his hands on raw (unwrapped) Entries from s.
  2762                 T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
  2763 
  2764                 for (int i=0; i<arr.length; i++)
  2765                     arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
  2766                                               valueType);
  2767                 if (arr.length > a.length)
  2768                     return arr;
  2769 
  2770                 System.arraycopy(arr, 0, a, 0, arr.length);
  2771                 if (a.length > arr.length)
  2772                     a[arr.length] = null;
  2773                 return a;
  2774             }
  2775 
  2776             /**
  2777              * This method is overridden to protect the backing set against
  2778              * an object with a nefarious equals function that senses
  2779              * that the equality-candidate is Map.Entry and calls its
  2780              * setValue method.
  2781              */
  2782             public boolean contains(Object o) {
  2783                 if (!(o instanceof Map.Entry))
  2784                     return false;
  2785                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
  2786                 return s.contains(
  2787                     (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
  2788             }
  2789 
  2790             /**
  2791              * The bulk collection methods are overridden to protect
  2792              * against an unscrupulous collection whose contains(Object o)
  2793              * method senses when o is a Map.Entry, and calls o.setValue.
  2794              */
  2795             public boolean containsAll(Collection<?> c) {
  2796                 for (Object o : c)
  2797                     if (!contains(o)) // Invokes safe contains() above
  2798                         return false;
  2799                 return true;
  2800             }
  2801 
  2802             public boolean remove(Object o) {
  2803                 if (!(o instanceof Map.Entry))
  2804                     return false;
  2805                 return s.remove(new AbstractMap.SimpleImmutableEntry
  2806                                 <>((Map.Entry<?,?>)o));
  2807             }
  2808 
  2809             public boolean removeAll(Collection<?> c) {
  2810                 return batchRemove(c, false);
  2811             }
  2812             public boolean retainAll(Collection<?> c) {
  2813                 return batchRemove(c, true);
  2814             }
  2815             private boolean batchRemove(Collection<?> c, boolean complement) {
  2816                 boolean modified = false;
  2817                 Iterator<Map.Entry<K,V>> it = iterator();
  2818                 while (it.hasNext()) {
  2819                     if (c.contains(it.next()) != complement) {
  2820                         it.remove();
  2821                         modified = true;
  2822                     }
  2823                 }
  2824                 return modified;
  2825             }
  2826 
  2827             public boolean equals(Object o) {
  2828                 if (o == this)
  2829                     return true;
  2830                 if (!(o instanceof Set))
  2831                     return false;
  2832                 Set<?> that = (Set<?>) o;
  2833                 return that.size() == s.size()
  2834                     && containsAll(that); // Invokes safe containsAll() above
  2835             }
  2836 
  2837             static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
  2838                                                             Class<T> valueType) {
  2839                 return new CheckedEntry<>(e, valueType);
  2840             }
  2841 
  2842             /**
  2843              * This "wrapper class" serves two purposes: it prevents
  2844              * the client from modifying the backing Map, by short-circuiting
  2845              * the setValue method, and it protects the backing Map against
  2846              * an ill-behaved Map.Entry that attempts to modify another
  2847              * Map.Entry when asked to perform an equality check.
  2848              */
  2849             private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
  2850                 private final Map.Entry<K, V> e;
  2851                 private final Class<T> valueType;
  2852 
  2853                 CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
  2854                     this.e = e;
  2855                     this.valueType = valueType;
  2856                 }
  2857 
  2858                 public K getKey()        { return e.getKey(); }
  2859                 public V getValue()      { return e.getValue(); }
  2860                 public int hashCode()    { return e.hashCode(); }
  2861                 public String toString() { return e.toString(); }
  2862 
  2863                 public V setValue(V value) {
  2864                     if (value != null && !valueType.isInstance(value))
  2865                         throw new ClassCastException(badValueMsg(value));
  2866                     return e.setValue(value);
  2867                 }
  2868 
  2869                 private String badValueMsg(Object value) {
  2870                     return "Attempt to insert " + value.getClass() +
  2871                         " value into map with value type " + valueType;
  2872                 }
  2873 
  2874                 public boolean equals(Object o) {
  2875                     if (o == this)
  2876                         return true;
  2877                     if (!(o instanceof Map.Entry))
  2878                         return false;
  2879                     return e.equals(new AbstractMap.SimpleImmutableEntry
  2880                                     <>((Map.Entry<?,?>)o));
  2881                 }
  2882             }
  2883         }
  2884     }
  2885 
  2886     /**
  2887      * Returns a dynamically typesafe view of the specified sorted map.
  2888      * Any attempt to insert a mapping whose key or value have the wrong
  2889      * type will result in an immediate {@link ClassCastException}.
  2890      * Similarly, any attempt to modify the value currently associated with
  2891      * a key will result in an immediate {@link ClassCastException},
  2892      * whether the modification is attempted directly through the map
  2893      * itself, or through a {@link Map.Entry} instance obtained from the
  2894      * map's {@link Map#entrySet() entry set} view.
  2895      *
  2896      * <p>Assuming a map contains no incorrectly typed keys or values
  2897      * prior to the time a dynamically typesafe view is generated, and
  2898      * that all subsequent access to the map takes place through the view
  2899      * (or one of its collection views), it is <i>guaranteed</i> that the
  2900      * map cannot contain an incorrectly typed key or value.
  2901      *
  2902      * <p>A discussion of the use of dynamically typesafe views may be
  2903      * found in the documentation for the {@link #checkedCollection
  2904      * checkedCollection} method.
  2905      *
  2906      * <p>The returned map will be serializable if the specified map is
  2907      * serializable.
  2908      *
  2909      * <p>Since {@code null} is considered to be a value of any reference
  2910      * type, the returned map permits insertion of null keys or values
  2911      * whenever the backing map does.
  2912      *
  2913      * @param m the map for which a dynamically typesafe view is to be
  2914      *          returned
  2915      * @param keyType the type of key that {@code m} is permitted to hold
  2916      * @param valueType the type of value that {@code m} is permitted to hold
  2917      * @return a dynamically typesafe view of the specified map
  2918      * @since 1.5
  2919      */
  2920     public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
  2921                                                         Class<K> keyType,
  2922                                                         Class<V> valueType) {
  2923         return new CheckedSortedMap<>(m, keyType, valueType);
  2924     }
  2925 
  2926     /**
  2927      * @serial include
  2928      */
  2929     static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
  2930         implements SortedMap<K,V>, Serializable
  2931     {
  2932         private static final long serialVersionUID = 1599671320688067438L;
  2933 
  2934         private final SortedMap<K, V> sm;
  2935 
  2936         CheckedSortedMap(SortedMap<K, V> m,
  2937                          Class<K> keyType, Class<V> valueType) {
  2938             super(m, keyType, valueType);
  2939             sm = m;
  2940         }
  2941 
  2942         public Comparator<? super K> comparator() { return sm.comparator(); }
  2943         public K firstKey()                       { return sm.firstKey(); }
  2944         public K lastKey()                        { return sm.lastKey(); }
  2945 
  2946         public SortedMap<K,V> subMap(K fromKey, K toKey) {
  2947             return checkedSortedMap(sm.subMap(fromKey, toKey),
  2948                                     keyType, valueType);
  2949         }
  2950         public SortedMap<K,V> headMap(K toKey) {
  2951             return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
  2952         }
  2953         public SortedMap<K,V> tailMap(K fromKey) {
  2954             return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
  2955         }
  2956     }
  2957 
  2958     // Empty collections
  2959 
  2960     /**
  2961      * Returns an iterator that has no elements.  More precisely,
  2962      *
  2963      * <ul compact>
  2964      *
  2965      * <li>{@link Iterator#hasNext hasNext} always returns {@code
  2966      * false}.
  2967      *
  2968      * <li>{@link Iterator#next next} always throws {@link
  2969      * NoSuchElementException}.
  2970      *
  2971      * <li>{@link Iterator#remove remove} always throws {@link
  2972      * IllegalStateException}.
  2973      *
  2974      * </ul>
  2975      *
  2976      * <p>Implementations of this method are permitted, but not
  2977      * required, to return the same object from multiple invocations.
  2978      *
  2979      * @return an empty iterator
  2980      * @since 1.7
  2981      */
  2982     @SuppressWarnings("unchecked")
  2983     public static <T> Iterator<T> emptyIterator() {
  2984         return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
  2985     }
  2986 
  2987     private static class EmptyIterator<E> implements Iterator<E> {
  2988         static final EmptyIterator<Object> EMPTY_ITERATOR
  2989             = new EmptyIterator<>();
  2990 
  2991         public boolean hasNext() { return false; }
  2992         public E next() { throw new NoSuchElementException(); }
  2993         public void remove() { throw new IllegalStateException(); }
  2994     }
  2995 
  2996     /**
  2997      * Returns a list iterator that has no elements.  More precisely,
  2998      *
  2999      * <ul compact>
  3000      *
  3001      * <li>{@link Iterator#hasNext hasNext} and {@link
  3002      * ListIterator#hasPrevious hasPrevious} always return {@code
  3003      * false}.
  3004      *
  3005      * <li>{@link Iterator#next next} and {@link ListIterator#previous
  3006      * previous} always throw {@link NoSuchElementException}.
  3007      *
  3008      * <li>{@link Iterator#remove remove} and {@link ListIterator#set
  3009      * set} always throw {@link IllegalStateException}.
  3010      *
  3011      * <li>{@link ListIterator#add add} always throws {@link
  3012      * UnsupportedOperationException}.
  3013      *
  3014      * <li>{@link ListIterator#nextIndex nextIndex} always returns
  3015      * {@code 0} .
  3016      *
  3017      * <li>{@link ListIterator#previousIndex previousIndex} always
  3018      * returns {@code -1}.
  3019      *
  3020      * </ul>
  3021      *
  3022      * <p>Implementations of this method are permitted, but not
  3023      * required, to return the same object from multiple invocations.
  3024      *
  3025      * @return an empty list iterator
  3026      * @since 1.7
  3027      */
  3028     @SuppressWarnings("unchecked")
  3029     public static <T> ListIterator<T> emptyListIterator() {
  3030         return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
  3031     }
  3032 
  3033     private static class EmptyListIterator<E>
  3034         extends EmptyIterator<E>
  3035         implements ListIterator<E>
  3036     {
  3037         static final EmptyListIterator<Object> EMPTY_ITERATOR
  3038             = new EmptyListIterator<>();
  3039 
  3040         public boolean hasPrevious() { return false; }
  3041         public E previous() { throw new NoSuchElementException(); }
  3042         public int nextIndex()     { return 0; }
  3043         public int previousIndex() { return -1; }
  3044         public void set(E e) { throw new IllegalStateException(); }
  3045         public void add(E e) { throw new UnsupportedOperationException(); }
  3046     }
  3047 
  3048     /**
  3049      * Returns an enumeration that has no elements.  More precisely,
  3050      *
  3051      * <ul compact>
  3052      *
  3053      * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
  3054      * returns {@code false}.
  3055      *
  3056      * <li> {@link Enumeration#nextElement nextElement} always throws
  3057      * {@link NoSuchElementException}.
  3058      *
  3059      * </ul>
  3060      *
  3061      * <p>Implementations of this method are permitted, but not
  3062      * required, to return the same object from multiple invocations.
  3063      *
  3064      * @return an empty enumeration
  3065      * @since 1.7
  3066      */
  3067     @SuppressWarnings("unchecked")
  3068     public static <T> Enumeration<T> emptyEnumeration() {
  3069         return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
  3070     }
  3071 
  3072     private static class EmptyEnumeration<E> implements Enumeration<E> {
  3073         static final EmptyEnumeration<Object> EMPTY_ENUMERATION
  3074             = new EmptyEnumeration<>();
  3075 
  3076         public boolean hasMoreElements() { return false; }
  3077         public E nextElement() { throw new NoSuchElementException(); }
  3078     }
  3079 
  3080     /**
  3081      * The empty set (immutable).  This set is serializable.
  3082      *
  3083      * @see #emptySet()
  3084      */
  3085     @SuppressWarnings("unchecked")
  3086     public static final Set EMPTY_SET = new EmptySet<>();
  3087 
  3088     /**
  3089      * Returns the empty set (immutable).  This set is serializable.
  3090      * Unlike the like-named field, this method is parameterized.
  3091      *
  3092      * <p>This example illustrates the type-safe way to obtain an empty set:
  3093      * <pre>
  3094      *     Set&lt;String&gt; s = Collections.emptySet();
  3095      * </pre>
  3096      * Implementation note:  Implementations of this method need not
  3097      * create a separate <tt>Set</tt> object for each call.   Using this
  3098      * method is likely to have comparable cost to using the like-named
  3099      * field.  (Unlike this method, the field does not provide type safety.)
  3100      *
  3101      * @see #EMPTY_SET
  3102      * @since 1.5
  3103      */
  3104     @SuppressWarnings("unchecked")
  3105     public static final <T> Set<T> emptySet() {
  3106         return (Set<T>) EMPTY_SET;
  3107     }
  3108 
  3109     /**
  3110      * @serial include
  3111      */
  3112     private static class EmptySet<E>
  3113         extends AbstractSet<E>
  3114         implements Serializable
  3115     {
  3116         private static final long serialVersionUID = 1582296315990362920L;
  3117 
  3118         public Iterator<E> iterator() { return emptyIterator(); }
  3119 
  3120         public int size() {return 0;}
  3121         public boolean isEmpty() {return true;}
  3122 
  3123         public boolean contains(Object obj) {return false;}
  3124         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
  3125 
  3126         public Object[] toArray() { return new Object[0]; }
  3127 
  3128         public <T> T[] toArray(T[] a) {
  3129             if (a.length > 0)
  3130                 a[0] = null;
  3131             return a;
  3132         }
  3133 
  3134         // Preserves singleton property
  3135         private Object readResolve() {
  3136             return EMPTY_SET;
  3137         }
  3138     }
  3139 
  3140     /**
  3141      * The empty list (immutable).  This list is serializable.
  3142      *
  3143      * @see #emptyList()
  3144      */
  3145     @SuppressWarnings("unchecked")
  3146     public static final List EMPTY_LIST = new EmptyList<>();
  3147 
  3148     /**
  3149      * Returns the empty list (immutable).  This list is serializable.
  3150      *
  3151      * <p>This example illustrates the type-safe way to obtain an empty list:
  3152      * <pre>
  3153      *     List&lt;String&gt; s = Collections.emptyList();
  3154      * </pre>
  3155      * Implementation note:  Implementations of this method need not
  3156      * create a separate <tt>List</tt> object for each call.   Using this
  3157      * method is likely to have comparable cost to using the like-named
  3158      * field.  (Unlike this method, the field does not provide type safety.)
  3159      *
  3160      * @see #EMPTY_LIST
  3161      * @since 1.5
  3162      */
  3163     @SuppressWarnings("unchecked")
  3164     public static final <T> List<T> emptyList() {
  3165         return (List<T>) EMPTY_LIST;
  3166     }
  3167 
  3168     /**
  3169      * @serial include
  3170      */
  3171     private static class EmptyList<E>
  3172         extends AbstractList<E>
  3173         implements RandomAccess, Serializable {
  3174         private static final long serialVersionUID = 8842843931221139166L;
  3175 
  3176         public Iterator<E> iterator() {
  3177             return emptyIterator();
  3178         }
  3179         public ListIterator<E> listIterator() {
  3180             return emptyListIterator();
  3181         }
  3182 
  3183         public int size() {return 0;}
  3184         public boolean isEmpty() {return true;}
  3185 
  3186         public boolean contains(Object obj) {return false;}
  3187         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
  3188 
  3189         public Object[] toArray() { return new Object[0]; }
  3190 
  3191         public <T> T[] toArray(T[] a) {
  3192             if (a.length > 0)
  3193                 a[0] = null;
  3194             return a;
  3195         }
  3196 
  3197         public E get(int index) {
  3198             throw new IndexOutOfBoundsException("Index: "+index);
  3199         }
  3200 
  3201         public boolean equals(Object o) {
  3202             return (o instanceof List) && ((List<?>)o).isEmpty();
  3203         }
  3204 
  3205         public int hashCode() { return 1; }
  3206 
  3207         // Preserves singleton property
  3208         private Object readResolve() {
  3209             return EMPTY_LIST;
  3210         }
  3211     }
  3212 
  3213     /**
  3214      * The empty map (immutable).  This map is serializable.
  3215      *
  3216      * @see #emptyMap()
  3217      * @since 1.3
  3218      */
  3219     @SuppressWarnings("unchecked")
  3220     public static final Map EMPTY_MAP = new EmptyMap<>();
  3221 
  3222     /**
  3223      * Returns the empty map (immutable).  This map is serializable.
  3224      *
  3225      * <p>This example illustrates the type-safe way to obtain an empty set:
  3226      * <pre>
  3227      *     Map&lt;String, Date&gt; s = Collections.emptyMap();
  3228      * </pre>
  3229      * Implementation note:  Implementations of this method need not
  3230      * create a separate <tt>Map</tt> object for each call.   Using this
  3231      * method is likely to have comparable cost to using the like-named
  3232      * field.  (Unlike this method, the field does not provide type safety.)
  3233      *
  3234      * @see #EMPTY_MAP
  3235      * @since 1.5
  3236      */
  3237     @SuppressWarnings("unchecked")
  3238     public static final <K,V> Map<K,V> emptyMap() {
  3239         return (Map<K,V>) EMPTY_MAP;
  3240     }
  3241 
  3242     /**
  3243      * @serial include
  3244      */
  3245     private static class EmptyMap<K,V>
  3246         extends AbstractMap<K,V>
  3247         implements Serializable
  3248     {
  3249         private static final long serialVersionUID = 6428348081105594320L;
  3250 
  3251         public int size()                          {return 0;}
  3252         public boolean isEmpty()                   {return true;}
  3253         public boolean containsKey(Object key)     {return false;}
  3254         public boolean containsValue(Object value) {return false;}
  3255         public V get(Object key)                   {return null;}
  3256         public Set<K> keySet()                     {return emptySet();}
  3257         public Collection<V> values()              {return emptySet();}
  3258         public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
  3259 
  3260         public boolean equals(Object o) {
  3261             return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
  3262         }
  3263 
  3264         public int hashCode()                      {return 0;}
  3265 
  3266         // Preserves singleton property
  3267         private Object readResolve() {
  3268             return EMPTY_MAP;
  3269         }
  3270     }
  3271 
  3272     // Singleton collections
  3273 
  3274     /**
  3275      * Returns an immutable set containing only the specified object.
  3276      * The returned set is serializable.
  3277      *
  3278      * @param o the sole object to be stored in the returned set.
  3279      * @return an immutable set containing only the specified object.
  3280      */
  3281     public static <T> Set<T> singleton(T o) {
  3282         return new SingletonSet<>(o);
  3283     }
  3284 
  3285     static <E> Iterator<E> singletonIterator(final E e) {
  3286         return new Iterator<E>() {
  3287             private boolean hasNext = true;
  3288             public boolean hasNext() {
  3289                 return hasNext;
  3290             }
  3291             public E next() {
  3292                 if (hasNext) {
  3293                     hasNext = false;
  3294                     return e;
  3295                 }
  3296                 throw new NoSuchElementException();
  3297             }
  3298             public void remove() {
  3299                 throw new UnsupportedOperationException();
  3300             }
  3301         };
  3302     }
  3303 
  3304     /**
  3305      * @serial include
  3306      */
  3307     private static class SingletonSet<E>
  3308         extends AbstractSet<E>
  3309         implements Serializable
  3310     {
  3311         private static final long serialVersionUID = 3193687207550431679L;
  3312 
  3313         private final E element;
  3314 
  3315         SingletonSet(E e) {element = e;}
  3316 
  3317         public Iterator<E> iterator() {
  3318             return singletonIterator(element);
  3319         }
  3320 
  3321         public int size() {return 1;}
  3322 
  3323         public boolean contains(Object o) {return eq(o, element);}
  3324     }
  3325 
  3326     /**
  3327      * Returns an immutable list containing only the specified object.
  3328      * The returned list is serializable.
  3329      *
  3330      * @param o the sole object to be stored in the returned list.
  3331      * @return an immutable list containing only the specified object.
  3332      * @since 1.3
  3333      */
  3334     public static <T> List<T> singletonList(T o) {
  3335         return new SingletonList<>(o);
  3336     }
  3337 
  3338     /**
  3339      * @serial include
  3340      */
  3341     private static class SingletonList<E>
  3342         extends AbstractList<E>
  3343         implements RandomAccess, Serializable {
  3344 
  3345         private static final long serialVersionUID = 3093736618740652951L;
  3346 
  3347         private final E element;
  3348 
  3349         SingletonList(E obj)                {element = obj;}
  3350 
  3351         public Iterator<E> iterator() {
  3352             return singletonIterator(element);
  3353         }
  3354 
  3355         public int size()                   {return 1;}
  3356 
  3357         public boolean contains(Object obj) {return eq(obj, element);}
  3358 
  3359         public E get(int index) {
  3360             if (index != 0)
  3361               throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
  3362             return element;
  3363         }
  3364     }
  3365 
  3366     /**
  3367      * Returns an immutable map, mapping only the specified key to the
  3368      * specified value.  The returned map is serializable.
  3369      *
  3370      * @param key the sole key to be stored in the returned map.
  3371      * @param value the value to which the returned map maps <tt>key</tt>.
  3372      * @return an immutable map containing only the specified key-value
  3373      *         mapping.
  3374      * @since 1.3
  3375      */
  3376     public static <K,V> Map<K,V> singletonMap(K key, V value) {
  3377         return new SingletonMap<>(key, value);
  3378     }
  3379 
  3380     /**
  3381      * @serial include
  3382      */
  3383     private static class SingletonMap<K,V>
  3384           extends AbstractMap<K,V>
  3385           implements Serializable {
  3386         private static final long serialVersionUID = -6979724477215052911L;
  3387 
  3388         private final K k;
  3389         private final V v;
  3390 
  3391         SingletonMap(K key, V value) {
  3392             k = key;
  3393             v = value;
  3394         }
  3395 
  3396         public int size()                          {return 1;}
  3397 
  3398         public boolean isEmpty()                   {return false;}
  3399 
  3400         public boolean containsKey(Object key)     {return eq(key, k);}
  3401 
  3402         public boolean containsValue(Object value) {return eq(value, v);}
  3403 
  3404         public V get(Object key)                   {return (eq(key, k) ? v : null);}
  3405 
  3406         private transient Set<K> keySet = null;
  3407         private transient Set<Map.Entry<K,V>> entrySet = null;
  3408         private transient Collection<V> values = null;
  3409 
  3410         public Set<K> keySet() {
  3411             if (keySet==null)
  3412                 keySet = singleton(k);
  3413             return keySet;
  3414         }
  3415 
  3416         public Set<Map.Entry<K,V>> entrySet() {
  3417             if (entrySet==null)
  3418                 entrySet = Collections.<Map.Entry<K,V>>singleton(
  3419                     new SimpleImmutableEntry<>(k, v));
  3420             return entrySet;
  3421         }
  3422 
  3423         public Collection<V> values() {
  3424             if (values==null)
  3425                 values = singleton(v);
  3426             return values;
  3427         }
  3428 
  3429     }
  3430 
  3431     // Miscellaneous
  3432 
  3433     /**
  3434      * Returns an immutable list consisting of <tt>n</tt> copies of the
  3435      * specified object.  The newly allocated data object is tiny (it contains
  3436      * a single reference to the data object).  This method is useful in
  3437      * combination with the <tt>List.addAll</tt> method to grow lists.
  3438      * The returned list is serializable.
  3439      *
  3440      * @param  n the number of elements in the returned list.
  3441      * @param  o the element to appear repeatedly in the returned list.
  3442      * @return an immutable list consisting of <tt>n</tt> copies of the
  3443      *         specified object.
  3444      * @throws IllegalArgumentException if {@code n < 0}
  3445      * @see    List#addAll(Collection)
  3446      * @see    List#addAll(int, Collection)
  3447      */
  3448     public static <T> List<T> nCopies(int n, T o) {
  3449         if (n < 0)
  3450             throw new IllegalArgumentException("List length = " + n);
  3451         return new CopiesList<>(n, o);
  3452     }
  3453 
  3454     /**
  3455      * @serial include
  3456      */
  3457     private static class CopiesList<E>
  3458         extends AbstractList<E>
  3459         implements RandomAccess, Serializable
  3460     {
  3461         private static final long serialVersionUID = 2739099268398711800L;
  3462 
  3463         final int n;
  3464         final E element;
  3465 
  3466         CopiesList(int n, E e) {
  3467             assert n >= 0;
  3468             this.n = n;
  3469             element = e;
  3470         }
  3471 
  3472         public int size() {
  3473             return n;
  3474         }
  3475 
  3476         public boolean contains(Object obj) {
  3477             return n != 0 && eq(obj, element);
  3478         }
  3479 
  3480         public int indexOf(Object o) {
  3481             return contains(o) ? 0 : -1;
  3482         }
  3483 
  3484         public int lastIndexOf(Object o) {
  3485             return contains(o) ? n - 1 : -1;
  3486         }
  3487 
  3488         public E get(int index) {
  3489             if (index < 0 || index >= n)
  3490                 throw new IndexOutOfBoundsException("Index: "+index+
  3491                                                     ", Size: "+n);
  3492             return element;
  3493         }
  3494 
  3495         public Object[] toArray() {
  3496             final Object[] a = new Object[n];
  3497             if (element != null)
  3498                 Arrays.fill(a, 0, n, element);
  3499             return a;
  3500         }
  3501 
  3502         public <T> T[] toArray(T[] a) {
  3503             final int n = this.n;
  3504             if (a.length < n) {
  3505                 a = (T[])java.lang.reflect.Array
  3506                     .newInstance(a.getClass().getComponentType(), n);
  3507                 if (element != null)
  3508                     Arrays.fill(a, 0, n, element);
  3509             } else {
  3510                 Arrays.fill(a, 0, n, element);
  3511                 if (a.length > n)
  3512                     a[n] = null;
  3513             }
  3514             return a;
  3515         }
  3516 
  3517         public List<E> subList(int fromIndex, int toIndex) {
  3518             if (fromIndex < 0)
  3519                 throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
  3520             if (toIndex > n)
  3521                 throw new IndexOutOfBoundsException("toIndex = " + toIndex);
  3522             if (fromIndex > toIndex)
  3523                 throw new IllegalArgumentException("fromIndex(" + fromIndex +
  3524                                                    ") > toIndex(" + toIndex + ")");
  3525             return new CopiesList<>(toIndex - fromIndex, element);
  3526         }
  3527     }
  3528 
  3529     /**
  3530      * Returns a comparator that imposes the reverse of the <em>natural
  3531      * ordering</em> on a collection of objects that implement the
  3532      * {@code Comparable} interface.  (The natural ordering is the ordering
  3533      * imposed by the objects' own {@code compareTo} method.)  This enables a
  3534      * simple idiom for sorting (or maintaining) collections (or arrays) of
  3535      * objects that implement the {@code Comparable} interface in
  3536      * reverse-natural-order.  For example, suppose {@code a} is an array of
  3537      * strings. Then: <pre>
  3538      *          Arrays.sort(a, Collections.reverseOrder());
  3539      * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
  3540      *
  3541      * The returned comparator is serializable.
  3542      *
  3543      * @return A comparator that imposes the reverse of the <i>natural
  3544      *         ordering</i> on a collection of objects that implement
  3545      *         the <tt>Comparable</tt> interface.
  3546      * @see Comparable
  3547      */
  3548     public static <T> Comparator<T> reverseOrder() {
  3549         return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
  3550     }
  3551 
  3552     /**
  3553      * @serial include
  3554      */
  3555     private static class ReverseComparator
  3556         implements Comparator<Comparable<Object>>, Serializable {
  3557 
  3558         private static final long serialVersionUID = 7207038068494060240L;
  3559 
  3560         static final ReverseComparator REVERSE_ORDER
  3561             = new ReverseComparator();
  3562 
  3563         public int compare(Comparable<Object> c1, Comparable<Object> c2) {
  3564             return c2.compareTo(c1);
  3565         }
  3566 
  3567         private Object readResolve() { return reverseOrder(); }
  3568     }
  3569 
  3570     /**
  3571      * Returns a comparator that imposes the reverse ordering of the specified
  3572      * comparator.  If the specified comparator is {@code null}, this method is
  3573      * equivalent to {@link #reverseOrder()} (in other words, it returns a
  3574      * comparator that imposes the reverse of the <em>natural ordering</em> on
  3575      * a collection of objects that implement the Comparable interface).
  3576      *
  3577      * <p>The returned comparator is serializable (assuming the specified
  3578      * comparator is also serializable or {@code null}).
  3579      *
  3580      * @param cmp a comparator who's ordering is to be reversed by the returned
  3581      * comparator or {@code null}
  3582      * @return A comparator that imposes the reverse ordering of the
  3583      *         specified comparator.
  3584      * @since 1.5
  3585      */
  3586     public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
  3587         if (cmp == null)
  3588             return reverseOrder();
  3589 
  3590         if (cmp instanceof ReverseComparator2)
  3591             return ((ReverseComparator2<T>)cmp).cmp;
  3592 
  3593         return new ReverseComparator2<>(cmp);
  3594     }
  3595 
  3596     /**
  3597      * @serial include
  3598      */
  3599     private static class ReverseComparator2<T> implements Comparator<T>,
  3600         Serializable
  3601     {
  3602         private static final long serialVersionUID = 4374092139857L;
  3603 
  3604         /**
  3605          * The comparator specified in the static factory.  This will never
  3606          * be null, as the static factory returns a ReverseComparator
  3607          * instance if its argument is null.
  3608          *
  3609          * @serial
  3610          */
  3611         final Comparator<T> cmp;
  3612 
  3613         ReverseComparator2(Comparator<T> cmp) {
  3614             assert cmp != null;
  3615             this.cmp = cmp;
  3616         }
  3617 
  3618         public int compare(T t1, T t2) {
  3619             return cmp.compare(t2, t1);
  3620         }
  3621 
  3622         public boolean equals(Object o) {
  3623             return (o == this) ||
  3624                 (o instanceof ReverseComparator2 &&
  3625                  cmp.equals(((ReverseComparator2)o).cmp));
  3626         }
  3627 
  3628         public int hashCode() {
  3629             return cmp.hashCode() ^ Integer.MIN_VALUE;
  3630         }
  3631     }
  3632 
  3633     /**
  3634      * Returns an enumeration over the specified collection.  This provides
  3635      * interoperability with legacy APIs that require an enumeration
  3636      * as input.
  3637      *
  3638      * @param c the collection for which an enumeration is to be returned.
  3639      * @return an enumeration over the specified collection.
  3640      * @see Enumeration
  3641      */
  3642     public static <T> Enumeration<T> enumeration(final Collection<T> c) {
  3643         return new Enumeration<T>() {
  3644             private final Iterator<T> i = c.iterator();
  3645 
  3646             public boolean hasMoreElements() {
  3647                 return i.hasNext();
  3648             }
  3649 
  3650             public T nextElement() {
  3651                 return i.next();
  3652             }
  3653         };
  3654     }
  3655 
  3656     /**
  3657      * Returns an array list containing the elements returned by the
  3658      * specified enumeration in the order they are returned by the
  3659      * enumeration.  This method provides interoperability between
  3660      * legacy APIs that return enumerations and new APIs that require
  3661      * collections.
  3662      *
  3663      * @param e enumeration providing elements for the returned
  3664      *          array list
  3665      * @return an array list containing the elements returned
  3666      *         by the specified enumeration.
  3667      * @since 1.4
  3668      * @see Enumeration
  3669      * @see ArrayList
  3670      */
  3671     public static <T> ArrayList<T> list(Enumeration<T> e) {
  3672         ArrayList<T> l = new ArrayList<>();
  3673         while (e.hasMoreElements())
  3674             l.add(e.nextElement());
  3675         return l;
  3676     }
  3677 
  3678     /**
  3679      * Returns true if the specified arguments are equal, or both null.
  3680      */
  3681     static boolean eq(Object o1, Object o2) {
  3682         return o1==null ? o2==null : o1.equals(o2);
  3683     }
  3684 
  3685     /**
  3686      * Returns the number of elements in the specified collection equal to the
  3687      * specified object.  More formally, returns the number of elements
  3688      * <tt>e</tt> in the collection such that
  3689      * <tt>(o == null ? e == null : o.equals(e))</tt>.
  3690      *
  3691      * @param c the collection in which to determine the frequency
  3692      *     of <tt>o</tt>
  3693      * @param o the object whose frequency is to be determined
  3694      * @throws NullPointerException if <tt>c</tt> is null
  3695      * @since 1.5
  3696      */
  3697     public static int frequency(Collection<?> c, Object o) {
  3698         int result = 0;
  3699         if (o == null) {
  3700             for (Object e : c)
  3701                 if (e == null)
  3702                     result++;
  3703         } else {
  3704             for (Object e : c)
  3705                 if (o.equals(e))
  3706                     result++;
  3707         }
  3708         return result;
  3709     }
  3710 
  3711     /**
  3712      * Returns {@code true} if the two specified collections have no
  3713      * elements in common.
  3714      *
  3715      * <p>Care must be exercised if this method is used on collections that
  3716      * do not comply with the general contract for {@code Collection}.
  3717      * Implementations may elect to iterate over either collection and test
  3718      * for containment in the other collection (or to perform any equivalent
  3719      * computation).  If either collection uses a nonstandard equality test
  3720      * (as does a {@link SortedSet} whose ordering is not <em>compatible with
  3721      * equals</em>, or the key set of an {@link IdentityHashMap}), both
  3722      * collections must use the same nonstandard equality test, or the
  3723      * result of this method is undefined.
  3724      *
  3725      * <p>Care must also be exercised when using collections that have
  3726      * restrictions on the elements that they may contain. Collection
  3727      * implementations are allowed to throw exceptions for any operation
  3728      * involving elements they deem ineligible. For absolute safety the
  3729      * specified collections should contain only elements which are
  3730      * eligible elements for both collections.
  3731      *
  3732      * <p>Note that it is permissible to pass the same collection in both
  3733      * parameters, in which case the method will return {@code true} if and
  3734      * only if the collection is empty.
  3735      *
  3736      * @param c1 a collection
  3737      * @param c2 a collection
  3738      * @return {@code true} if the two specified collections have no
  3739      * elements in common.
  3740      * @throws NullPointerException if either collection is {@code null}.
  3741      * @throws NullPointerException if one collection contains a {@code null}
  3742      * element and {@code null} is not an eligible element for the other collection.
  3743      * (<a href="Collection.html#optional-restrictions">optional</a>)
  3744      * @throws ClassCastException if one collection contains an element that is
  3745      * of a type which is ineligible for the other collection.
  3746      * (<a href="Collection.html#optional-restrictions">optional</a>)
  3747      * @since 1.5
  3748      */
  3749     public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
  3750         // The collection to be used for contains(). Preference is given to
  3751         // the collection who's contains() has lower O() complexity.
  3752         Collection<?> contains = c2;
  3753         // The collection to be iterated. If the collections' contains() impl
  3754         // are of different O() complexity, the collection with slower
  3755         // contains() will be used for iteration. For collections who's
  3756         // contains() are of the same complexity then best performance is
  3757         // achieved by iterating the smaller collection.
  3758         Collection<?> iterate = c1;
  3759 
  3760         // Performance optimization cases. The heuristics:
  3761         //   1. Generally iterate over c1.
  3762         //   2. If c1 is a Set then iterate over c2.
  3763         //   3. If either collection is empty then result is always true.
  3764         //   4. Iterate over the smaller Collection.
  3765         if (c1 instanceof Set) {
  3766             // Use c1 for contains as a Set's contains() is expected to perform
  3767             // better than O(N/2)
  3768             iterate = c2;
  3769             contains = c1;
  3770         } else if (!(c2 instanceof Set)) {
  3771             // Both are mere Collections. Iterate over smaller collection.
  3772             // Example: If c1 contains 3 elements and c2 contains 50 elements and
  3773             // assuming contains() requires ceiling(N/2) comparisons then
  3774             // checking for all c1 elements in c2 would require 75 comparisons
  3775             // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring
  3776             // 100 comparisons (50 * ceiling(3/2)).
  3777             int c1size = c1.size();
  3778             int c2size = c2.size();
  3779             if (c1size == 0 || c2size == 0) {
  3780                 // At least one collection is empty. Nothing will match.
  3781                 return true;
  3782             }
  3783 
  3784             if (c1size > c2size) {
  3785                 iterate = c2;
  3786                 contains = c1;
  3787             }
  3788         }
  3789 
  3790         for (Object e : iterate) {
  3791             if (contains.contains(e)) {
  3792                // Found a common element. Collections are not disjoint.
  3793                 return false;
  3794             }
  3795         }
  3796 
  3797         // No common elements were found.
  3798         return true;
  3799     }
  3800 
  3801     /**
  3802      * Adds all of the specified elements to the specified collection.
  3803      * Elements to be added may be specified individually or as an array.
  3804      * The behavior of this convenience method is identical to that of
  3805      * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
  3806      * to run significantly faster under most implementations.
  3807      *
  3808      * <p>When elements are specified individually, this method provides a
  3809      * convenient way to add a few elements to an existing collection:
  3810      * <pre>
  3811      *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
  3812      * </pre>
  3813      *
  3814      * @param c the collection into which <tt>elements</tt> are to be inserted
  3815      * @param elements the elements to insert into <tt>c</tt>
  3816      * @return <tt>true</tt> if the collection changed as a result of the call
  3817      * @throws UnsupportedOperationException if <tt>c</tt> does not support
  3818      *         the <tt>add</tt> operation
  3819      * @throws NullPointerException if <tt>elements</tt> contains one or more
  3820      *         null values and <tt>c</tt> does not permit null elements, or
  3821      *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
  3822      * @throws IllegalArgumentException if some property of a value in
  3823      *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
  3824      * @see Collection#addAll(Collection)
  3825      * @since 1.5
  3826      */
  3827     @SafeVarargs
  3828     public static <T> boolean addAll(Collection<? super T> c, T... elements) {
  3829         boolean result = false;
  3830         for (T element : elements)
  3831             result |= c.add(element);
  3832         return result;
  3833     }
  3834 
  3835     /**
  3836      * Returns a set backed by the specified map.  The resulting set displays
  3837      * the same ordering, concurrency, and performance characteristics as the
  3838      * backing map.  In essence, this factory method provides a {@link Set}
  3839      * implementation corresponding to any {@link Map} implementation.  There
  3840      * is no need to use this method on a {@link Map} implementation that
  3841      * already has a corresponding {@link Set} implementation (such as {@link
  3842      * HashMap} or {@link TreeMap}).
  3843      *
  3844      * <p>Each method invocation on the set returned by this method results in
  3845      * exactly one method invocation on the backing map or its <tt>keySet</tt>
  3846      * view, with one exception.  The <tt>addAll</tt> method is implemented
  3847      * as a sequence of <tt>put</tt> invocations on the backing map.
  3848      *
  3849      * <p>The specified map must be empty at the time this method is invoked,
  3850      * and should not be accessed directly after this method returns.  These
  3851      * conditions are ensured if the map is created empty, passed directly
  3852      * to this method, and no reference to the map is retained, as illustrated
  3853      * in the following code fragment:
  3854      * <pre>
  3855      *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
  3856      *        new WeakHashMap&lt;Object, Boolean&gt;());
  3857      * </pre>
  3858      *
  3859      * @param map the backing map
  3860      * @return the set backed by the map
  3861      * @throws IllegalArgumentException if <tt>map</tt> is not empty
  3862      * @since 1.6
  3863      */
  3864     public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
  3865         return new SetFromMap<>(map);
  3866     }
  3867 
  3868     /**
  3869      * @serial include
  3870      */
  3871     private static class SetFromMap<E> extends AbstractSet<E>
  3872         implements Set<E>, Serializable
  3873     {
  3874         private final Map<E, Boolean> m;  // The backing map
  3875         private transient Set<E> s;       // Its keySet
  3876 
  3877         SetFromMap(Map<E, Boolean> map) {
  3878             if (!map.isEmpty())
  3879                 throw new IllegalArgumentException("Map is non-empty");
  3880             m = map;
  3881             s = map.keySet();
  3882         }
  3883 
  3884         public void clear()               {        m.clear(); }
  3885         public int size()                 { return m.size(); }
  3886         public boolean isEmpty()          { return m.isEmpty(); }
  3887         public boolean contains(Object o) { return m.containsKey(o); }
  3888         public boolean remove(Object o)   { return m.remove(o) != null; }
  3889         public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
  3890         public Iterator<E> iterator()     { return s.iterator(); }
  3891         public Object[] toArray()         { return s.toArray(); }
  3892         public <T> T[] toArray(T[] a)     { return s.toArray(a); }
  3893         public String toString()          { return s.toString(); }
  3894         public int hashCode()             { return s.hashCode(); }
  3895         public boolean equals(Object o)   { return o == this || s.equals(o); }
  3896         public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
  3897         public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
  3898         public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
  3899         // addAll is the only inherited implementation
  3900 
  3901         private static final long serialVersionUID = 2454657854757543876L;
  3902 
  3903     }
  3904 
  3905     /**
  3906      * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
  3907      * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
  3908      * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
  3909      * view can be useful when you would like to use a method
  3910      * requiring a <tt>Queue</tt> but you need Lifo ordering.
  3911      *
  3912      * <p>Each method invocation on the queue returned by this method
  3913      * results in exactly one method invocation on the backing deque, with
  3914      * one exception.  The {@link Queue#addAll addAll} method is
  3915      * implemented as a sequence of {@link Deque#addFirst addFirst}
  3916      * invocations on the backing deque.
  3917      *
  3918      * @param deque the deque
  3919      * @return the queue
  3920      * @since  1.6
  3921      */
  3922     public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
  3923         return new AsLIFOQueue<>(deque);
  3924     }
  3925 
  3926     /**
  3927      * @serial include
  3928      */
  3929     static class AsLIFOQueue<E> extends AbstractQueue<E>
  3930         implements Queue<E>, Serializable {
  3931         private static final long serialVersionUID = 1802017725587941708L;
  3932         private final Deque<E> q;
  3933         AsLIFOQueue(Deque<E> q)           { this.q = q; }
  3934         public boolean add(E e)           { q.addFirst(e); return true; }
  3935         public boolean offer(E e)         { return q.offerFirst(e); }
  3936         public E poll()                   { return q.pollFirst(); }
  3937         public E remove()                 { return q.removeFirst(); }
  3938         public E peek()                   { return q.peekFirst(); }
  3939         public E element()                { return q.getFirst(); }
  3940         public void clear()               {        q.clear(); }
  3941         public int size()                 { return q.size(); }
  3942         public boolean isEmpty()          { return q.isEmpty(); }
  3943         public boolean contains(Object o) { return q.contains(o); }
  3944         public boolean remove(Object o)   { return q.remove(o); }
  3945         public Iterator<E> iterator()     { return q.iterator(); }
  3946         public Object[] toArray()         { return q.toArray(); }
  3947         public <T> T[] toArray(T[] a)     { return q.toArray(a); }
  3948         public String toString()          { return q.toString(); }
  3949         public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
  3950         public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
  3951         public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
  3952         // We use inherited addAll; forwarding addAll would be wrong
  3953     }
  3954 }