emul/compact/src/main/java/java/util/Collections.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Mon, 28 Jan 2013 13:28:02 +0100
branchjdk7-b147
changeset 597 ee8a922f4268
child 599 d0f57d3ea898
permissions -rw-r--r--
More classes requested by FX team
     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.util;
    27 import java.io.Serializable;
    28 import java.io.ObjectOutputStream;
    29 import java.io.IOException;
    30 import java.lang.reflect.Array;
    31 
    32 /**
    33  * This class consists exclusively of static methods that operate on or return
    34  * collections.  It contains polymorphic algorithms that operate on
    35  * collections, "wrappers", which return a new collection backed by a
    36  * specified collection, and a few other odds and ends.
    37  *
    38  * <p>The methods of this class all throw a <tt>NullPointerException</tt>
    39  * if the collections or class objects provided to them are null.
    40  *
    41  * <p>The documentation for the polymorphic algorithms contained in this class
    42  * generally includes a brief description of the <i>implementation</i>.  Such
    43  * descriptions should be regarded as <i>implementation notes</i>, rather than
    44  * parts of the <i>specification</i>.  Implementors should feel free to
    45  * substitute other algorithms, so long as the specification itself is adhered
    46  * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
    47  * a mergesort, but it does have to be <i>stable</i>.)
    48  *
    49  * <p>The "destructive" algorithms contained in this class, that is, the
    50  * algorithms that modify the collection on which they operate, are specified
    51  * to throw <tt>UnsupportedOperationException</tt> if the collection does not
    52  * support the appropriate mutation primitive(s), such as the <tt>set</tt>
    53  * method.  These algorithms may, but are not required to, throw this
    54  * exception if an invocation would have no effect on the collection.  For
    55  * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
    56  * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
    57  *
    58  * <p>This class is a member of the
    59  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
    60  * Java Collections Framework</a>.
    61  *
    62  * @author  Josh Bloch
    63  * @author  Neal Gafter
    64  * @see     Collection
    65  * @see     Set
    66  * @see     List
    67  * @see     Map
    68  * @since   1.2
    69  */
    70 
    71 public class Collections {
    72     // Suppresses default constructor, ensuring non-instantiability.
    73     private Collections() {
    74     }
    75 
    76     // Algorithms
    77 
    78     /*
    79      * Tuning parameters for algorithms - Many of the List algorithms have
    80      * two implementations, one of which is appropriate for RandomAccess
    81      * lists, the other for "sequential."  Often, the random access variant
    82      * yields better performance on small sequential access lists.  The
    83      * tuning parameters below determine the cutoff point for what constitutes
    84      * a "small" sequential access list for each algorithm.  The values below
    85      * were empirically determined to work well for LinkedList. Hopefully
    86      * they should be reasonable for other sequential access List
    87      * implementations.  Those doing performance work on this code would
    88      * do well to validate the values of these parameters from time to time.
    89      * (The first word of each tuning parameter name is the algorithm to which
    90      * it applies.)
    91      */
    92     private static final int BINARYSEARCH_THRESHOLD   = 5000;
    93     private static final int REVERSE_THRESHOLD        =   18;
    94     private static final int SHUFFLE_THRESHOLD        =    5;
    95     private static final int FILL_THRESHOLD           =   25;
    96     private static final int ROTATE_THRESHOLD         =  100;
    97     private static final int COPY_THRESHOLD           =   10;
    98     private static final int REPLACEALL_THRESHOLD     =   11;
    99     private static final int INDEXOFSUBLIST_THRESHOLD =   35;
   100 
   101     /**
   102      * Sorts the specified list into ascending order, according to the
   103      * {@linkplain Comparable natural ordering} of its elements.
   104      * All elements in the list must implement the {@link Comparable}
   105      * interface.  Furthermore, all elements in the list must be
   106      * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
   107      * must not throw a {@code ClassCastException} for any elements
   108      * {@code e1} and {@code e2} in the list).
   109      *
   110      * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
   111      * not be reordered as a result of the sort.
   112      *
   113      * <p>The specified list must be modifiable, but need not be resizable.
   114      *
   115      * <p>Implementation note: This implementation is a stable, adaptive,
   116      * iterative mergesort that requires far fewer than n lg(n) comparisons
   117      * when the input array is partially sorted, while offering the
   118      * performance of a traditional mergesort when the input array is
   119      * randomly ordered.  If the input array is nearly sorted, the
   120      * implementation requires approximately n comparisons.  Temporary
   121      * storage requirements vary from a small constant for nearly sorted
   122      * input arrays to n/2 object references for randomly ordered input
   123      * arrays.
   124      *
   125      * <p>The implementation takes equal advantage of ascending and
   126      * descending order in its input array, and can take advantage of
   127      * ascending and descending order in different parts of the same
   128      * input array.  It is well-suited to merging two or more sorted arrays:
   129      * simply concatenate the arrays and sort the resulting array.
   130      *
   131      * <p>The implementation was adapted from Tim Peters's list sort for Python
   132      * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
   133      * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
   134      * Sorting and Information Theoretic Complexity", in Proceedings of the
   135      * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
   136      * January 1993.
   137      *
   138      * <p>This implementation dumps the specified list into an array, sorts
   139      * the array, and iterates over the list resetting each element
   140      * from the corresponding position in the array.  This avoids the
   141      * n<sup>2</sup> log(n) performance that would result from attempting
   142      * to sort a linked list in place.
   143      *
   144      * @param  list the list to be sorted.
   145      * @throws ClassCastException if the list contains elements that are not
   146      *         <i>mutually comparable</i> (for example, strings and integers).
   147      * @throws UnsupportedOperationException if the specified list's
   148      *         list-iterator does not support the {@code set} operation.
   149      * @throws IllegalArgumentException (optional) if the implementation
   150      *         detects that the natural ordering of the list elements is
   151      *         found to violate the {@link Comparable} contract
   152      */
   153     public static <T extends Comparable<? super T>> void sort(List<T> list) {
   154         Object[] a = list.toArray();
   155         Arrays.sort(a);
   156         ListIterator<T> i = list.listIterator();
   157         for (int j=0; j<a.length; j++) {
   158             i.next();
   159             i.set((T)a[j]);
   160         }
   161     }
   162 
   163     /**
   164      * Sorts the specified list according to the order induced by the
   165      * specified comparator.  All elements in the list must be <i>mutually
   166      * comparable</i> using the specified comparator (that is,
   167      * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
   168      * for any elements {@code e1} and {@code e2} in the list).
   169      *
   170      * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
   171      * not be reordered as a result of the sort.
   172      *
   173      * <p>The specified list must be modifiable, but need not be resizable.
   174      *
   175      * <p>Implementation note: This implementation is a stable, adaptive,
   176      * iterative mergesort that requires far fewer than n lg(n) comparisons
   177      * when the input array is partially sorted, while offering the
   178      * performance of a traditional mergesort when the input array is
   179      * randomly ordered.  If the input array is nearly sorted, the
   180      * implementation requires approximately n comparisons.  Temporary
   181      * storage requirements vary from a small constant for nearly sorted
   182      * input arrays to n/2 object references for randomly ordered input
   183      * arrays.
   184      *
   185      * <p>The implementation takes equal advantage of ascending and
   186      * descending order in its input array, and can take advantage of
   187      * ascending and descending order in different parts of the same
   188      * input array.  It is well-suited to merging two or more sorted arrays:
   189      * simply concatenate the arrays and sort the resulting array.
   190      *
   191      * <p>The implementation was adapted from Tim Peters's list sort for Python
   192      * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
   193      * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
   194      * Sorting and Information Theoretic Complexity", in Proceedings of the
   195      * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
   196      * January 1993.
   197      *
   198      * <p>This implementation dumps the specified list into an array, sorts
   199      * the array, and iterates over the list resetting each element
   200      * from the corresponding position in the array.  This avoids the
   201      * n<sup>2</sup> log(n) performance that would result from attempting
   202      * to sort a linked list in place.
   203      *
   204      * @param  list the list to be sorted.
   205      * @param  c the comparator to determine the order of the list.  A
   206      *        {@code null} value indicates that the elements' <i>natural
   207      *        ordering</i> should be used.
   208      * @throws ClassCastException if the list contains elements that are not
   209      *         <i>mutually comparable</i> using the specified comparator.
   210      * @throws UnsupportedOperationException if the specified list's
   211      *         list-iterator does not support the {@code set} operation.
   212      * @throws IllegalArgumentException (optional) if the comparator is
   213      *         found to violate the {@link Comparator} contract
   214      */
   215     public static <T> void sort(List<T> list, Comparator<? super T> c) {
   216         Object[] a = list.toArray();
   217         Arrays.sort(a, (Comparator)c);
   218         ListIterator i = list.listIterator();
   219         for (int j=0; j<a.length; j++) {
   220             i.next();
   221             i.set(a[j]);
   222         }
   223     }
   224 
   225 
   226     /**
   227      * Searches the specified list for the specified object using the binary
   228      * search algorithm.  The list must be sorted into ascending order
   229      * according to the {@linkplain Comparable natural ordering} of its
   230      * elements (as by the {@link #sort(List)} method) prior to making this
   231      * call.  If it is not sorted, the results are undefined.  If the list
   232      * contains multiple elements equal to the specified object, there is no
   233      * guarantee which one will be found.
   234      *
   235      * <p>This method runs in log(n) time for a "random access" list (which
   236      * provides near-constant-time positional access).  If the specified list
   237      * does not implement the {@link RandomAccess} interface and is large,
   238      * this method will do an iterator-based binary search that performs
   239      * O(n) link traversals and O(log n) element comparisons.
   240      *
   241      * @param  list the list to be searched.
   242      * @param  key the key to be searched for.
   243      * @return the index of the search key, if it is contained in the list;
   244      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
   245      *         <i>insertion point</i> is defined as the point at which the
   246      *         key would be inserted into the list: the index of the first
   247      *         element greater than the key, or <tt>list.size()</tt> if all
   248      *         elements in the list are less than the specified key.  Note
   249      *         that this guarantees that the return value will be &gt;= 0 if
   250      *         and only if the key is found.
   251      * @throws ClassCastException if the list contains elements that are not
   252      *         <i>mutually comparable</i> (for example, strings and
   253      *         integers), or the search key is not mutually comparable
   254      *         with the elements of the list.
   255      */
   256     public static <T>
   257     int binarySearch(List<? extends Comparable<? super T>> list, T key) {
   258         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
   259             return Collections.indexedBinarySearch(list, key);
   260         else
   261             return Collections.iteratorBinarySearch(list, key);
   262     }
   263 
   264     private static <T>
   265     int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
   266     {
   267         int low = 0;
   268         int high = list.size()-1;
   269 
   270         while (low <= high) {
   271             int mid = (low + high) >>> 1;
   272             Comparable<? super T> midVal = list.get(mid);
   273             int cmp = midVal.compareTo(key);
   274 
   275             if (cmp < 0)
   276                 low = mid + 1;
   277             else if (cmp > 0)
   278                 high = mid - 1;
   279             else
   280                 return mid; // key found
   281         }
   282         return -(low + 1);  // key not found
   283     }
   284 
   285     private static <T>
   286     int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
   287     {
   288         int low = 0;
   289         int high = list.size()-1;
   290         ListIterator<? extends Comparable<? super T>> i = list.listIterator();
   291 
   292         while (low <= high) {
   293             int mid = (low + high) >>> 1;
   294             Comparable<? super T> midVal = get(i, mid);
   295             int cmp = midVal.compareTo(key);
   296 
   297             if (cmp < 0)
   298                 low = mid + 1;
   299             else if (cmp > 0)
   300                 high = mid - 1;
   301             else
   302                 return mid; // key found
   303         }
   304         return -(low + 1);  // key not found
   305     }
   306 
   307     /**
   308      * Gets the ith element from the given list by repositioning the specified
   309      * list listIterator.
   310      */
   311     private static <T> T get(ListIterator<? extends T> i, int index) {
   312         T obj = null;
   313         int pos = i.nextIndex();
   314         if (pos <= index) {
   315             do {
   316                 obj = i.next();
   317             } while (pos++ < index);
   318         } else {
   319             do {
   320                 obj = i.previous();
   321             } while (--pos > index);
   322         }
   323         return obj;
   324     }
   325 
   326     /**
   327      * Searches the specified list for the specified object using the binary
   328      * search algorithm.  The list must be sorted into ascending order
   329      * according to the specified comparator (as by the
   330      * {@link #sort(List, Comparator) sort(List, Comparator)}
   331      * method), prior to making this call.  If it is
   332      * not sorted, the results are undefined.  If the list contains multiple
   333      * elements equal to the specified object, there is no guarantee which one
   334      * will be found.
   335      *
   336      * <p>This method runs in log(n) time for a "random access" list (which
   337      * provides near-constant-time positional access).  If the specified list
   338      * does not implement the {@link RandomAccess} interface and is large,
   339      * this method will do an iterator-based binary search that performs
   340      * O(n) link traversals and O(log n) element comparisons.
   341      *
   342      * @param  list the list to be searched.
   343      * @param  key the key to be searched for.
   344      * @param  c the comparator by which the list is ordered.
   345      *         A <tt>null</tt> value indicates that the elements'
   346      *         {@linkplain Comparable natural ordering} should be used.
   347      * @return the index of the search key, if it is contained in the list;
   348      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
   349      *         <i>insertion point</i> is defined as the point at which the
   350      *         key would be inserted into the list: the index of the first
   351      *         element greater than the key, or <tt>list.size()</tt> if all
   352      *         elements in the list are less than the specified key.  Note
   353      *         that this guarantees that the return value will be &gt;= 0 if
   354      *         and only if the key is found.
   355      * @throws ClassCastException if the list contains elements that are not
   356      *         <i>mutually comparable</i> using the specified comparator,
   357      *         or the search key is not mutually comparable with the
   358      *         elements of the list using this comparator.
   359      */
   360     public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
   361         if (c==null)
   362             return binarySearch((List) list, key);
   363 
   364         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
   365             return Collections.indexedBinarySearch(list, key, c);
   366         else
   367             return Collections.iteratorBinarySearch(list, key, c);
   368     }
   369 
   370     private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
   371         int low = 0;
   372         int high = l.size()-1;
   373 
   374         while (low <= high) {
   375             int mid = (low + high) >>> 1;
   376             T midVal = l.get(mid);
   377             int cmp = c.compare(midVal, key);
   378 
   379             if (cmp < 0)
   380                 low = mid + 1;
   381             else if (cmp > 0)
   382                 high = mid - 1;
   383             else
   384                 return mid; // key found
   385         }
   386         return -(low + 1);  // key not found
   387     }
   388 
   389     private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
   390         int low = 0;
   391         int high = l.size()-1;
   392         ListIterator<? extends T> i = l.listIterator();
   393 
   394         while (low <= high) {
   395             int mid = (low + high) >>> 1;
   396             T midVal = get(i, mid);
   397             int cmp = c.compare(midVal, key);
   398 
   399             if (cmp < 0)
   400                 low = mid + 1;
   401             else if (cmp > 0)
   402                 high = mid - 1;
   403             else
   404                 return mid; // key found
   405         }
   406         return -(low + 1);  // key not found
   407     }
   408 
   409     private interface SelfComparable extends Comparable<SelfComparable> {}
   410 
   411 
   412     /**
   413      * Reverses the order of the elements in the specified list.<p>
   414      *
   415      * This method runs in linear time.
   416      *
   417      * @param  list the list whose elements are to be reversed.
   418      * @throws UnsupportedOperationException if the specified list or
   419      *         its list-iterator does not support the <tt>set</tt> operation.
   420      */
   421     public static void reverse(List<?> list) {
   422         int size = list.size();
   423         if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
   424             for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
   425                 swap(list, i, j);
   426         } else {
   427             ListIterator fwd = list.listIterator();
   428             ListIterator rev = list.listIterator(size);
   429             for (int i=0, mid=list.size()>>1; i<mid; i++) {
   430                 Object tmp = fwd.next();
   431                 fwd.set(rev.previous());
   432                 rev.set(tmp);
   433             }
   434         }
   435     }
   436 
   437     /**
   438      * Randomly permutes the specified list using a default source of
   439      * randomness.  All permutations occur with approximately equal
   440      * likelihood.<p>
   441      *
   442      * The hedge "approximately" is used in the foregoing description because
   443      * default source of randomness is only approximately an unbiased source
   444      * of independently chosen bits. If it were a perfect source of randomly
   445      * chosen bits, then the algorithm would choose permutations with perfect
   446      * uniformity.<p>
   447      *
   448      * This implementation traverses the list backwards, from the last element
   449      * up to the second, repeatedly swapping a randomly selected element into
   450      * the "current position".  Elements are randomly selected from the
   451      * portion of the list that runs from the first element to the current
   452      * position, inclusive.<p>
   453      *
   454      * This method runs in linear time.  If the specified list does not
   455      * implement the {@link RandomAccess} interface and is large, this
   456      * implementation dumps the specified list into an array before shuffling
   457      * it, and dumps the shuffled array back into the list.  This avoids the
   458      * quadratic behavior that would result from shuffling a "sequential
   459      * access" list in place.
   460      *
   461      * @param  list the list to be shuffled.
   462      * @throws UnsupportedOperationException if the specified list or
   463      *         its list-iterator does not support the <tt>set</tt> operation.
   464      */
   465     public static void shuffle(List<?> list) {
   466         Random rnd = r;
   467         if (rnd == null)
   468             r = rnd = new Random();
   469         shuffle(list, rnd);
   470     }
   471     private static Random r;
   472 
   473     /**
   474      * Randomly permute the specified list using the specified source of
   475      * randomness.  All permutations occur with equal likelihood
   476      * assuming that the source of randomness is fair.<p>
   477      *
   478      * This implementation traverses the list backwards, from the last element
   479      * up to the second, repeatedly swapping a randomly selected element into
   480      * the "current position".  Elements are randomly selected from the
   481      * portion of the list that runs from the first element to the current
   482      * position, inclusive.<p>
   483      *
   484      * This method runs in linear time.  If the specified list does not
   485      * implement the {@link RandomAccess} interface and is large, this
   486      * implementation dumps the specified list into an array before shuffling
   487      * it, and dumps the shuffled array back into the list.  This avoids the
   488      * quadratic behavior that would result from shuffling a "sequential
   489      * access" list in place.
   490      *
   491      * @param  list the list to be shuffled.
   492      * @param  rnd the source of randomness to use to shuffle the list.
   493      * @throws UnsupportedOperationException if the specified list or its
   494      *         list-iterator does not support the <tt>set</tt> operation.
   495      */
   496     public static void shuffle(List<?> list, Random rnd) {
   497         int size = list.size();
   498         if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
   499             for (int i=size; i>1; i--)
   500                 swap(list, i-1, rnd.nextInt(i));
   501         } else {
   502             Object arr[] = list.toArray();
   503 
   504             // Shuffle array
   505             for (int i=size; i>1; i--)
   506                 swap(arr, i-1, rnd.nextInt(i));
   507 
   508             // Dump array back into list
   509             ListIterator it = list.listIterator();
   510             for (int i=0; i<arr.length; i++) {
   511                 it.next();
   512                 it.set(arr[i]);
   513             }
   514         }
   515     }
   516 
   517     /**
   518      * Swaps the elements at the specified positions in the specified list.
   519      * (If the specified positions are equal, invoking this method leaves
   520      * the list unchanged.)
   521      *
   522      * @param list The list in which to swap elements.
   523      * @param i the index of one element to be swapped.
   524      * @param j the index of the other element to be swapped.
   525      * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
   526      *         is out of range (i &lt; 0 || i &gt;= list.size()
   527      *         || j &lt; 0 || j &gt;= list.size()).
   528      * @since 1.4
   529      */
   530     public static void swap(List<?> list, int i, int j) {
   531         final List l = list;
   532         l.set(i, l.set(j, l.get(i)));
   533     }
   534 
   535     /**
   536      * Swaps the two specified elements in the specified array.
   537      */
   538     private static void swap(Object[] arr, int i, int j) {
   539         Object tmp = arr[i];
   540         arr[i] = arr[j];
   541         arr[j] = tmp;
   542     }
   543 
   544     /**
   545      * Replaces all of the elements of the specified list with the specified
   546      * element. <p>
   547      *
   548      * This method runs in linear time.
   549      *
   550      * @param  list the list to be filled with the specified element.
   551      * @param  obj The element with which to fill the specified list.
   552      * @throws UnsupportedOperationException if the specified list or its
   553      *         list-iterator does not support the <tt>set</tt> operation.
   554      */
   555     public static <T> void fill(List<? super T> list, T obj) {
   556         int size = list.size();
   557 
   558         if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
   559             for (int i=0; i<size; i++)
   560                 list.set(i, obj);
   561         } else {
   562             ListIterator<? super T> itr = list.listIterator();
   563             for (int i=0; i<size; i++) {
   564                 itr.next();
   565                 itr.set(obj);
   566             }
   567         }
   568     }
   569 
   570     /**
   571      * Copies all of the elements from one list into another.  After the
   572      * operation, the index of each copied element in the destination list
   573      * will be identical to its index in the source list.  The destination
   574      * list must be at least as long as the source list.  If it is longer, the
   575      * remaining elements in the destination list are unaffected. <p>
   576      *
   577      * This method runs in linear time.
   578      *
   579      * @param  dest The destination list.
   580      * @param  src The source list.
   581      * @throws IndexOutOfBoundsException if the destination list is too small
   582      *         to contain the entire source List.
   583      * @throws UnsupportedOperationException if the destination list's
   584      *         list-iterator does not support the <tt>set</tt> operation.
   585      */
   586     public static <T> void copy(List<? super T> dest, List<? extends T> src) {
   587         int srcSize = src.size();
   588         if (srcSize > dest.size())
   589             throw new IndexOutOfBoundsException("Source does not fit in dest");
   590 
   591         if (srcSize < COPY_THRESHOLD ||
   592             (src instanceof RandomAccess && dest instanceof RandomAccess)) {
   593             for (int i=0; i<srcSize; i++)
   594                 dest.set(i, src.get(i));
   595         } else {
   596             ListIterator<? super T> di=dest.listIterator();
   597             ListIterator<? extends T> si=src.listIterator();
   598             for (int i=0; i<srcSize; i++) {
   599                 di.next();
   600                 di.set(si.next());
   601             }
   602         }
   603     }
   604 
   605     /**
   606      * Returns the minimum element of the given collection, according to the
   607      * <i>natural ordering</i> of its elements.  All elements in the
   608      * collection must implement the <tt>Comparable</tt> interface.
   609      * Furthermore, all elements in the collection must be <i>mutually
   610      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
   611      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
   612      * <tt>e2</tt> in the collection).<p>
   613      *
   614      * This method iterates over the entire collection, hence it requires
   615      * time proportional to the size of the collection.
   616      *
   617      * @param  coll the collection whose minimum element is to be determined.
   618      * @return the minimum element of the given collection, according
   619      *         to the <i>natural ordering</i> of its elements.
   620      * @throws ClassCastException if the collection contains elements that are
   621      *         not <i>mutually comparable</i> (for example, strings and
   622      *         integers).
   623      * @throws NoSuchElementException if the collection is empty.
   624      * @see Comparable
   625      */
   626     public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
   627         Iterator<? extends T> i = coll.iterator();
   628         T candidate = i.next();
   629 
   630         while (i.hasNext()) {
   631             T next = i.next();
   632             if (next.compareTo(candidate) < 0)
   633                 candidate = next;
   634         }
   635         return candidate;
   636     }
   637 
   638     /**
   639      * Returns the minimum element of the given collection, according to the
   640      * order induced by the specified comparator.  All elements in the
   641      * collection must be <i>mutually comparable</i> by the specified
   642      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
   643      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
   644      * <tt>e2</tt> in the collection).<p>
   645      *
   646      * This method iterates over the entire collection, hence it requires
   647      * time proportional to the size of the collection.
   648      *
   649      * @param  coll the collection whose minimum element is to be determined.
   650      * @param  comp the comparator with which to determine the minimum element.
   651      *         A <tt>null</tt> value indicates that the elements' <i>natural
   652      *         ordering</i> should be used.
   653      * @return the minimum element of the given collection, according
   654      *         to the specified comparator.
   655      * @throws ClassCastException if the collection contains elements that are
   656      *         not <i>mutually comparable</i> using the specified comparator.
   657      * @throws NoSuchElementException if the collection is empty.
   658      * @see Comparable
   659      */
   660     public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
   661         if (comp==null)
   662             return (T)min((Collection<SelfComparable>) (Collection) coll);
   663 
   664         Iterator<? extends T> i = coll.iterator();
   665         T candidate = i.next();
   666 
   667         while (i.hasNext()) {
   668             T next = i.next();
   669             if (comp.compare(next, candidate) < 0)
   670                 candidate = next;
   671         }
   672         return candidate;
   673     }
   674 
   675     /**
   676      * Returns the maximum element of the given collection, according to the
   677      * <i>natural ordering</i> of its elements.  All elements in the
   678      * collection must implement the <tt>Comparable</tt> interface.
   679      * Furthermore, all elements in the collection must be <i>mutually
   680      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
   681      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
   682      * <tt>e2</tt> in the collection).<p>
   683      *
   684      * This method iterates over the entire collection, hence it requires
   685      * time proportional to the size of the collection.
   686      *
   687      * @param  coll the collection whose maximum element is to be determined.
   688      * @return the maximum element of the given collection, according
   689      *         to the <i>natural ordering</i> of its elements.
   690      * @throws ClassCastException if the collection contains elements that are
   691      *         not <i>mutually comparable</i> (for example, strings and
   692      *         integers).
   693      * @throws NoSuchElementException if the collection is empty.
   694      * @see Comparable
   695      */
   696     public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
   697         Iterator<? extends T> i = coll.iterator();
   698         T candidate = i.next();
   699 
   700         while (i.hasNext()) {
   701             T next = i.next();
   702             if (next.compareTo(candidate) > 0)
   703                 candidate = next;
   704         }
   705         return candidate;
   706     }
   707 
   708     /**
   709      * Returns the maximum element of the given collection, according to the
   710      * order induced by the specified comparator.  All elements in the
   711      * collection must be <i>mutually comparable</i> by the specified
   712      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
   713      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
   714      * <tt>e2</tt> in the collection).<p>
   715      *
   716      * This method iterates over the entire collection, hence it requires
   717      * time proportional to the size of the collection.
   718      *
   719      * @param  coll the collection whose maximum element is to be determined.
   720      * @param  comp the comparator with which to determine the maximum element.
   721      *         A <tt>null</tt> value indicates that the elements' <i>natural
   722      *        ordering</i> should be used.
   723      * @return the maximum element of the given collection, according
   724      *         to the specified comparator.
   725      * @throws ClassCastException if the collection contains elements that are
   726      *         not <i>mutually comparable</i> using the specified comparator.
   727      * @throws NoSuchElementException if the collection is empty.
   728      * @see Comparable
   729      */
   730     public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
   731         if (comp==null)
   732             return (T)max((Collection<SelfComparable>) (Collection) coll);
   733 
   734         Iterator<? extends T> i = coll.iterator();
   735         T candidate = i.next();
   736 
   737         while (i.hasNext()) {
   738             T next = i.next();
   739             if (comp.compare(next, candidate) > 0)
   740                 candidate = next;
   741         }
   742         return candidate;
   743     }
   744 
   745     /**
   746      * Rotates the elements in the specified list by the specified distance.
   747      * After calling this method, the element at index <tt>i</tt> will be
   748      * the element previously at index <tt>(i - distance)</tt> mod
   749      * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
   750      * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
   751      * the size of the list.)
   752      *
   753      * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
   754      * After invoking <tt>Collections.rotate(list, 1)</tt> (or
   755      * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
   756      * <tt>[s, t, a, n, k]</tt>.
   757      *
   758      * <p>Note that this method can usefully be applied to sublists to
   759      * move one or more elements within a list while preserving the
   760      * order of the remaining elements.  For example, the following idiom
   761      * moves the element at index <tt>j</tt> forward to position
   762      * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
   763      * <pre>
   764      *     Collections.rotate(list.subList(j, k+1), -1);
   765      * </pre>
   766      * To make this concrete, suppose <tt>list</tt> comprises
   767      * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
   768      * (<tt>b</tt>) forward two positions, perform the following invocation:
   769      * <pre>
   770      *     Collections.rotate(l.subList(1, 4), -1);
   771      * </pre>
   772      * The resulting list is <tt>[a, c, d, b, e]</tt>.
   773      *
   774      * <p>To move more than one element forward, increase the absolute value
   775      * of the rotation distance.  To move elements backward, use a positive
   776      * shift distance.
   777      *
   778      * <p>If the specified list is small or implements the {@link
   779      * RandomAccess} interface, this implementation exchanges the first
   780      * element into the location it should go, and then repeatedly exchanges
   781      * the displaced element into the location it should go until a displaced
   782      * element is swapped into the first element.  If necessary, the process
   783      * is repeated on the second and successive elements, until the rotation
   784      * is complete.  If the specified list is large and doesn't implement the
   785      * <tt>RandomAccess</tt> interface, this implementation breaks the
   786      * list into two sublist views around index <tt>-distance mod size</tt>.
   787      * Then the {@link #reverse(List)} method is invoked on each sublist view,
   788      * and finally it is invoked on the entire list.  For a more complete
   789      * description of both algorithms, see Section 2.3 of Jon Bentley's
   790      * <i>Programming Pearls</i> (Addison-Wesley, 1986).
   791      *
   792      * @param list the list to be rotated.
   793      * @param distance the distance to rotate the list.  There are no
   794      *        constraints on this value; it may be zero, negative, or
   795      *        greater than <tt>list.size()</tt>.
   796      * @throws UnsupportedOperationException if the specified list or
   797      *         its list-iterator does not support the <tt>set</tt> operation.
   798      * @since 1.4
   799      */
   800     public static void rotate(List<?> list, int distance) {
   801         if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
   802             rotate1(list, distance);
   803         else
   804             rotate2(list, distance);
   805     }
   806 
   807     private static <T> void rotate1(List<T> list, int distance) {
   808         int size = list.size();
   809         if (size == 0)
   810             return;
   811         distance = distance % size;
   812         if (distance < 0)
   813             distance += size;
   814         if (distance == 0)
   815             return;
   816 
   817         for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
   818             T displaced = list.get(cycleStart);
   819             int i = cycleStart;
   820             do {
   821                 i += distance;
   822                 if (i >= size)
   823                     i -= size;
   824                 displaced = list.set(i, displaced);
   825                 nMoved ++;
   826             } while (i != cycleStart);
   827         }
   828     }
   829 
   830     private static void rotate2(List<?> list, int distance) {
   831         int size = list.size();
   832         if (size == 0)
   833             return;
   834         int mid =  -distance % size;
   835         if (mid < 0)
   836             mid += size;
   837         if (mid == 0)
   838             return;
   839 
   840         reverse(list.subList(0, mid));
   841         reverse(list.subList(mid, size));
   842         reverse(list);
   843     }
   844 
   845     /**
   846      * Replaces all occurrences of one specified value in a list with another.
   847      * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
   848      * in <tt>list</tt> such that
   849      * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
   850      * (This method has no effect on the size of the list.)
   851      *
   852      * @param list the list in which replacement is to occur.
   853      * @param oldVal the old value to be replaced.
   854      * @param newVal the new value with which <tt>oldVal</tt> is to be
   855      *        replaced.
   856      * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
   857      *         <tt>e</tt> such that
   858      *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
   859      * @throws UnsupportedOperationException if the specified list or
   860      *         its list-iterator does not support the <tt>set</tt> operation.
   861      * @since  1.4
   862      */
   863     public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
   864         boolean result = false;
   865         int size = list.size();
   866         if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
   867             if (oldVal==null) {
   868                 for (int i=0; i<size; i++) {
   869                     if (list.get(i)==null) {
   870                         list.set(i, newVal);
   871                         result = true;
   872                     }
   873                 }
   874             } else {
   875                 for (int i=0; i<size; i++) {
   876                     if (oldVal.equals(list.get(i))) {
   877                         list.set(i, newVal);
   878                         result = true;
   879                     }
   880                 }
   881             }
   882         } else {
   883             ListIterator<T> itr=list.listIterator();
   884             if (oldVal==null) {
   885                 for (int i=0; i<size; i++) {
   886                     if (itr.next()==null) {
   887                         itr.set(newVal);
   888                         result = true;
   889                     }
   890                 }
   891             } else {
   892                 for (int i=0; i<size; i++) {
   893                     if (oldVal.equals(itr.next())) {
   894                         itr.set(newVal);
   895                         result = true;
   896                     }
   897                 }
   898             }
   899         }
   900         return result;
   901     }
   902 
   903     /**
   904      * Returns the starting position of the first occurrence of the specified
   905      * target list within the specified source list, or -1 if there is no
   906      * such occurrence.  More formally, returns the lowest index <tt>i</tt>
   907      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
   908      * or -1 if there is no such index.  (Returns -1 if
   909      * <tt>target.size() > source.size()</tt>.)
   910      *
   911      * <p>This implementation uses the "brute force" technique of scanning
   912      * over the source list, looking for a match with the target at each
   913      * location in turn.
   914      *
   915      * @param source the list in which to search for the first occurrence
   916      *        of <tt>target</tt>.
   917      * @param target the list to search for as a subList of <tt>source</tt>.
   918      * @return the starting position of the first occurrence of the specified
   919      *         target list within the specified source list, or -1 if there
   920      *         is no such occurrence.
   921      * @since  1.4
   922      */
   923     public static int indexOfSubList(List<?> source, List<?> target) {
   924         int sourceSize = source.size();
   925         int targetSize = target.size();
   926         int maxCandidate = sourceSize - targetSize;
   927 
   928         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
   929             (source instanceof RandomAccess&&target instanceof RandomAccess)) {
   930         nextCand:
   931             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
   932                 for (int i=0, j=candidate; i<targetSize; i++, j++)
   933                     if (!eq(target.get(i), source.get(j)))
   934                         continue nextCand;  // Element mismatch, try next cand
   935                 return candidate;  // All elements of candidate matched target
   936             }
   937         } else {  // Iterator version of above algorithm
   938             ListIterator<?> si = source.listIterator();
   939         nextCand:
   940             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
   941                 ListIterator<?> ti = target.listIterator();
   942                 for (int i=0; i<targetSize; i++) {
   943                     if (!eq(ti.next(), si.next())) {
   944                         // Back up source iterator to next candidate
   945                         for (int j=0; j<i; j++)
   946                             si.previous();
   947                         continue nextCand;
   948                     }
   949                 }
   950                 return candidate;
   951             }
   952         }
   953         return -1;  // No candidate matched the target
   954     }
   955 
   956     /**
   957      * Returns the starting position of the last occurrence of the specified
   958      * target list within the specified source list, or -1 if there is no such
   959      * occurrence.  More formally, returns the highest index <tt>i</tt>
   960      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
   961      * or -1 if there is no such index.  (Returns -1 if
   962      * <tt>target.size() > source.size()</tt>.)
   963      *
   964      * <p>This implementation uses the "brute force" technique of iterating
   965      * over the source list, looking for a match with the target at each
   966      * location in turn.
   967      *
   968      * @param source the list in which to search for the last occurrence
   969      *        of <tt>target</tt>.
   970      * @param target the list to search for as a subList of <tt>source</tt>.
   971      * @return the starting position of the last occurrence of the specified
   972      *         target list within the specified source list, or -1 if there
   973      *         is no such occurrence.
   974      * @since  1.4
   975      */
   976     public static int lastIndexOfSubList(List<?> source, List<?> target) {
   977         int sourceSize = source.size();
   978         int targetSize = target.size();
   979         int maxCandidate = sourceSize - targetSize;
   980 
   981         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
   982             source instanceof RandomAccess) {   // Index access version
   983         nextCand:
   984             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
   985                 for (int i=0, j=candidate; i<targetSize; i++, j++)
   986                     if (!eq(target.get(i), source.get(j)))
   987                         continue nextCand;  // Element mismatch, try next cand
   988                 return candidate;  // All elements of candidate matched target
   989             }
   990         } else {  // Iterator version of above algorithm
   991             if (maxCandidate < 0)
   992                 return -1;
   993             ListIterator<?> si = source.listIterator(maxCandidate);
   994         nextCand:
   995             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
   996                 ListIterator<?> ti = target.listIterator();
   997                 for (int i=0; i<targetSize; i++) {
   998                     if (!eq(ti.next(), si.next())) {
   999                         if (candidate != 0) {
  1000                             // Back up source iterator to next candidate
  1001                             for (int j=0; j<=i+1; j++)
  1002                                 si.previous();
  1003                         }
  1004                         continue nextCand;
  1005                     }
  1006                 }
  1007                 return candidate;
  1008             }
  1009         }
  1010         return -1;  // No candidate matched the target
  1011     }
  1012 
  1013 
  1014     // Unmodifiable Wrappers
  1015 
  1016     /**
  1017      * Returns an unmodifiable view of the specified collection.  This method
  1018      * allows modules to provide users with "read-only" access to internal
  1019      * collections.  Query operations on the returned collection "read through"
  1020      * to the specified collection, and attempts to modify the returned
  1021      * collection, whether direct or via its iterator, result in an
  1022      * <tt>UnsupportedOperationException</tt>.<p>
  1023      *
  1024      * The returned collection does <i>not</i> pass the hashCode and equals
  1025      * operations through to the backing collection, but relies on
  1026      * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
  1027      * is necessary to preserve the contracts of these operations in the case
  1028      * that the backing collection is a set or a list.<p>
  1029      *
  1030      * The returned collection will be serializable if the specified collection
  1031      * is serializable.
  1032      *
  1033      * @param  c the collection for which an unmodifiable view is to be
  1034      *         returned.
  1035      * @return an unmodifiable view of the specified collection.
  1036      */
  1037     public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
  1038         return new UnmodifiableCollection<>(c);
  1039     }
  1040 
  1041     /**
  1042      * @serial include
  1043      */
  1044     static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
  1045         private static final long serialVersionUID = 1820017752578914078L;
  1046 
  1047         final Collection<? extends E> c;
  1048 
  1049         UnmodifiableCollection(Collection<? extends E> c) {
  1050             if (c==null)
  1051                 throw new NullPointerException();
  1052             this.c = c;
  1053         }
  1054 
  1055         public int size()                   {return c.size();}
  1056         public boolean isEmpty()            {return c.isEmpty();}
  1057         public boolean contains(Object o)   {return c.contains(o);}
  1058         public Object[] toArray()           {return c.toArray();}
  1059         public <T> T[] toArray(T[] a)       {return c.toArray(a);}
  1060         public String toString()            {return c.toString();}
  1061 
  1062         public Iterator<E> iterator() {
  1063             return new Iterator<E>() {
  1064                 private final Iterator<? extends E> i = c.iterator();
  1065 
  1066                 public boolean hasNext() {return i.hasNext();}
  1067                 public E next()          {return i.next();}
  1068                 public void remove() {
  1069                     throw new UnsupportedOperationException();
  1070                 }
  1071             };
  1072         }
  1073 
  1074         public boolean add(E e) {
  1075             throw new UnsupportedOperationException();
  1076         }
  1077         public boolean remove(Object o) {
  1078             throw new UnsupportedOperationException();
  1079         }
  1080 
  1081         public boolean containsAll(Collection<?> coll) {
  1082             return c.containsAll(coll);
  1083         }
  1084         public boolean addAll(Collection<? extends E> coll) {
  1085             throw new UnsupportedOperationException();
  1086         }
  1087         public boolean removeAll(Collection<?> coll) {
  1088             throw new UnsupportedOperationException();
  1089         }
  1090         public boolean retainAll(Collection<?> coll) {
  1091             throw new UnsupportedOperationException();
  1092         }
  1093         public void clear() {
  1094             throw new UnsupportedOperationException();
  1095         }
  1096     }
  1097 
  1098     /**
  1099      * Returns an unmodifiable view of the specified set.  This method allows
  1100      * modules to provide users with "read-only" access to internal sets.
  1101      * Query operations on the returned set "read through" to the specified
  1102      * set, and attempts to modify the returned set, whether direct or via its
  1103      * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
  1104      *
  1105      * The returned set will be serializable if the specified set
  1106      * is serializable.
  1107      *
  1108      * @param  s the set for which an unmodifiable view is to be returned.
  1109      * @return an unmodifiable view of the specified set.
  1110      */
  1111     public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
  1112         return new UnmodifiableSet<>(s);
  1113     }
  1114 
  1115     /**
  1116      * @serial include
  1117      */
  1118     static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
  1119                                  implements Set<E>, Serializable {
  1120         private static final long serialVersionUID = -9215047833775013803L;
  1121 
  1122         UnmodifiableSet(Set<? extends E> s)     {super(s);}
  1123         public boolean equals(Object o) {return o == this || c.equals(o);}
  1124         public int hashCode()           {return c.hashCode();}
  1125     }
  1126 
  1127     /**
  1128      * Returns an unmodifiable view of the specified sorted set.  This method
  1129      * allows modules to provide users with "read-only" access to internal
  1130      * sorted sets.  Query operations on the returned sorted set "read
  1131      * through" to the specified sorted set.  Attempts to modify the returned
  1132      * sorted set, whether direct, via its iterator, or via its
  1133      * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
  1134      * an <tt>UnsupportedOperationException</tt>.<p>
  1135      *
  1136      * The returned sorted set will be serializable if the specified sorted set
  1137      * is serializable.
  1138      *
  1139      * @param s the sorted set for which an unmodifiable view is to be
  1140      *        returned.
  1141      * @return an unmodifiable view of the specified sorted set.
  1142      */
  1143     public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
  1144         return new UnmodifiableSortedSet<>(s);
  1145     }
  1146 
  1147     /**
  1148      * @serial include
  1149      */
  1150     static class UnmodifiableSortedSet<E>
  1151                              extends UnmodifiableSet<E>
  1152                              implements SortedSet<E>, Serializable {
  1153         private static final long serialVersionUID = -4929149591599911165L;
  1154         private final SortedSet<E> ss;
  1155 
  1156         UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
  1157 
  1158         public Comparator<? super E> comparator() {return ss.comparator();}
  1159 
  1160         public SortedSet<E> subSet(E fromElement, E toElement) {
  1161             return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));
  1162         }
  1163         public SortedSet<E> headSet(E toElement) {
  1164             return new UnmodifiableSortedSet<>(ss.headSet(toElement));
  1165         }
  1166         public SortedSet<E> tailSet(E fromElement) {
  1167             return new UnmodifiableSortedSet<>(ss.tailSet(fromElement));
  1168         }
  1169 
  1170         public E first()                   {return ss.first();}
  1171         public E last()                    {return ss.last();}
  1172     }
  1173 
  1174     /**
  1175      * Returns an unmodifiable view of the specified list.  This method allows
  1176      * modules to provide users with "read-only" access to internal
  1177      * lists.  Query operations on the returned list "read through" to the
  1178      * specified list, and attempts to modify the returned list, whether
  1179      * direct or via its iterator, result in an
  1180      * <tt>UnsupportedOperationException</tt>.<p>
  1181      *
  1182      * The returned list will be serializable if the specified list
  1183      * is serializable. Similarly, the returned list will implement
  1184      * {@link RandomAccess} if the specified list does.
  1185      *
  1186      * @param  list the list for which an unmodifiable view is to be returned.
  1187      * @return an unmodifiable view of the specified list.
  1188      */
  1189     public static <T> List<T> unmodifiableList(List<? extends T> list) {
  1190         return (list instanceof RandomAccess ?
  1191                 new UnmodifiableRandomAccessList<>(list) :
  1192                 new UnmodifiableList<>(list));
  1193     }
  1194 
  1195     /**
  1196      * @serial include
  1197      */
  1198     static class UnmodifiableList<E> extends UnmodifiableCollection<E>
  1199                                   implements List<E> {
  1200         private static final long serialVersionUID = -283967356065247728L;
  1201         final List<? extends E> list;
  1202 
  1203         UnmodifiableList(List<? extends E> list) {
  1204             super(list);
  1205             this.list = list;
  1206         }
  1207 
  1208         public boolean equals(Object o) {return o == this || list.equals(o);}
  1209         public int hashCode()           {return list.hashCode();}
  1210 
  1211         public E get(int index) {return list.get(index);}
  1212         public E set(int index, E element) {
  1213             throw new UnsupportedOperationException();
  1214         }
  1215         public void add(int index, E element) {
  1216             throw new UnsupportedOperationException();
  1217         }
  1218         public E remove(int index) {
  1219             throw new UnsupportedOperationException();
  1220         }
  1221         public int indexOf(Object o)            {return list.indexOf(o);}
  1222         public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
  1223         public boolean addAll(int index, Collection<? extends E> c) {
  1224             throw new UnsupportedOperationException();
  1225         }
  1226         public ListIterator<E> listIterator()   {return listIterator(0);}
  1227 
  1228         public ListIterator<E> listIterator(final int index) {
  1229             return new ListIterator<E>() {
  1230                 private final ListIterator<? extends E> i
  1231                     = list.listIterator(index);
  1232 
  1233                 public boolean hasNext()     {return i.hasNext();}
  1234                 public E next()              {return i.next();}
  1235                 public boolean hasPrevious() {return i.hasPrevious();}
  1236                 public E previous()          {return i.previous();}
  1237                 public int nextIndex()       {return i.nextIndex();}
  1238                 public int previousIndex()   {return i.previousIndex();}
  1239 
  1240                 public void remove() {
  1241                     throw new UnsupportedOperationException();
  1242                 }
  1243                 public void set(E e) {
  1244                     throw new UnsupportedOperationException();
  1245                 }
  1246                 public void add(E e) {
  1247                     throw new UnsupportedOperationException();
  1248                 }
  1249             };
  1250         }
  1251 
  1252         public List<E> subList(int fromIndex, int toIndex) {
  1253             return new UnmodifiableList<>(list.subList(fromIndex, toIndex));
  1254         }
  1255 
  1256         /**
  1257          * UnmodifiableRandomAccessList instances are serialized as
  1258          * UnmodifiableList instances to allow them to be deserialized
  1259          * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
  1260          * This method inverts the transformation.  As a beneficial
  1261          * side-effect, it also grafts the RandomAccess marker onto
  1262          * UnmodifiableList instances that were serialized in pre-1.4 JREs.
  1263          *
  1264          * Note: Unfortunately, UnmodifiableRandomAccessList instances
  1265          * serialized in 1.4.1 and deserialized in 1.4 will become
  1266          * UnmodifiableList instances, as this method was missing in 1.4.
  1267          */
  1268         private Object readResolve() {
  1269             return (list instanceof RandomAccess
  1270                     ? new UnmodifiableRandomAccessList<>(list)
  1271                     : this);
  1272         }
  1273     }
  1274 
  1275     /**
  1276      * @serial include
  1277      */
  1278     static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
  1279                                               implements RandomAccess
  1280     {
  1281         UnmodifiableRandomAccessList(List<? extends E> list) {
  1282             super(list);
  1283         }
  1284 
  1285         public List<E> subList(int fromIndex, int toIndex) {
  1286             return new UnmodifiableRandomAccessList<>(
  1287                 list.subList(fromIndex, toIndex));
  1288         }
  1289 
  1290         private static final long serialVersionUID = -2542308836966382001L;
  1291 
  1292         /**
  1293          * Allows instances to be deserialized in pre-1.4 JREs (which do
  1294          * not have UnmodifiableRandomAccessList).  UnmodifiableList has
  1295          * a readResolve method that inverts this transformation upon
  1296          * deserialization.
  1297          */
  1298         private Object writeReplace() {
  1299             return new UnmodifiableList<>(list);
  1300         }
  1301     }
  1302 
  1303     /**
  1304      * Returns an unmodifiable view of the specified map.  This method
  1305      * allows modules to provide users with "read-only" access to internal
  1306      * maps.  Query operations on the returned map "read through"
  1307      * to the specified map, and attempts to modify the returned
  1308      * map, whether direct or via its collection views, result in an
  1309      * <tt>UnsupportedOperationException</tt>.<p>
  1310      *
  1311      * The returned map will be serializable if the specified map
  1312      * is serializable.
  1313      *
  1314      * @param  m the map for which an unmodifiable view is to be returned.
  1315      * @return an unmodifiable view of the specified map.
  1316      */
  1317     public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
  1318         return new UnmodifiableMap<>(m);
  1319     }
  1320 
  1321     /**
  1322      * @serial include
  1323      */
  1324     private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
  1325         private static final long serialVersionUID = -1034234728574286014L;
  1326 
  1327         private final Map<? extends K, ? extends V> m;
  1328 
  1329         UnmodifiableMap(Map<? extends K, ? extends V> m) {
  1330             if (m==null)
  1331                 throw new NullPointerException();
  1332             this.m = m;
  1333         }
  1334 
  1335         public int size()                        {return m.size();}
  1336         public boolean isEmpty()                 {return m.isEmpty();}
  1337         public boolean containsKey(Object key)   {return m.containsKey(key);}
  1338         public boolean containsValue(Object val) {return m.containsValue(val);}
  1339         public V get(Object key)                 {return m.get(key);}
  1340 
  1341         public V put(K key, V value) {
  1342             throw new UnsupportedOperationException();
  1343         }
  1344         public V remove(Object key) {
  1345             throw new UnsupportedOperationException();
  1346         }
  1347         public void putAll(Map<? extends K, ? extends V> m) {
  1348             throw new UnsupportedOperationException();
  1349         }
  1350         public void clear() {
  1351             throw new UnsupportedOperationException();
  1352         }
  1353 
  1354         private transient Set<K> keySet = null;
  1355         private transient Set<Map.Entry<K,V>> entrySet = null;
  1356         private transient Collection<V> values = null;
  1357 
  1358         public Set<K> keySet() {
  1359             if (keySet==null)
  1360                 keySet = unmodifiableSet(m.keySet());
  1361             return keySet;
  1362         }
  1363 
  1364         public Set<Map.Entry<K,V>> entrySet() {
  1365             if (entrySet==null)
  1366                 entrySet = new UnmodifiableEntrySet<>(m.entrySet());
  1367             return entrySet;
  1368         }
  1369 
  1370         public Collection<V> values() {
  1371             if (values==null)
  1372                 values = unmodifiableCollection(m.values());
  1373             return values;
  1374         }
  1375 
  1376         public boolean equals(Object o) {return o == this || m.equals(o);}
  1377         public int hashCode()           {return m.hashCode();}
  1378         public String toString()        {return m.toString();}
  1379 
  1380         /**
  1381          * We need this class in addition to UnmodifiableSet as
  1382          * Map.Entries themselves permit modification of the backing Map
  1383          * via their setValue operation.  This class is subtle: there are
  1384          * many possible attacks that must be thwarted.
  1385          *
  1386          * @serial include
  1387          */
  1388         static class UnmodifiableEntrySet<K,V>
  1389             extends UnmodifiableSet<Map.Entry<K,V>> {
  1390             private static final long serialVersionUID = 7854390611657943733L;
  1391 
  1392             UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
  1393                 super((Set)s);
  1394             }
  1395             public Iterator<Map.Entry<K,V>> iterator() {
  1396                 return new Iterator<Map.Entry<K,V>>() {
  1397                     private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
  1398 
  1399                     public boolean hasNext() {
  1400                         return i.hasNext();
  1401                     }
  1402                     public Map.Entry<K,V> next() {
  1403                         return new UnmodifiableEntry<>(i.next());
  1404                     }
  1405                     public void remove() {
  1406                         throw new UnsupportedOperationException();
  1407                     }
  1408                 };
  1409             }
  1410 
  1411             public Object[] toArray() {
  1412                 Object[] a = c.toArray();
  1413                 for (int i=0; i<a.length; i++)
  1414                     a[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)a[i]);
  1415                 return a;
  1416             }
  1417 
  1418             public <T> T[] toArray(T[] a) {
  1419                 // We don't pass a to c.toArray, to avoid window of
  1420                 // vulnerability wherein an unscrupulous multithreaded client
  1421                 // could get his hands on raw (unwrapped) Entries from c.
  1422                 Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
  1423 
  1424                 for (int i=0; i<arr.length; i++)
  1425                     arr[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)arr[i]);
  1426 
  1427                 if (arr.length > a.length)
  1428                     return (T[])arr;
  1429 
  1430                 System.arraycopy(arr, 0, a, 0, arr.length);
  1431                 if (a.length > arr.length)
  1432                     a[arr.length] = null;
  1433                 return a;
  1434             }
  1435 
  1436             /**
  1437              * This method is overridden to protect the backing set against
  1438              * an object with a nefarious equals function that senses
  1439              * that the equality-candidate is Map.Entry and calls its
  1440              * setValue method.
  1441              */
  1442             public boolean contains(Object o) {
  1443                 if (!(o instanceof Map.Entry))
  1444                     return false;
  1445                 return c.contains(
  1446                     new UnmodifiableEntry<>((Map.Entry<?,?>) o));
  1447             }
  1448 
  1449             /**
  1450              * The next two methods are overridden to protect against
  1451              * an unscrupulous List whose contains(Object o) method senses
  1452              * when o is a Map.Entry, and calls o.setValue.
  1453              */
  1454             public boolean containsAll(Collection<?> coll) {
  1455                 for (Object e : coll) {
  1456                     if (!contains(e)) // Invokes safe contains() above
  1457                         return false;
  1458                 }
  1459                 return true;
  1460             }
  1461             public boolean equals(Object o) {
  1462                 if (o == this)
  1463                     return true;
  1464 
  1465                 if (!(o instanceof Set))
  1466                     return false;
  1467                 Set s = (Set) o;
  1468                 if (s.size() != c.size())
  1469                     return false;
  1470                 return containsAll(s); // Invokes safe containsAll() above
  1471             }
  1472 
  1473             /**
  1474              * This "wrapper class" serves two purposes: it prevents
  1475              * the client from modifying the backing Map, by short-circuiting
  1476              * the setValue method, and it protects the backing Map against
  1477              * an ill-behaved Map.Entry that attempts to modify another
  1478              * Map Entry when asked to perform an equality check.
  1479              */
  1480             private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
  1481                 private Map.Entry<? extends K, ? extends V> e;
  1482 
  1483                 UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
  1484 
  1485                 public K getKey()        {return e.getKey();}
  1486                 public V getValue()      {return e.getValue();}
  1487                 public V setValue(V value) {
  1488                     throw new UnsupportedOperationException();
  1489                 }
  1490                 public int hashCode()    {return e.hashCode();}
  1491                 public boolean equals(Object o) {
  1492                     if (!(o instanceof Map.Entry))
  1493                         return false;
  1494                     Map.Entry t = (Map.Entry)o;
  1495                     return eq(e.getKey(),   t.getKey()) &&
  1496                            eq(e.getValue(), t.getValue());
  1497                 }
  1498                 public String toString() {return e.toString();}
  1499             }
  1500         }
  1501     }
  1502 
  1503     /**
  1504      * Returns an unmodifiable view of the specified sorted map.  This method
  1505      * allows modules to provide users with "read-only" access to internal
  1506      * sorted maps.  Query operations on the returned sorted map "read through"
  1507      * to the specified sorted map.  Attempts to modify the returned
  1508      * sorted map, whether direct, via its collection views, or via its
  1509      * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
  1510      * an <tt>UnsupportedOperationException</tt>.<p>
  1511      *
  1512      * The returned sorted map will be serializable if the specified sorted map
  1513      * is serializable.
  1514      *
  1515      * @param m the sorted map for which an unmodifiable view is to be
  1516      *        returned.
  1517      * @return an unmodifiable view of the specified sorted map.
  1518      */
  1519     public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
  1520         return new UnmodifiableSortedMap<>(m);
  1521     }
  1522 
  1523     /**
  1524      * @serial include
  1525      */
  1526     static class UnmodifiableSortedMap<K,V>
  1527           extends UnmodifiableMap<K,V>
  1528           implements SortedMap<K,V>, Serializable {
  1529         private static final long serialVersionUID = -8806743815996713206L;
  1530 
  1531         private final SortedMap<K, ? extends V> sm;
  1532 
  1533         UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
  1534 
  1535         public Comparator<? super K> comparator() {return sm.comparator();}
  1536 
  1537         public SortedMap<K,V> subMap(K fromKey, K toKey) {
  1538             return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey));
  1539         }
  1540         public SortedMap<K,V> headMap(K toKey) {
  1541             return new UnmodifiableSortedMap<>(sm.headMap(toKey));
  1542         }
  1543         public SortedMap<K,V> tailMap(K fromKey) {
  1544             return new UnmodifiableSortedMap<>(sm.tailMap(fromKey));
  1545         }
  1546 
  1547         public K firstKey()           {return sm.firstKey();}
  1548         public K lastKey()            {return sm.lastKey();}
  1549     }
  1550 
  1551 
  1552     // Synch Wrappers
  1553 
  1554     /**
  1555      * Returns a synchronized (thread-safe) collection backed by the specified
  1556      * collection.  In order to guarantee serial access, it is critical that
  1557      * <strong>all</strong> access to the backing collection is accomplished
  1558      * through the returned collection.<p>
  1559      *
  1560      * It is imperative that the user manually synchronize on the returned
  1561      * collection when iterating over it:
  1562      * <pre>
  1563      *  Collection c = Collections.synchronizedCollection(myCollection);
  1564      *     ...
  1565      *  synchronized (c) {
  1566      *      Iterator i = c.iterator(); // Must be in the synchronized block
  1567      *      while (i.hasNext())
  1568      *         foo(i.next());
  1569      *  }
  1570      * </pre>
  1571      * Failure to follow this advice may result in non-deterministic behavior.
  1572      *
  1573      * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
  1574      * and <tt>equals</tt> operations through to the backing collection, but
  1575      * relies on <tt>Object</tt>'s equals and hashCode methods.  This is
  1576      * necessary to preserve the contracts of these operations in the case
  1577      * that the backing collection is a set or a list.<p>
  1578      *
  1579      * The returned collection will be serializable if the specified collection
  1580      * is serializable.
  1581      *
  1582      * @param  c the collection to be "wrapped" in a synchronized collection.
  1583      * @return a synchronized view of the specified collection.
  1584      */
  1585     public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
  1586         return new SynchronizedCollection<>(c);
  1587     }
  1588 
  1589     static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
  1590         return new SynchronizedCollection<>(c, mutex);
  1591     }
  1592 
  1593     /**
  1594      * @serial include
  1595      */
  1596     static class SynchronizedCollection<E> implements Collection<E>, Serializable {
  1597         private static final long serialVersionUID = 3053995032091335093L;
  1598 
  1599         final Collection<E> c;  // Backing Collection
  1600         final Object mutex;     // Object on which to synchronize
  1601 
  1602         SynchronizedCollection(Collection<E> c) {
  1603             if (c==null)
  1604                 throw new NullPointerException();
  1605             this.c = c;
  1606             mutex = this;
  1607         }
  1608         SynchronizedCollection(Collection<E> c, Object mutex) {
  1609             this.c = c;
  1610             this.mutex = mutex;
  1611         }
  1612 
  1613         public int size() {
  1614             synchronized (mutex) {return c.size();}
  1615         }
  1616         public boolean isEmpty() {
  1617             synchronized (mutex) {return c.isEmpty();}
  1618         }
  1619         public boolean contains(Object o) {
  1620             synchronized (mutex) {return c.contains(o);}
  1621         }
  1622         public Object[] toArray() {
  1623             synchronized (mutex) {return c.toArray();}
  1624         }
  1625         public <T> T[] toArray(T[] a) {
  1626             synchronized (mutex) {return c.toArray(a);}
  1627         }
  1628 
  1629         public Iterator<E> iterator() {
  1630             return c.iterator(); // Must be manually synched by user!
  1631         }
  1632 
  1633         public boolean add(E e) {
  1634             synchronized (mutex) {return c.add(e);}
  1635         }
  1636         public boolean remove(Object o) {
  1637             synchronized (mutex) {return c.remove(o);}
  1638         }
  1639 
  1640         public boolean containsAll(Collection<?> coll) {
  1641             synchronized (mutex) {return c.containsAll(coll);}
  1642         }
  1643         public boolean addAll(Collection<? extends E> coll) {
  1644             synchronized (mutex) {return c.addAll(coll);}
  1645         }
  1646         public boolean removeAll(Collection<?> coll) {
  1647             synchronized (mutex) {return c.removeAll(coll);}
  1648         }
  1649         public boolean retainAll(Collection<?> coll) {
  1650             synchronized (mutex) {return c.retainAll(coll);}
  1651         }
  1652         public void clear() {
  1653             synchronized (mutex) {c.clear();}
  1654         }
  1655         public String toString() {
  1656             synchronized (mutex) {return c.toString();}
  1657         }
  1658         private void writeObject(ObjectOutputStream s) throws IOException {
  1659             synchronized (mutex) {s.defaultWriteObject();}
  1660         }
  1661     }
  1662 
  1663     /**
  1664      * Returns a synchronized (thread-safe) set backed by the specified
  1665      * set.  In order to guarantee serial access, it is critical that
  1666      * <strong>all</strong> access to the backing set is accomplished
  1667      * through the returned set.<p>
  1668      *
  1669      * It is imperative that the user manually synchronize on the returned
  1670      * set when iterating over it:
  1671      * <pre>
  1672      *  Set s = Collections.synchronizedSet(new HashSet());
  1673      *      ...
  1674      *  synchronized (s) {
  1675      *      Iterator i = s.iterator(); // Must be in the synchronized block
  1676      *      while (i.hasNext())
  1677      *          foo(i.next());
  1678      *  }
  1679      * </pre>
  1680      * Failure to follow this advice may result in non-deterministic behavior.
  1681      *
  1682      * <p>The returned set will be serializable if the specified set is
  1683      * serializable.
  1684      *
  1685      * @param  s the set to be "wrapped" in a synchronized set.
  1686      * @return a synchronized view of the specified set.
  1687      */
  1688     public static <T> Set<T> synchronizedSet(Set<T> s) {
  1689         return new SynchronizedSet<>(s);
  1690     }
  1691 
  1692     static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
  1693         return new SynchronizedSet<>(s, mutex);
  1694     }
  1695 
  1696     /**
  1697      * @serial include
  1698      */
  1699     static class SynchronizedSet<E>
  1700           extends SynchronizedCollection<E>
  1701           implements Set<E> {
  1702         private static final long serialVersionUID = 487447009682186044L;
  1703 
  1704         SynchronizedSet(Set<E> s) {
  1705             super(s);
  1706         }
  1707         SynchronizedSet(Set<E> s, Object mutex) {
  1708             super(s, mutex);
  1709         }
  1710 
  1711         public boolean equals(Object o) {
  1712             synchronized (mutex) {return c.equals(o);}
  1713         }
  1714         public int hashCode() {
  1715             synchronized (mutex) {return c.hashCode();}
  1716         }
  1717     }
  1718 
  1719     /**
  1720      * Returns a synchronized (thread-safe) sorted set backed by the specified
  1721      * sorted set.  In order to guarantee serial access, it is critical that
  1722      * <strong>all</strong> access to the backing sorted set is accomplished
  1723      * through the returned sorted set (or its views).<p>
  1724      *
  1725      * It is imperative that the user manually synchronize on the returned
  1726      * sorted set when iterating over it or any of its <tt>subSet</tt>,
  1727      * <tt>headSet</tt>, or <tt>tailSet</tt> views.
  1728      * <pre>
  1729      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
  1730      *      ...
  1731      *  synchronized (s) {
  1732      *      Iterator i = s.iterator(); // Must be in the synchronized block
  1733      *      while (i.hasNext())
  1734      *          foo(i.next());
  1735      *  }
  1736      * </pre>
  1737      * or:
  1738      * <pre>
  1739      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
  1740      *  SortedSet s2 = s.headSet(foo);
  1741      *      ...
  1742      *  synchronized (s) {  // Note: s, not s2!!!
  1743      *      Iterator i = s2.iterator(); // Must be in the synchronized block
  1744      *      while (i.hasNext())
  1745      *          foo(i.next());
  1746      *  }
  1747      * </pre>
  1748      * Failure to follow this advice may result in non-deterministic behavior.
  1749      *
  1750      * <p>The returned sorted set will be serializable if the specified
  1751      * sorted set is serializable.
  1752      *
  1753      * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
  1754      * @return a synchronized view of the specified sorted set.
  1755      */
  1756     public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
  1757         return new SynchronizedSortedSet<>(s);
  1758     }
  1759 
  1760     /**
  1761      * @serial include
  1762      */
  1763     static class SynchronizedSortedSet<E>
  1764         extends SynchronizedSet<E>
  1765         implements SortedSet<E>
  1766     {
  1767         private static final long serialVersionUID = 8695801310862127406L;
  1768 
  1769         private final SortedSet<E> ss;
  1770 
  1771         SynchronizedSortedSet(SortedSet<E> s) {
  1772             super(s);
  1773             ss = s;
  1774         }
  1775         SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
  1776             super(s, mutex);
  1777             ss = s;
  1778         }
  1779 
  1780         public Comparator<? super E> comparator() {
  1781             synchronized (mutex) {return ss.comparator();}
  1782         }
  1783 
  1784         public SortedSet<E> subSet(E fromElement, E toElement) {
  1785             synchronized (mutex) {
  1786                 return new SynchronizedSortedSet<>(
  1787                     ss.subSet(fromElement, toElement), mutex);
  1788             }
  1789         }
  1790         public SortedSet<E> headSet(E toElement) {
  1791             synchronized (mutex) {
  1792                 return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
  1793             }
  1794         }
  1795         public SortedSet<E> tailSet(E fromElement) {
  1796             synchronized (mutex) {
  1797                return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex);
  1798             }
  1799         }
  1800 
  1801         public E first() {
  1802             synchronized (mutex) {return ss.first();}
  1803         }
  1804         public E last() {
  1805             synchronized (mutex) {return ss.last();}
  1806         }
  1807     }
  1808 
  1809     /**
  1810      * Returns a synchronized (thread-safe) list backed by the specified
  1811      * list.  In order to guarantee serial access, it is critical that
  1812      * <strong>all</strong> access to the backing list is accomplished
  1813      * through the returned list.<p>
  1814      *
  1815      * It is imperative that the user manually synchronize on the returned
  1816      * list when iterating over it:
  1817      * <pre>
  1818      *  List list = Collections.synchronizedList(new ArrayList());
  1819      *      ...
  1820      *  synchronized (list) {
  1821      *      Iterator i = list.iterator(); // Must be in synchronized block
  1822      *      while (i.hasNext())
  1823      *          foo(i.next());
  1824      *  }
  1825      * </pre>
  1826      * Failure to follow this advice may result in non-deterministic behavior.
  1827      *
  1828      * <p>The returned list will be serializable if the specified list is
  1829      * serializable.
  1830      *
  1831      * @param  list the list to be "wrapped" in a synchronized list.
  1832      * @return a synchronized view of the specified list.
  1833      */
  1834     public static <T> List<T> synchronizedList(List<T> list) {
  1835         return (list instanceof RandomAccess ?
  1836                 new SynchronizedRandomAccessList<>(list) :
  1837                 new SynchronizedList<>(list));
  1838     }
  1839 
  1840     static <T> List<T> synchronizedList(List<T> list, Object mutex) {
  1841         return (list instanceof RandomAccess ?
  1842                 new SynchronizedRandomAccessList<>(list, mutex) :
  1843                 new SynchronizedList<>(list, mutex));
  1844     }
  1845 
  1846     /**
  1847      * @serial include
  1848      */
  1849     static class SynchronizedList<E>
  1850         extends SynchronizedCollection<E>
  1851         implements List<E> {
  1852         private static final long serialVersionUID = -7754090372962971524L;
  1853 
  1854         final List<E> list;
  1855 
  1856         SynchronizedList(List<E> list) {
  1857             super(list);
  1858             this.list = list;
  1859         }
  1860         SynchronizedList(List<E> list, Object mutex) {
  1861             super(list, mutex);
  1862             this.list = list;
  1863         }
  1864 
  1865         public boolean equals(Object o) {
  1866             synchronized (mutex) {return list.equals(o);}
  1867         }
  1868         public int hashCode() {
  1869             synchronized (mutex) {return list.hashCode();}
  1870         }
  1871 
  1872         public E get(int index) {
  1873             synchronized (mutex) {return list.get(index);}
  1874         }
  1875         public E set(int index, E element) {
  1876             synchronized (mutex) {return list.set(index, element);}
  1877         }
  1878         public void add(int index, E element) {
  1879             synchronized (mutex) {list.add(index, element);}
  1880         }
  1881         public E remove(int index) {
  1882             synchronized (mutex) {return list.remove(index);}
  1883         }
  1884 
  1885         public int indexOf(Object o) {
  1886             synchronized (mutex) {return list.indexOf(o);}
  1887         }
  1888         public int lastIndexOf(Object o) {
  1889             synchronized (mutex) {return list.lastIndexOf(o);}
  1890         }
  1891 
  1892         public boolean addAll(int index, Collection<? extends E> c) {
  1893             synchronized (mutex) {return list.addAll(index, c);}
  1894         }
  1895 
  1896         public ListIterator<E> listIterator() {
  1897             return list.listIterator(); // Must be manually synched by user
  1898         }
  1899 
  1900         public ListIterator<E> listIterator(int index) {
  1901             return list.listIterator(index); // Must be manually synched by user
  1902         }
  1903 
  1904         public List<E> subList(int fromIndex, int toIndex) {
  1905             synchronized (mutex) {
  1906                 return new SynchronizedList<>(list.subList(fromIndex, toIndex),
  1907                                             mutex);
  1908             }
  1909         }
  1910 
  1911         /**
  1912          * SynchronizedRandomAccessList instances are serialized as
  1913          * SynchronizedList instances to allow them to be deserialized
  1914          * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
  1915          * This method inverts the transformation.  As a beneficial
  1916          * side-effect, it also grafts the RandomAccess marker onto
  1917          * SynchronizedList instances that were serialized in pre-1.4 JREs.
  1918          *
  1919          * Note: Unfortunately, SynchronizedRandomAccessList instances
  1920          * serialized in 1.4.1 and deserialized in 1.4 will become
  1921          * SynchronizedList instances, as this method was missing in 1.4.
  1922          */
  1923         private Object readResolve() {
  1924             return (list instanceof RandomAccess
  1925                     ? new SynchronizedRandomAccessList<>(list)
  1926                     : this);
  1927         }
  1928     }
  1929 
  1930     /**
  1931      * @serial include
  1932      */
  1933     static class SynchronizedRandomAccessList<E>
  1934         extends SynchronizedList<E>
  1935         implements RandomAccess {
  1936 
  1937         SynchronizedRandomAccessList(List<E> list) {
  1938             super(list);
  1939         }
  1940 
  1941         SynchronizedRandomAccessList(List<E> list, Object mutex) {
  1942             super(list, mutex);
  1943         }
  1944 
  1945         public List<E> subList(int fromIndex, int toIndex) {
  1946             synchronized (mutex) {
  1947                 return new SynchronizedRandomAccessList<>(
  1948                     list.subList(fromIndex, toIndex), mutex);
  1949             }
  1950         }
  1951 
  1952         private static final long serialVersionUID = 1530674583602358482L;
  1953 
  1954         /**
  1955          * Allows instances to be deserialized in pre-1.4 JREs (which do
  1956          * not have SynchronizedRandomAccessList).  SynchronizedList has
  1957          * a readResolve method that inverts this transformation upon
  1958          * deserialization.
  1959          */
  1960         private Object writeReplace() {
  1961             return new SynchronizedList<>(list);
  1962         }
  1963     }
  1964 
  1965     /**
  1966      * Returns a synchronized (thread-safe) map backed by the specified
  1967      * map.  In order to guarantee serial access, it is critical that
  1968      * <strong>all</strong> access to the backing map is accomplished
  1969      * through the returned map.<p>
  1970      *
  1971      * It is imperative that the user manually synchronize on the returned
  1972      * map when iterating over any of its collection views:
  1973      * <pre>
  1974      *  Map m = Collections.synchronizedMap(new HashMap());
  1975      *      ...
  1976      *  Set s = m.keySet();  // Needn't be in synchronized block
  1977      *      ...
  1978      *  synchronized (m) {  // Synchronizing on m, not s!
  1979      *      Iterator i = s.iterator(); // Must be in synchronized block
  1980      *      while (i.hasNext())
  1981      *          foo(i.next());
  1982      *  }
  1983      * </pre>
  1984      * Failure to follow this advice may result in non-deterministic behavior.
  1985      *
  1986      * <p>The returned map will be serializable if the specified map is
  1987      * serializable.
  1988      *
  1989      * @param  m the map to be "wrapped" in a synchronized map.
  1990      * @return a synchronized view of the specified map.
  1991      */
  1992     public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
  1993         return new SynchronizedMap<>(m);
  1994     }
  1995 
  1996     /**
  1997      * @serial include
  1998      */
  1999     private static class SynchronizedMap<K,V>
  2000         implements Map<K,V>, Serializable {
  2001         private static final long serialVersionUID = 1978198479659022715L;
  2002 
  2003         private final Map<K,V> m;     // Backing Map
  2004         final Object      mutex;        // Object on which to synchronize
  2005 
  2006         SynchronizedMap(Map<K,V> m) {
  2007             if (m==null)
  2008                 throw new NullPointerException();
  2009             this.m = m;
  2010             mutex = this;
  2011         }
  2012 
  2013         SynchronizedMap(Map<K,V> m, Object mutex) {
  2014             this.m = m;
  2015             this.mutex = mutex;
  2016         }
  2017 
  2018         public int size() {
  2019             synchronized (mutex) {return m.size();}
  2020         }
  2021         public boolean isEmpty() {
  2022             synchronized (mutex) {return m.isEmpty();}
  2023         }
  2024         public boolean containsKey(Object key) {
  2025             synchronized (mutex) {return m.containsKey(key);}
  2026         }
  2027         public boolean containsValue(Object value) {
  2028             synchronized (mutex) {return m.containsValue(value);}
  2029         }
  2030         public V get(Object key) {
  2031             synchronized (mutex) {return m.get(key);}
  2032         }
  2033 
  2034         public V put(K key, V value) {
  2035             synchronized (mutex) {return m.put(key, value);}
  2036         }
  2037         public V remove(Object key) {
  2038             synchronized (mutex) {return m.remove(key);}
  2039         }
  2040         public void putAll(Map<? extends K, ? extends V> map) {
  2041             synchronized (mutex) {m.putAll(map);}
  2042         }
  2043         public void clear() {
  2044             synchronized (mutex) {m.clear();}
  2045         }
  2046 
  2047         private transient Set<K> keySet = null;
  2048         private transient Set<Map.Entry<K,V>> entrySet = null;
  2049         private transient Collection<V> values = null;
  2050 
  2051         public Set<K> keySet() {
  2052             synchronized (mutex) {
  2053                 if (keySet==null)
  2054                     keySet = new SynchronizedSet<>(m.keySet(), mutex);
  2055                 return keySet;
  2056             }
  2057         }
  2058 
  2059         public Set<Map.Entry<K,V>> entrySet() {
  2060             synchronized (mutex) {
  2061                 if (entrySet==null)
  2062                     entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
  2063                 return entrySet;
  2064             }
  2065         }
  2066 
  2067         public Collection<V> values() {
  2068             synchronized (mutex) {
  2069                 if (values==null)
  2070                     values = new SynchronizedCollection<>(m.values(), mutex);
  2071                 return values;
  2072             }
  2073         }
  2074 
  2075         public boolean equals(Object o) {
  2076             synchronized (mutex) {return m.equals(o);}
  2077         }
  2078         public int hashCode() {
  2079             synchronized (mutex) {return m.hashCode();}
  2080         }
  2081         public String toString() {
  2082             synchronized (mutex) {return m.toString();}
  2083         }
  2084         private void writeObject(ObjectOutputStream s) throws IOException {
  2085             synchronized (mutex) {s.defaultWriteObject();}
  2086         }
  2087     }
  2088 
  2089     /**
  2090      * Returns a synchronized (thread-safe) sorted map backed by the specified
  2091      * sorted map.  In order to guarantee serial access, it is critical that
  2092      * <strong>all</strong> access to the backing sorted map is accomplished
  2093      * through the returned sorted map (or its views).<p>
  2094      *
  2095      * It is imperative that the user manually synchronize on the returned
  2096      * sorted map when iterating over any of its collection views, or the
  2097      * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
  2098      * <tt>tailMap</tt> views.
  2099      * <pre>
  2100      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
  2101      *      ...
  2102      *  Set s = m.keySet();  // Needn't be in synchronized block
  2103      *      ...
  2104      *  synchronized (m) {  // Synchronizing on m, not s!
  2105      *      Iterator i = s.iterator(); // Must be in synchronized block
  2106      *      while (i.hasNext())
  2107      *          foo(i.next());
  2108      *  }
  2109      * </pre>
  2110      * or:
  2111      * <pre>
  2112      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
  2113      *  SortedMap m2 = m.subMap(foo, bar);
  2114      *      ...
  2115      *  Set s2 = m2.keySet();  // Needn't be in synchronized block
  2116      *      ...
  2117      *  synchronized (m) {  // Synchronizing on m, not m2 or s2!
  2118      *      Iterator i = s.iterator(); // Must be in synchronized block
  2119      *      while (i.hasNext())
  2120      *          foo(i.next());
  2121      *  }
  2122      * </pre>
  2123      * Failure to follow this advice may result in non-deterministic behavior.
  2124      *
  2125      * <p>The returned sorted map will be serializable if the specified
  2126      * sorted map is serializable.
  2127      *
  2128      * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
  2129      * @return a synchronized view of the specified sorted map.
  2130      */
  2131     public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
  2132         return new SynchronizedSortedMap<>(m);
  2133     }
  2134 
  2135 
  2136     /**
  2137      * @serial include
  2138      */
  2139     static class SynchronizedSortedMap<K,V>
  2140         extends SynchronizedMap<K,V>
  2141         implements SortedMap<K,V>
  2142     {
  2143         private static final long serialVersionUID = -8798146769416483793L;
  2144 
  2145         private final SortedMap<K,V> sm;
  2146 
  2147         SynchronizedSortedMap(SortedMap<K,V> m) {
  2148             super(m);
  2149             sm = m;
  2150         }
  2151         SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
  2152             super(m, mutex);
  2153             sm = m;
  2154         }
  2155 
  2156         public Comparator<? super K> comparator() {
  2157             synchronized (mutex) {return sm.comparator();}
  2158         }
  2159 
  2160         public SortedMap<K,V> subMap(K fromKey, K toKey) {
  2161             synchronized (mutex) {
  2162                 return new SynchronizedSortedMap<>(
  2163                     sm.subMap(fromKey, toKey), mutex);
  2164             }
  2165         }
  2166         public SortedMap<K,V> headMap(K toKey) {
  2167             synchronized (mutex) {
  2168                 return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
  2169             }
  2170         }
  2171         public SortedMap<K,V> tailMap(K fromKey) {
  2172             synchronized (mutex) {
  2173                return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex);
  2174             }
  2175         }
  2176 
  2177         public K firstKey() {
  2178             synchronized (mutex) {return sm.firstKey();}
  2179         }
  2180         public K lastKey() {
  2181             synchronized (mutex) {return sm.lastKey();}
  2182         }
  2183     }
  2184 
  2185     // Dynamically typesafe collection wrappers
  2186 
  2187     /**
  2188      * Returns a dynamically typesafe view of the specified collection.
  2189      * Any attempt to insert an element of the wrong type will result in an
  2190      * immediate {@link ClassCastException}.  Assuming a collection
  2191      * contains no incorrectly typed elements prior to the time a
  2192      * dynamically typesafe view is generated, and that all subsequent
  2193      * access to the collection takes place through the view, it is
  2194      * <i>guaranteed</i> that the collection cannot contain an incorrectly
  2195      * typed element.
  2196      *
  2197      * <p>The generics mechanism in the language provides compile-time
  2198      * (static) type checking, but it is possible to defeat this mechanism
  2199      * with unchecked casts.  Usually this is not a problem, as the compiler
  2200      * issues warnings on all such unchecked operations.  There are, however,
  2201      * times when static type checking alone is not sufficient.  For example,
  2202      * suppose a collection is passed to a third-party library and it is
  2203      * imperative that the library code not corrupt the collection by
  2204      * inserting an element of the wrong type.
  2205      *
  2206      * <p>Another use of dynamically typesafe views is debugging.  Suppose a
  2207      * program fails with a {@code ClassCastException}, indicating that an
  2208      * incorrectly typed element was put into a parameterized collection.
  2209      * Unfortunately, the exception can occur at any time after the erroneous
  2210      * element is inserted, so it typically provides little or no information
  2211      * as to the real source of the problem.  If the problem is reproducible,
  2212      * one can quickly determine its source by temporarily modifying the
  2213      * program to wrap the collection with a dynamically typesafe view.
  2214      * For example, this declaration:
  2215      *  <pre> {@code
  2216      *     Collection<String> c = new HashSet<String>();
  2217      * }</pre>
  2218      * may be replaced temporarily by this one:
  2219      *  <pre> {@code
  2220      *     Collection<String> c = Collections.checkedCollection(
  2221      *         new HashSet<String>(), String.class);
  2222      * }</pre>
  2223      * Running the program again will cause it to fail at the point where
  2224      * an incorrectly typed element is inserted into the collection, clearly
  2225      * identifying the source of the problem.  Once the problem is fixed, the
  2226      * modified declaration may be reverted back to the original.
  2227      *
  2228      * <p>The returned collection does <i>not</i> pass the hashCode and equals
  2229      * operations through to the backing collection, but relies on
  2230      * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
  2231      * is necessary to preserve the contracts of these operations in the case
  2232      * that the backing collection is a set or a list.
  2233      *
  2234      * <p>The returned collection will be serializable if the specified
  2235      * collection is serializable.
  2236      *
  2237      * <p>Since {@code null} is considered to be a value of any reference
  2238      * type, the returned collection permits insertion of null elements
  2239      * whenever the backing collection does.
  2240      *
  2241      * @param c the collection for which a dynamically typesafe view is to be
  2242      *          returned
  2243      * @param type the type of element that {@code c} is permitted to hold
  2244      * @return a dynamically typesafe view of the specified collection
  2245      * @since 1.5
  2246      */
  2247     public static <E> Collection<E> checkedCollection(Collection<E> c,
  2248                                                       Class<E> type) {
  2249         return new CheckedCollection<>(c, type);
  2250     }
  2251 
  2252     @SuppressWarnings("unchecked")
  2253     static <T> T[] zeroLengthArray(Class<T> type) {
  2254         return (T[]) Array.newInstance(type, 0);
  2255     }
  2256 
  2257     /**
  2258      * @serial include
  2259      */
  2260     static class CheckedCollection<E> implements Collection<E>, Serializable {
  2261         private static final long serialVersionUID = 1578914078182001775L;
  2262 
  2263         final Collection<E> c;
  2264         final Class<E> type;
  2265 
  2266         void typeCheck(Object o) {
  2267             if (o != null && !type.isInstance(o))
  2268                 throw new ClassCastException(badElementMsg(o));
  2269         }
  2270 
  2271         private String badElementMsg(Object o) {
  2272             return "Attempt to insert " + o.getClass() +
  2273                 " element into collection with element type " + type;
  2274         }
  2275 
  2276         CheckedCollection(Collection<E> c, Class<E> type) {
  2277             if (c==null || type == null)
  2278                 throw new NullPointerException();
  2279             this.c = c;
  2280             this.type = type;
  2281         }
  2282 
  2283         public int size()                 { return c.size(); }
  2284         public boolean isEmpty()          { return c.isEmpty(); }
  2285         public boolean contains(Object o) { return c.contains(o); }
  2286         public Object[] toArray()         { return c.toArray(); }
  2287         public <T> T[] toArray(T[] a)     { return c.toArray(a); }
  2288         public String toString()          { return c.toString(); }
  2289         public boolean remove(Object o)   { return c.remove(o); }
  2290         public void clear()               {        c.clear(); }
  2291 
  2292         public boolean containsAll(Collection<?> coll) {
  2293             return c.containsAll(coll);
  2294         }
  2295         public boolean removeAll(Collection<?> coll) {
  2296             return c.removeAll(coll);
  2297         }
  2298         public boolean retainAll(Collection<?> coll) {
  2299             return c.retainAll(coll);
  2300         }
  2301 
  2302         public Iterator<E> iterator() {
  2303             final Iterator<E> it = c.iterator();
  2304             return new Iterator<E>() {
  2305                 public boolean hasNext() { return it.hasNext(); }
  2306                 public E next()          { return it.next(); }
  2307                 public void remove()     {        it.remove(); }};
  2308         }
  2309 
  2310         public boolean add(E e) {
  2311             typeCheck(e);
  2312             return c.add(e);
  2313         }
  2314 
  2315         private E[] zeroLengthElementArray = null; // Lazily initialized
  2316 
  2317         private E[] zeroLengthElementArray() {
  2318             return zeroLengthElementArray != null ? zeroLengthElementArray :
  2319                 (zeroLengthElementArray = zeroLengthArray(type));
  2320         }
  2321 
  2322         @SuppressWarnings("unchecked")
  2323         Collection<E> checkedCopyOf(Collection<? extends E> coll) {
  2324             Object[] a = null;
  2325             try {
  2326                 E[] z = zeroLengthElementArray();
  2327                 a = coll.toArray(z);
  2328                 // Defend against coll violating the toArray contract
  2329                 if (a.getClass() != z.getClass())
  2330                     a = Arrays.copyOf(a, a.length, z.getClass());
  2331             } catch (ArrayStoreException ignore) {
  2332                 // To get better and consistent diagnostics,
  2333                 // we call typeCheck explicitly on each element.
  2334                 // We call clone() to defend against coll retaining a
  2335                 // reference to the returned array and storing a bad
  2336                 // element into it after it has been type checked.
  2337                 a = coll.toArray().clone();
  2338                 for (Object o : a)
  2339                     typeCheck(o);
  2340             }
  2341             // A slight abuse of the type system, but safe here.
  2342             return (Collection<E>) Arrays.asList(a);
  2343         }
  2344 
  2345         public boolean addAll(Collection<? extends E> coll) {
  2346             // Doing things this way insulates us from concurrent changes
  2347             // in the contents of coll and provides all-or-nothing
  2348             // semantics (which we wouldn't get if we type-checked each
  2349             // element as we added it)
  2350             return c.addAll(checkedCopyOf(coll));
  2351         }
  2352     }
  2353 
  2354     /**
  2355      * Returns a dynamically typesafe view of the specified set.
  2356      * Any attempt to insert an element of the wrong type will result in
  2357      * an immediate {@link ClassCastException}.  Assuming a set contains
  2358      * no incorrectly typed elements prior to the time a dynamically typesafe
  2359      * view is generated, and that all subsequent access to the set
  2360      * takes place through the view, it is <i>guaranteed</i> that the
  2361      * set cannot contain an incorrectly typed element.
  2362      *
  2363      * <p>A discussion of the use of dynamically typesafe views may be
  2364      * found in the documentation for the {@link #checkedCollection
  2365      * checkedCollection} method.
  2366      *
  2367      * <p>The returned set will be serializable if the specified set is
  2368      * serializable.
  2369      *
  2370      * <p>Since {@code null} is considered to be a value of any reference
  2371      * type, the returned set permits insertion of null elements whenever
  2372      * the backing set does.
  2373      *
  2374      * @param s the set for which a dynamically typesafe view is to be
  2375      *          returned
  2376      * @param type the type of element that {@code s} is permitted to hold
  2377      * @return a dynamically typesafe view of the specified set
  2378      * @since 1.5
  2379      */
  2380     public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
  2381         return new CheckedSet<>(s, type);
  2382     }
  2383 
  2384     /**
  2385      * @serial include
  2386      */
  2387     static class CheckedSet<E> extends CheckedCollection<E>
  2388                                  implements Set<E>, Serializable
  2389     {
  2390         private static final long serialVersionUID = 4694047833775013803L;
  2391 
  2392         CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
  2393 
  2394         public boolean equals(Object o) { return o == this || c.equals(o); }
  2395         public int hashCode()           { return c.hashCode(); }
  2396     }
  2397 
  2398     /**
  2399      * Returns a dynamically typesafe view of the specified sorted set.
  2400      * Any attempt to insert an element of the wrong type will result in an
  2401      * immediate {@link ClassCastException}.  Assuming a sorted set
  2402      * contains no incorrectly typed elements prior to the time a
  2403      * dynamically typesafe view is generated, and that all subsequent
  2404      * access to the sorted set takes place through the view, it is
  2405      * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
  2406      * typed element.
  2407      *
  2408      * <p>A discussion of the use of dynamically typesafe views may be
  2409      * found in the documentation for the {@link #checkedCollection
  2410      * checkedCollection} method.
  2411      *
  2412      * <p>The returned sorted set will be serializable if the specified sorted
  2413      * set is serializable.
  2414      *
  2415      * <p>Since {@code null} is considered to be a value of any reference
  2416      * type, the returned sorted set permits insertion of null elements
  2417      * whenever the backing sorted set does.
  2418      *
  2419      * @param s the sorted set for which a dynamically typesafe view is to be
  2420      *          returned
  2421      * @param type the type of element that {@code s} is permitted to hold
  2422      * @return a dynamically typesafe view of the specified sorted set
  2423      * @since 1.5
  2424      */
  2425     public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
  2426                                                     Class<E> type) {
  2427         return new CheckedSortedSet<>(s, type);
  2428     }
  2429 
  2430     /**
  2431      * @serial include
  2432      */
  2433     static class CheckedSortedSet<E> extends CheckedSet<E>
  2434         implements SortedSet<E>, Serializable
  2435     {
  2436         private static final long serialVersionUID = 1599911165492914959L;
  2437         private final SortedSet<E> ss;
  2438 
  2439         CheckedSortedSet(SortedSet<E> s, Class<E> type) {
  2440             super(s, type);
  2441             ss = s;
  2442         }
  2443 
  2444         public Comparator<? super E> comparator() { return ss.comparator(); }
  2445         public E first()                   { return ss.first(); }
  2446         public E last()                    { return ss.last(); }
  2447 
  2448         public SortedSet<E> subSet(E fromElement, E toElement) {
  2449             return checkedSortedSet(ss.subSet(fromElement,toElement), type);
  2450         }
  2451         public SortedSet<E> headSet(E toElement) {
  2452             return checkedSortedSet(ss.headSet(toElement), type);
  2453         }
  2454         public SortedSet<E> tailSet(E fromElement) {
  2455             return checkedSortedSet(ss.tailSet(fromElement), type);
  2456         }
  2457     }
  2458 
  2459     /**
  2460      * Returns a dynamically typesafe view of the specified list.
  2461      * Any attempt to insert an element of the wrong type will result in
  2462      * an immediate {@link ClassCastException}.  Assuming a list contains
  2463      * no incorrectly typed elements prior to the time a dynamically typesafe
  2464      * view is generated, and that all subsequent access to the list
  2465      * takes place through the view, it is <i>guaranteed</i> that the
  2466      * list cannot contain an incorrectly typed element.
  2467      *
  2468      * <p>A discussion of the use of dynamically typesafe views may be
  2469      * found in the documentation for the {@link #checkedCollection
  2470      * checkedCollection} method.
  2471      *
  2472      * <p>The returned list will be serializable if the specified list
  2473      * is serializable.
  2474      *
  2475      * <p>Since {@code null} is considered to be a value of any reference
  2476      * type, the returned list permits insertion of null elements whenever
  2477      * the backing list does.
  2478      *
  2479      * @param list the list for which a dynamically typesafe view is to be
  2480      *             returned
  2481      * @param type the type of element that {@code list} is permitted to hold
  2482      * @return a dynamically typesafe view of the specified list
  2483      * @since 1.5
  2484      */
  2485     public static <E> List<E> checkedList(List<E> list, Class<E> type) {
  2486         return (list instanceof RandomAccess ?
  2487                 new CheckedRandomAccessList<>(list, type) :
  2488                 new CheckedList<>(list, type));
  2489     }
  2490 
  2491     /**
  2492      * @serial include
  2493      */
  2494     static class CheckedList<E>
  2495         extends CheckedCollection<E>
  2496         implements List<E>
  2497     {
  2498         private static final long serialVersionUID = 65247728283967356L;
  2499         final List<E> list;
  2500 
  2501         CheckedList(List<E> list, Class<E> type) {
  2502             super(list, type);
  2503             this.list = list;
  2504         }
  2505 
  2506         public boolean equals(Object o)  { return o == this || list.equals(o); }
  2507         public int hashCode()            { return list.hashCode(); }
  2508         public E get(int index)          { return list.get(index); }
  2509         public E remove(int index)       { return list.remove(index); }
  2510         public int indexOf(Object o)     { return list.indexOf(o); }
  2511         public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
  2512 
  2513         public E set(int index, E element) {
  2514             typeCheck(element);
  2515             return list.set(index, element);
  2516         }
  2517 
  2518         public void add(int index, E element) {
  2519             typeCheck(element);
  2520             list.add(index, element);
  2521         }
  2522 
  2523         public boolean addAll(int index, Collection<? extends E> c) {
  2524             return list.addAll(index, checkedCopyOf(c));
  2525         }
  2526         public ListIterator<E> listIterator()   { return listIterator(0); }
  2527 
  2528         public ListIterator<E> listIterator(final int index) {
  2529             final ListIterator<E> i = list.listIterator(index);
  2530 
  2531             return new ListIterator<E>() {
  2532                 public boolean hasNext()     { return i.hasNext(); }
  2533                 public E next()              { return i.next(); }
  2534                 public boolean hasPrevious() { return i.hasPrevious(); }
  2535                 public E previous()          { return i.previous(); }
  2536                 public int nextIndex()       { return i.nextIndex(); }
  2537                 public int previousIndex()   { return i.previousIndex(); }
  2538                 public void remove()         {        i.remove(); }
  2539 
  2540                 public void set(E e) {
  2541                     typeCheck(e);
  2542                     i.set(e);
  2543                 }
  2544 
  2545                 public void add(E e) {
  2546                     typeCheck(e);
  2547                     i.add(e);
  2548                 }
  2549             };
  2550         }
  2551 
  2552         public List<E> subList(int fromIndex, int toIndex) {
  2553             return new CheckedList<>(list.subList(fromIndex, toIndex), type);
  2554         }
  2555     }
  2556 
  2557     /**
  2558      * @serial include
  2559      */
  2560     static class CheckedRandomAccessList<E> extends CheckedList<E>
  2561                                             implements RandomAccess
  2562     {
  2563         private static final long serialVersionUID = 1638200125423088369L;
  2564 
  2565         CheckedRandomAccessList(List<E> list, Class<E> type) {
  2566             super(list, type);
  2567         }
  2568 
  2569         public List<E> subList(int fromIndex, int toIndex) {
  2570             return new CheckedRandomAccessList<>(
  2571                 list.subList(fromIndex, toIndex), type);
  2572         }
  2573     }
  2574 
  2575     /**
  2576      * Returns a dynamically typesafe view of the specified map.
  2577      * Any attempt to insert a mapping whose key or value have the wrong
  2578      * type will result in an immediate {@link ClassCastException}.
  2579      * Similarly, any attempt to modify the value currently associated with
  2580      * a key will result in an immediate {@link ClassCastException},
  2581      * whether the modification is attempted directly through the map
  2582      * itself, or through a {@link Map.Entry} instance obtained from the
  2583      * map's {@link Map#entrySet() entry set} view.
  2584      *
  2585      * <p>Assuming a map contains no incorrectly typed keys or values
  2586      * prior to the time a dynamically typesafe view is generated, and
  2587      * that all subsequent access to the map takes place through the view
  2588      * (or one of its collection views), it is <i>guaranteed</i> that the
  2589      * map cannot contain an incorrectly typed key or value.
  2590      *
  2591      * <p>A discussion of the use of dynamically typesafe views may be
  2592      * found in the documentation for the {@link #checkedCollection
  2593      * checkedCollection} method.
  2594      *
  2595      * <p>The returned map will be serializable if the specified map is
  2596      * serializable.
  2597      *
  2598      * <p>Since {@code null} is considered to be a value of any reference
  2599      * type, the returned map permits insertion of null keys or values
  2600      * whenever the backing map does.
  2601      *
  2602      * @param m the map for which a dynamically typesafe view is to be
  2603      *          returned
  2604      * @param keyType the type of key that {@code m} is permitted to hold
  2605      * @param valueType the type of value that {@code m} is permitted to hold
  2606      * @return a dynamically typesafe view of the specified map
  2607      * @since 1.5
  2608      */
  2609     public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
  2610                                               Class<K> keyType,
  2611                                               Class<V> valueType) {
  2612         return new CheckedMap<>(m, keyType, valueType);
  2613     }
  2614 
  2615 
  2616     /**
  2617      * @serial include
  2618      */
  2619     private static class CheckedMap<K,V>
  2620         implements Map<K,V>, Serializable
  2621     {
  2622         private static final long serialVersionUID = 5742860141034234728L;
  2623 
  2624         private final Map<K, V> m;
  2625         final Class<K> keyType;
  2626         final Class<V> valueType;
  2627 
  2628         private void typeCheck(Object key, Object value) {
  2629             if (key != null && !keyType.isInstance(key))
  2630                 throw new ClassCastException(badKeyMsg(key));
  2631 
  2632             if (value != null && !valueType.isInstance(value))
  2633                 throw new ClassCastException(badValueMsg(value));
  2634         }
  2635 
  2636         private String badKeyMsg(Object key) {
  2637             return "Attempt to insert " + key.getClass() +
  2638                 " key into map with key type " + keyType;
  2639         }
  2640 
  2641         private String badValueMsg(Object value) {
  2642             return "Attempt to insert " + value.getClass() +
  2643                 " value into map with value type " + valueType;
  2644         }
  2645 
  2646         CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
  2647             if (m == null || keyType == null || valueType == null)
  2648                 throw new NullPointerException();
  2649             this.m = m;
  2650             this.keyType = keyType;
  2651             this.valueType = valueType;
  2652         }
  2653 
  2654         public int size()                      { return m.size(); }
  2655         public boolean isEmpty()               { return m.isEmpty(); }
  2656         public boolean containsKey(Object key) { return m.containsKey(key); }
  2657         public boolean containsValue(Object v) { return m.containsValue(v); }
  2658         public V get(Object key)               { return m.get(key); }
  2659         public V remove(Object key)            { return m.remove(key); }
  2660         public void clear()                    { m.clear(); }
  2661         public Set<K> keySet()                 { return m.keySet(); }
  2662         public Collection<V> values()          { return m.values(); }
  2663         public boolean equals(Object o)        { return o == this || m.equals(o); }
  2664         public int hashCode()                  { return m.hashCode(); }
  2665         public String toString()               { return m.toString(); }
  2666 
  2667         public V put(K key, V value) {
  2668             typeCheck(key, value);
  2669             return m.put(key, value);
  2670         }
  2671 
  2672         @SuppressWarnings("unchecked")
  2673         public void putAll(Map<? extends K, ? extends V> t) {
  2674             // Satisfy the following goals:
  2675             // - good diagnostics in case of type mismatch
  2676             // - all-or-nothing semantics
  2677             // - protection from malicious t
  2678             // - correct behavior if t is a concurrent map
  2679             Object[] entries = t.entrySet().toArray();
  2680             List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
  2681             for (Object o : entries) {
  2682                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
  2683                 Object k = e.getKey();
  2684                 Object v = e.getValue();
  2685                 typeCheck(k, v);
  2686                 checked.add(
  2687                     new AbstractMap.SimpleImmutableEntry<>((K) k, (V) v));
  2688             }
  2689             for (Map.Entry<K,V> e : checked)
  2690                 m.put(e.getKey(), e.getValue());
  2691         }
  2692 
  2693         private transient Set<Map.Entry<K,V>> entrySet = null;
  2694 
  2695         public Set<Map.Entry<K,V>> entrySet() {
  2696             if (entrySet==null)
  2697                 entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);
  2698             return entrySet;
  2699         }
  2700 
  2701         /**
  2702          * We need this class in addition to CheckedSet as Map.Entry permits
  2703          * modification of the backing Map via the setValue operation.  This
  2704          * class is subtle: there are many possible attacks that must be
  2705          * thwarted.
  2706          *
  2707          * @serial exclude
  2708          */
  2709         static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
  2710             private final Set<Map.Entry<K,V>> s;
  2711             private final Class<V> valueType;
  2712 
  2713             CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
  2714                 this.s = s;
  2715                 this.valueType = valueType;
  2716             }
  2717 
  2718             public int size()        { return s.size(); }
  2719             public boolean isEmpty() { return s.isEmpty(); }
  2720             public String toString() { return s.toString(); }
  2721             public int hashCode()    { return s.hashCode(); }
  2722             public void clear()      {        s.clear(); }
  2723 
  2724             public boolean add(Map.Entry<K, V> e) {
  2725                 throw new UnsupportedOperationException();
  2726             }
  2727             public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
  2728                 throw new UnsupportedOperationException();
  2729             }
  2730 
  2731             public Iterator<Map.Entry<K,V>> iterator() {
  2732                 final Iterator<Map.Entry<K, V>> i = s.iterator();
  2733                 final Class<V> valueType = this.valueType;
  2734 
  2735                 return new Iterator<Map.Entry<K,V>>() {
  2736                     public boolean hasNext() { return i.hasNext(); }
  2737                     public void remove()     { i.remove(); }
  2738 
  2739                     public Map.Entry<K,V> next() {
  2740                         return checkedEntry(i.next(), valueType);
  2741                     }
  2742                 };
  2743             }
  2744 
  2745             @SuppressWarnings("unchecked")
  2746             public Object[] toArray() {
  2747                 Object[] source = s.toArray();
  2748 
  2749                 /*
  2750                  * Ensure that we don't get an ArrayStoreException even if
  2751                  * s.toArray returns an array of something other than Object
  2752                  */
  2753                 Object[] dest = (CheckedEntry.class.isInstance(
  2754                     source.getClass().getComponentType()) ? source :
  2755                                  new Object[source.length]);
  2756 
  2757                 for (int i = 0; i < source.length; i++)
  2758                     dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
  2759                                            valueType);
  2760                 return dest;
  2761             }
  2762 
  2763             @SuppressWarnings("unchecked")
  2764             public <T> T[] toArray(T[] a) {
  2765                 // We don't pass a to s.toArray, to avoid window of
  2766                 // vulnerability wherein an unscrupulous multithreaded client
  2767                 // could get his hands on raw (unwrapped) Entries from s.
  2768                 T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
  2769 
  2770                 for (int i=0; i<arr.length; i++)
  2771                     arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
  2772                                               valueType);
  2773                 if (arr.length > a.length)
  2774                     return arr;
  2775 
  2776                 System.arraycopy(arr, 0, a, 0, arr.length);
  2777                 if (a.length > arr.length)
  2778                     a[arr.length] = null;
  2779                 return a;
  2780             }
  2781 
  2782             /**
  2783              * This method is overridden to protect the backing set against
  2784              * an object with a nefarious equals function that senses
  2785              * that the equality-candidate is Map.Entry and calls its
  2786              * setValue method.
  2787              */
  2788             public boolean contains(Object o) {
  2789                 if (!(o instanceof Map.Entry))
  2790                     return false;
  2791                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
  2792                 return s.contains(
  2793                     (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
  2794             }
  2795 
  2796             /**
  2797              * The bulk collection methods are overridden to protect
  2798              * against an unscrupulous collection whose contains(Object o)
  2799              * method senses when o is a Map.Entry, and calls o.setValue.
  2800              */
  2801             public boolean containsAll(Collection<?> c) {
  2802                 for (Object o : c)
  2803                     if (!contains(o)) // Invokes safe contains() above
  2804                         return false;
  2805                 return true;
  2806             }
  2807 
  2808             public boolean remove(Object o) {
  2809                 if (!(o instanceof Map.Entry))
  2810                     return false;
  2811                 return s.remove(new AbstractMap.SimpleImmutableEntry
  2812                                 <>((Map.Entry<?,?>)o));
  2813             }
  2814 
  2815             public boolean removeAll(Collection<?> c) {
  2816                 return batchRemove(c, false);
  2817             }
  2818             public boolean retainAll(Collection<?> c) {
  2819                 return batchRemove(c, true);
  2820             }
  2821             private boolean batchRemove(Collection<?> c, boolean complement) {
  2822                 boolean modified = false;
  2823                 Iterator<Map.Entry<K,V>> it = iterator();
  2824                 while (it.hasNext()) {
  2825                     if (c.contains(it.next()) != complement) {
  2826                         it.remove();
  2827                         modified = true;
  2828                     }
  2829                 }
  2830                 return modified;
  2831             }
  2832 
  2833             public boolean equals(Object o) {
  2834                 if (o == this)
  2835                     return true;
  2836                 if (!(o instanceof Set))
  2837                     return false;
  2838                 Set<?> that = (Set<?>) o;
  2839                 return that.size() == s.size()
  2840                     && containsAll(that); // Invokes safe containsAll() above
  2841             }
  2842 
  2843             static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
  2844                                                             Class<T> valueType) {
  2845                 return new CheckedEntry<>(e, valueType);
  2846             }
  2847 
  2848             /**
  2849              * This "wrapper class" serves two purposes: it prevents
  2850              * the client from modifying the backing Map, by short-circuiting
  2851              * the setValue method, and it protects the backing Map against
  2852              * an ill-behaved Map.Entry that attempts to modify another
  2853              * Map.Entry when asked to perform an equality check.
  2854              */
  2855             private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
  2856                 private final Map.Entry<K, V> e;
  2857                 private final Class<T> valueType;
  2858 
  2859                 CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
  2860                     this.e = e;
  2861                     this.valueType = valueType;
  2862                 }
  2863 
  2864                 public K getKey()        { return e.getKey(); }
  2865                 public V getValue()      { return e.getValue(); }
  2866                 public int hashCode()    { return e.hashCode(); }
  2867                 public String toString() { return e.toString(); }
  2868 
  2869                 public V setValue(V value) {
  2870                     if (value != null && !valueType.isInstance(value))
  2871                         throw new ClassCastException(badValueMsg(value));
  2872                     return e.setValue(value);
  2873                 }
  2874 
  2875                 private String badValueMsg(Object value) {
  2876                     return "Attempt to insert " + value.getClass() +
  2877                         " value into map with value type " + valueType;
  2878                 }
  2879 
  2880                 public boolean equals(Object o) {
  2881                     if (o == this)
  2882                         return true;
  2883                     if (!(o instanceof Map.Entry))
  2884                         return false;
  2885                     return e.equals(new AbstractMap.SimpleImmutableEntry
  2886                                     <>((Map.Entry<?,?>)o));
  2887                 }
  2888             }
  2889         }
  2890     }
  2891 
  2892     /**
  2893      * Returns a dynamically typesafe view of the specified sorted map.
  2894      * Any attempt to insert a mapping whose key or value have the wrong
  2895      * type will result in an immediate {@link ClassCastException}.
  2896      * Similarly, any attempt to modify the value currently associated with
  2897      * a key will result in an immediate {@link ClassCastException},
  2898      * whether the modification is attempted directly through the map
  2899      * itself, or through a {@link Map.Entry} instance obtained from the
  2900      * map's {@link Map#entrySet() entry set} view.
  2901      *
  2902      * <p>Assuming a map contains no incorrectly typed keys or values
  2903      * prior to the time a dynamically typesafe view is generated, and
  2904      * that all subsequent access to the map takes place through the view
  2905      * (or one of its collection views), it is <i>guaranteed</i> that the
  2906      * map cannot contain an incorrectly typed key or value.
  2907      *
  2908      * <p>A discussion of the use of dynamically typesafe views may be
  2909      * found in the documentation for the {@link #checkedCollection
  2910      * checkedCollection} method.
  2911      *
  2912      * <p>The returned map will be serializable if the specified map is
  2913      * serializable.
  2914      *
  2915      * <p>Since {@code null} is considered to be a value of any reference
  2916      * type, the returned map permits insertion of null keys or values
  2917      * whenever the backing map does.
  2918      *
  2919      * @param m the map for which a dynamically typesafe view is to be
  2920      *          returned
  2921      * @param keyType the type of key that {@code m} is permitted to hold
  2922      * @param valueType the type of value that {@code m} is permitted to hold
  2923      * @return a dynamically typesafe view of the specified map
  2924      * @since 1.5
  2925      */
  2926     public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
  2927                                                         Class<K> keyType,
  2928                                                         Class<V> valueType) {
  2929         return new CheckedSortedMap<>(m, keyType, valueType);
  2930     }
  2931 
  2932     /**
  2933      * @serial include
  2934      */
  2935     static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
  2936         implements SortedMap<K,V>, Serializable
  2937     {
  2938         private static final long serialVersionUID = 1599671320688067438L;
  2939 
  2940         private final SortedMap<K, V> sm;
  2941 
  2942         CheckedSortedMap(SortedMap<K, V> m,
  2943                          Class<K> keyType, Class<V> valueType) {
  2944             super(m, keyType, valueType);
  2945             sm = m;
  2946         }
  2947 
  2948         public Comparator<? super K> comparator() { return sm.comparator(); }
  2949         public K firstKey()                       { return sm.firstKey(); }
  2950         public K lastKey()                        { return sm.lastKey(); }
  2951 
  2952         public SortedMap<K,V> subMap(K fromKey, K toKey) {
  2953             return checkedSortedMap(sm.subMap(fromKey, toKey),
  2954                                     keyType, valueType);
  2955         }
  2956         public SortedMap<K,V> headMap(K toKey) {
  2957             return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
  2958         }
  2959         public SortedMap<K,V> tailMap(K fromKey) {
  2960             return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
  2961         }
  2962     }
  2963 
  2964     // Empty collections
  2965 
  2966     /**
  2967      * Returns an iterator that has no elements.  More precisely,
  2968      *
  2969      * <ul compact>
  2970      *
  2971      * <li>{@link Iterator#hasNext hasNext} always returns {@code
  2972      * false}.
  2973      *
  2974      * <li>{@link Iterator#next next} always throws {@link
  2975      * NoSuchElementException}.
  2976      *
  2977      * <li>{@link Iterator#remove remove} always throws {@link
  2978      * IllegalStateException}.
  2979      *
  2980      * </ul>
  2981      *
  2982      * <p>Implementations of this method are permitted, but not
  2983      * required, to return the same object from multiple invocations.
  2984      *
  2985      * @return an empty iterator
  2986      * @since 1.7
  2987      */
  2988     @SuppressWarnings("unchecked")
  2989     public static <T> Iterator<T> emptyIterator() {
  2990         return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
  2991     }
  2992 
  2993     private static class EmptyIterator<E> implements Iterator<E> {
  2994         static final EmptyIterator<Object> EMPTY_ITERATOR
  2995             = new EmptyIterator<>();
  2996 
  2997         public boolean hasNext() { return false; }
  2998         public E next() { throw new NoSuchElementException(); }
  2999         public void remove() { throw new IllegalStateException(); }
  3000     }
  3001 
  3002     /**
  3003      * Returns a list iterator that has no elements.  More precisely,
  3004      *
  3005      * <ul compact>
  3006      *
  3007      * <li>{@link Iterator#hasNext hasNext} and {@link
  3008      * ListIterator#hasPrevious hasPrevious} always return {@code
  3009      * false}.
  3010      *
  3011      * <li>{@link Iterator#next next} and {@link ListIterator#previous
  3012      * previous} always throw {@link NoSuchElementException}.
  3013      *
  3014      * <li>{@link Iterator#remove remove} and {@link ListIterator#set
  3015      * set} always throw {@link IllegalStateException}.
  3016      *
  3017      * <li>{@link ListIterator#add add} always throws {@link
  3018      * UnsupportedOperationException}.
  3019      *
  3020      * <li>{@link ListIterator#nextIndex nextIndex} always returns
  3021      * {@code 0} .
  3022      *
  3023      * <li>{@link ListIterator#previousIndex previousIndex} always
  3024      * returns {@code -1}.
  3025      *
  3026      * </ul>
  3027      *
  3028      * <p>Implementations of this method are permitted, but not
  3029      * required, to return the same object from multiple invocations.
  3030      *
  3031      * @return an empty list iterator
  3032      * @since 1.7
  3033      */
  3034     @SuppressWarnings("unchecked")
  3035     public static <T> ListIterator<T> emptyListIterator() {
  3036         return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
  3037     }
  3038 
  3039     private static class EmptyListIterator<E>
  3040         extends EmptyIterator<E>
  3041         implements ListIterator<E>
  3042     {
  3043         static final EmptyListIterator<Object> EMPTY_ITERATOR
  3044             = new EmptyListIterator<>();
  3045 
  3046         public boolean hasPrevious() { return false; }
  3047         public E previous() { throw new NoSuchElementException(); }
  3048         public int nextIndex()     { return 0; }
  3049         public int previousIndex() { return -1; }
  3050         public void set(E e) { throw new IllegalStateException(); }
  3051         public void add(E e) { throw new UnsupportedOperationException(); }
  3052     }
  3053 
  3054     /**
  3055      * Returns an enumeration that has no elements.  More precisely,
  3056      *
  3057      * <ul compact>
  3058      *
  3059      * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
  3060      * returns {@code false}.
  3061      *
  3062      * <li> {@link Enumeration#nextElement nextElement} always throws
  3063      * {@link NoSuchElementException}.
  3064      *
  3065      * </ul>
  3066      *
  3067      * <p>Implementations of this method are permitted, but not
  3068      * required, to return the same object from multiple invocations.
  3069      *
  3070      * @return an empty enumeration
  3071      * @since 1.7
  3072      */
  3073     @SuppressWarnings("unchecked")
  3074     public static <T> Enumeration<T> emptyEnumeration() {
  3075         return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
  3076     }
  3077 
  3078     private static class EmptyEnumeration<E> implements Enumeration<E> {
  3079         static final EmptyEnumeration<Object> EMPTY_ENUMERATION
  3080             = new EmptyEnumeration<>();
  3081 
  3082         public boolean hasMoreElements() { return false; }
  3083         public E nextElement() { throw new NoSuchElementException(); }
  3084     }
  3085 
  3086     /**
  3087      * The empty set (immutable).  This set is serializable.
  3088      *
  3089      * @see #emptySet()
  3090      */
  3091     @SuppressWarnings("unchecked")
  3092     public static final Set EMPTY_SET = new EmptySet<>();
  3093 
  3094     /**
  3095      * Returns the empty set (immutable).  This set is serializable.
  3096      * Unlike the like-named field, this method is parameterized.
  3097      *
  3098      * <p>This example illustrates the type-safe way to obtain an empty set:
  3099      * <pre>
  3100      *     Set&lt;String&gt; s = Collections.emptySet();
  3101      * </pre>
  3102      * Implementation note:  Implementations of this method need not
  3103      * create a separate <tt>Set</tt> object for each call.   Using this
  3104      * method is likely to have comparable cost to using the like-named
  3105      * field.  (Unlike this method, the field does not provide type safety.)
  3106      *
  3107      * @see #EMPTY_SET
  3108      * @since 1.5
  3109      */
  3110     @SuppressWarnings("unchecked")
  3111     public static final <T> Set<T> emptySet() {
  3112         return (Set<T>) EMPTY_SET;
  3113     }
  3114 
  3115     /**
  3116      * @serial include
  3117      */
  3118     private static class EmptySet<E>
  3119         extends AbstractSet<E>
  3120         implements Serializable
  3121     {
  3122         private static final long serialVersionUID = 1582296315990362920L;
  3123 
  3124         public Iterator<E> iterator() { return emptyIterator(); }
  3125 
  3126         public int size() {return 0;}
  3127         public boolean isEmpty() {return true;}
  3128 
  3129         public boolean contains(Object obj) {return false;}
  3130         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
  3131 
  3132         public Object[] toArray() { return new Object[0]; }
  3133 
  3134         public <T> T[] toArray(T[] a) {
  3135             if (a.length > 0)
  3136                 a[0] = null;
  3137             return a;
  3138         }
  3139 
  3140         // Preserves singleton property
  3141         private Object readResolve() {
  3142             return EMPTY_SET;
  3143         }
  3144     }
  3145 
  3146     /**
  3147      * The empty list (immutable).  This list is serializable.
  3148      *
  3149      * @see #emptyList()
  3150      */
  3151     @SuppressWarnings("unchecked")
  3152     public static final List EMPTY_LIST = new EmptyList<>();
  3153 
  3154     /**
  3155      * Returns the empty list (immutable).  This list is serializable.
  3156      *
  3157      * <p>This example illustrates the type-safe way to obtain an empty list:
  3158      * <pre>
  3159      *     List&lt;String&gt; s = Collections.emptyList();
  3160      * </pre>
  3161      * Implementation note:  Implementations of this method need not
  3162      * create a separate <tt>List</tt> object for each call.   Using this
  3163      * method is likely to have comparable cost to using the like-named
  3164      * field.  (Unlike this method, the field does not provide type safety.)
  3165      *
  3166      * @see #EMPTY_LIST
  3167      * @since 1.5
  3168      */
  3169     @SuppressWarnings("unchecked")
  3170     public static final <T> List<T> emptyList() {
  3171         return (List<T>) EMPTY_LIST;
  3172     }
  3173 
  3174     /**
  3175      * @serial include
  3176      */
  3177     private static class EmptyList<E>
  3178         extends AbstractList<E>
  3179         implements RandomAccess, Serializable {
  3180         private static final long serialVersionUID = 8842843931221139166L;
  3181 
  3182         public Iterator<E> iterator() {
  3183             return emptyIterator();
  3184         }
  3185         public ListIterator<E> listIterator() {
  3186             return emptyListIterator();
  3187         }
  3188 
  3189         public int size() {return 0;}
  3190         public boolean isEmpty() {return true;}
  3191 
  3192         public boolean contains(Object obj) {return false;}
  3193         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
  3194 
  3195         public Object[] toArray() { return new Object[0]; }
  3196 
  3197         public <T> T[] toArray(T[] a) {
  3198             if (a.length > 0)
  3199                 a[0] = null;
  3200             return a;
  3201         }
  3202 
  3203         public E get(int index) {
  3204             throw new IndexOutOfBoundsException("Index: "+index);
  3205         }
  3206 
  3207         public boolean equals(Object o) {
  3208             return (o instanceof List) && ((List<?>)o).isEmpty();
  3209         }
  3210 
  3211         public int hashCode() { return 1; }
  3212 
  3213         // Preserves singleton property
  3214         private Object readResolve() {
  3215             return EMPTY_LIST;
  3216         }
  3217     }
  3218 
  3219     /**
  3220      * The empty map (immutable).  This map is serializable.
  3221      *
  3222      * @see #emptyMap()
  3223      * @since 1.3
  3224      */
  3225     @SuppressWarnings("unchecked")
  3226     public static final Map EMPTY_MAP = new EmptyMap<>();
  3227 
  3228     /**
  3229      * Returns the empty map (immutable).  This map is serializable.
  3230      *
  3231      * <p>This example illustrates the type-safe way to obtain an empty set:
  3232      * <pre>
  3233      *     Map&lt;String, Date&gt; s = Collections.emptyMap();
  3234      * </pre>
  3235      * Implementation note:  Implementations of this method need not
  3236      * create a separate <tt>Map</tt> object for each call.   Using this
  3237      * method is likely to have comparable cost to using the like-named
  3238      * field.  (Unlike this method, the field does not provide type safety.)
  3239      *
  3240      * @see #EMPTY_MAP
  3241      * @since 1.5
  3242      */
  3243     @SuppressWarnings("unchecked")
  3244     public static final <K,V> Map<K,V> emptyMap() {
  3245         return (Map<K,V>) EMPTY_MAP;
  3246     }
  3247 
  3248     /**
  3249      * @serial include
  3250      */
  3251     private static class EmptyMap<K,V>
  3252         extends AbstractMap<K,V>
  3253         implements Serializable
  3254     {
  3255         private static final long serialVersionUID = 6428348081105594320L;
  3256 
  3257         public int size()                          {return 0;}
  3258         public boolean isEmpty()                   {return true;}
  3259         public boolean containsKey(Object key)     {return false;}
  3260         public boolean containsValue(Object value) {return false;}
  3261         public V get(Object key)                   {return null;}
  3262         public Set<K> keySet()                     {return emptySet();}
  3263         public Collection<V> values()              {return emptySet();}
  3264         public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
  3265 
  3266         public boolean equals(Object o) {
  3267             return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
  3268         }
  3269 
  3270         public int hashCode()                      {return 0;}
  3271 
  3272         // Preserves singleton property
  3273         private Object readResolve() {
  3274             return EMPTY_MAP;
  3275         }
  3276     }
  3277 
  3278     // Singleton collections
  3279 
  3280     /**
  3281      * Returns an immutable set containing only the specified object.
  3282      * The returned set is serializable.
  3283      *
  3284      * @param o the sole object to be stored in the returned set.
  3285      * @return an immutable set containing only the specified object.
  3286      */
  3287     public static <T> Set<T> singleton(T o) {
  3288         return new SingletonSet<>(o);
  3289     }
  3290 
  3291     static <E> Iterator<E> singletonIterator(final E e) {
  3292         return new Iterator<E>() {
  3293             private boolean hasNext = true;
  3294             public boolean hasNext() {
  3295                 return hasNext;
  3296             }
  3297             public E next() {
  3298                 if (hasNext) {
  3299                     hasNext = false;
  3300                     return e;
  3301                 }
  3302                 throw new NoSuchElementException();
  3303             }
  3304             public void remove() {
  3305                 throw new UnsupportedOperationException();
  3306             }
  3307         };
  3308     }
  3309 
  3310     /**
  3311      * @serial include
  3312      */
  3313     private static class SingletonSet<E>
  3314         extends AbstractSet<E>
  3315         implements Serializable
  3316     {
  3317         private static final long serialVersionUID = 3193687207550431679L;
  3318 
  3319         private final E element;
  3320 
  3321         SingletonSet(E e) {element = e;}
  3322 
  3323         public Iterator<E> iterator() {
  3324             return singletonIterator(element);
  3325         }
  3326 
  3327         public int size() {return 1;}
  3328 
  3329         public boolean contains(Object o) {return eq(o, element);}
  3330     }
  3331 
  3332     /**
  3333      * Returns an immutable list containing only the specified object.
  3334      * The returned list is serializable.
  3335      *
  3336      * @param o the sole object to be stored in the returned list.
  3337      * @return an immutable list containing only the specified object.
  3338      * @since 1.3
  3339      */
  3340     public static <T> List<T> singletonList(T o) {
  3341         return new SingletonList<>(o);
  3342     }
  3343 
  3344     /**
  3345      * @serial include
  3346      */
  3347     private static class SingletonList<E>
  3348         extends AbstractList<E>
  3349         implements RandomAccess, Serializable {
  3350 
  3351         private static final long serialVersionUID = 3093736618740652951L;
  3352 
  3353         private final E element;
  3354 
  3355         SingletonList(E obj)                {element = obj;}
  3356 
  3357         public Iterator<E> iterator() {
  3358             return singletonIterator(element);
  3359         }
  3360 
  3361         public int size()                   {return 1;}
  3362 
  3363         public boolean contains(Object obj) {return eq(obj, element);}
  3364 
  3365         public E get(int index) {
  3366             if (index != 0)
  3367               throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
  3368             return element;
  3369         }
  3370     }
  3371 
  3372     /**
  3373      * Returns an immutable map, mapping only the specified key to the
  3374      * specified value.  The returned map is serializable.
  3375      *
  3376      * @param key the sole key to be stored in the returned map.
  3377      * @param value the value to which the returned map maps <tt>key</tt>.
  3378      * @return an immutable map containing only the specified key-value
  3379      *         mapping.
  3380      * @since 1.3
  3381      */
  3382     public static <K,V> Map<K,V> singletonMap(K key, V value) {
  3383         return new SingletonMap<>(key, value);
  3384     }
  3385 
  3386     /**
  3387      * @serial include
  3388      */
  3389     private static class SingletonMap<K,V>
  3390           extends AbstractMap<K,V>
  3391           implements Serializable {
  3392         private static final long serialVersionUID = -6979724477215052911L;
  3393 
  3394         private final K k;
  3395         private final V v;
  3396 
  3397         SingletonMap(K key, V value) {
  3398             k = key;
  3399             v = value;
  3400         }
  3401 
  3402         public int size()                          {return 1;}
  3403 
  3404         public boolean isEmpty()                   {return false;}
  3405 
  3406         public boolean containsKey(Object key)     {return eq(key, k);}
  3407 
  3408         public boolean containsValue(Object value) {return eq(value, v);}
  3409 
  3410         public V get(Object key)                   {return (eq(key, k) ? v : null);}
  3411 
  3412         private transient Set<K> keySet = null;
  3413         private transient Set<Map.Entry<K,V>> entrySet = null;
  3414         private transient Collection<V> values = null;
  3415 
  3416         public Set<K> keySet() {
  3417             if (keySet==null)
  3418                 keySet = singleton(k);
  3419             return keySet;
  3420         }
  3421 
  3422         public Set<Map.Entry<K,V>> entrySet() {
  3423             if (entrySet==null)
  3424                 entrySet = Collections.<Map.Entry<K,V>>singleton(
  3425                     new SimpleImmutableEntry<>(k, v));
  3426             return entrySet;
  3427         }
  3428 
  3429         public Collection<V> values() {
  3430             if (values==null)
  3431                 values = singleton(v);
  3432             return values;
  3433         }
  3434 
  3435     }
  3436 
  3437     // Miscellaneous
  3438 
  3439     /**
  3440      * Returns an immutable list consisting of <tt>n</tt> copies of the
  3441      * specified object.  The newly allocated data object is tiny (it contains
  3442      * a single reference to the data object).  This method is useful in
  3443      * combination with the <tt>List.addAll</tt> method to grow lists.
  3444      * The returned list is serializable.
  3445      *
  3446      * @param  n the number of elements in the returned list.
  3447      * @param  o the element to appear repeatedly in the returned list.
  3448      * @return an immutable list consisting of <tt>n</tt> copies of the
  3449      *         specified object.
  3450      * @throws IllegalArgumentException if {@code n < 0}
  3451      * @see    List#addAll(Collection)
  3452      * @see    List#addAll(int, Collection)
  3453      */
  3454     public static <T> List<T> nCopies(int n, T o) {
  3455         if (n < 0)
  3456             throw new IllegalArgumentException("List length = " + n);
  3457         return new CopiesList<>(n, o);
  3458     }
  3459 
  3460     /**
  3461      * @serial include
  3462      */
  3463     private static class CopiesList<E>
  3464         extends AbstractList<E>
  3465         implements RandomAccess, Serializable
  3466     {
  3467         private static final long serialVersionUID = 2739099268398711800L;
  3468 
  3469         final int n;
  3470         final E element;
  3471 
  3472         CopiesList(int n, E e) {
  3473             assert n >= 0;
  3474             this.n = n;
  3475             element = e;
  3476         }
  3477 
  3478         public int size() {
  3479             return n;
  3480         }
  3481 
  3482         public boolean contains(Object obj) {
  3483             return n != 0 && eq(obj, element);
  3484         }
  3485 
  3486         public int indexOf(Object o) {
  3487             return contains(o) ? 0 : -1;
  3488         }
  3489 
  3490         public int lastIndexOf(Object o) {
  3491             return contains(o) ? n - 1 : -1;
  3492         }
  3493 
  3494         public E get(int index) {
  3495             if (index < 0 || index >= n)
  3496                 throw new IndexOutOfBoundsException("Index: "+index+
  3497                                                     ", Size: "+n);
  3498             return element;
  3499         }
  3500 
  3501         public Object[] toArray() {
  3502             final Object[] a = new Object[n];
  3503             if (element != null)
  3504                 Arrays.fill(a, 0, n, element);
  3505             return a;
  3506         }
  3507 
  3508         public <T> T[] toArray(T[] a) {
  3509             final int n = this.n;
  3510             if (a.length < n) {
  3511                 a = (T[])java.lang.reflect.Array
  3512                     .newInstance(a.getClass().getComponentType(), n);
  3513                 if (element != null)
  3514                     Arrays.fill(a, 0, n, element);
  3515             } else {
  3516                 Arrays.fill(a, 0, n, element);
  3517                 if (a.length > n)
  3518                     a[n] = null;
  3519             }
  3520             return a;
  3521         }
  3522 
  3523         public List<E> subList(int fromIndex, int toIndex) {
  3524             if (fromIndex < 0)
  3525                 throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
  3526             if (toIndex > n)
  3527                 throw new IndexOutOfBoundsException("toIndex = " + toIndex);
  3528             if (fromIndex > toIndex)
  3529                 throw new IllegalArgumentException("fromIndex(" + fromIndex +
  3530                                                    ") > toIndex(" + toIndex + ")");
  3531             return new CopiesList<>(toIndex - fromIndex, element);
  3532         }
  3533     }
  3534 
  3535     /**
  3536      * Returns a comparator that imposes the reverse of the <em>natural
  3537      * ordering</em> on a collection of objects that implement the
  3538      * {@code Comparable} interface.  (The natural ordering is the ordering
  3539      * imposed by the objects' own {@code compareTo} method.)  This enables a
  3540      * simple idiom for sorting (or maintaining) collections (or arrays) of
  3541      * objects that implement the {@code Comparable} interface in
  3542      * reverse-natural-order.  For example, suppose {@code a} is an array of
  3543      * strings. Then: <pre>
  3544      *          Arrays.sort(a, Collections.reverseOrder());
  3545      * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
  3546      *
  3547      * The returned comparator is serializable.
  3548      *
  3549      * @return A comparator that imposes the reverse of the <i>natural
  3550      *         ordering</i> on a collection of objects that implement
  3551      *         the <tt>Comparable</tt> interface.
  3552      * @see Comparable
  3553      */
  3554     public static <T> Comparator<T> reverseOrder() {
  3555         return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
  3556     }
  3557 
  3558     /**
  3559      * @serial include
  3560      */
  3561     private static class ReverseComparator
  3562         implements Comparator<Comparable<Object>>, Serializable {
  3563 
  3564         private static final long serialVersionUID = 7207038068494060240L;
  3565 
  3566         static final ReverseComparator REVERSE_ORDER
  3567             = new ReverseComparator();
  3568 
  3569         public int compare(Comparable<Object> c1, Comparable<Object> c2) {
  3570             return c2.compareTo(c1);
  3571         }
  3572 
  3573         private Object readResolve() { return reverseOrder(); }
  3574     }
  3575 
  3576     /**
  3577      * Returns a comparator that imposes the reverse ordering of the specified
  3578      * comparator.  If the specified comparator is {@code null}, this method is
  3579      * equivalent to {@link #reverseOrder()} (in other words, it returns a
  3580      * comparator that imposes the reverse of the <em>natural ordering</em> on
  3581      * a collection of objects that implement the Comparable interface).
  3582      *
  3583      * <p>The returned comparator is serializable (assuming the specified
  3584      * comparator is also serializable or {@code null}).
  3585      *
  3586      * @param cmp a comparator who's ordering is to be reversed by the returned
  3587      * comparator or {@code null}
  3588      * @return A comparator that imposes the reverse ordering of the
  3589      *         specified comparator.
  3590      * @since 1.5
  3591      */
  3592     public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
  3593         if (cmp == null)
  3594             return reverseOrder();
  3595 
  3596         if (cmp instanceof ReverseComparator2)
  3597             return ((ReverseComparator2<T>)cmp).cmp;
  3598 
  3599         return new ReverseComparator2<>(cmp);
  3600     }
  3601 
  3602     /**
  3603      * @serial include
  3604      */
  3605     private static class ReverseComparator2<T> implements Comparator<T>,
  3606         Serializable
  3607     {
  3608         private static final long serialVersionUID = 4374092139857L;
  3609 
  3610         /**
  3611          * The comparator specified in the static factory.  This will never
  3612          * be null, as the static factory returns a ReverseComparator
  3613          * instance if its argument is null.
  3614          *
  3615          * @serial
  3616          */
  3617         final Comparator<T> cmp;
  3618 
  3619         ReverseComparator2(Comparator<T> cmp) {
  3620             assert cmp != null;
  3621             this.cmp = cmp;
  3622         }
  3623 
  3624         public int compare(T t1, T t2) {
  3625             return cmp.compare(t2, t1);
  3626         }
  3627 
  3628         public boolean equals(Object o) {
  3629             return (o == this) ||
  3630                 (o instanceof ReverseComparator2 &&
  3631                  cmp.equals(((ReverseComparator2)o).cmp));
  3632         }
  3633 
  3634         public int hashCode() {
  3635             return cmp.hashCode() ^ Integer.MIN_VALUE;
  3636         }
  3637     }
  3638 
  3639     /**
  3640      * Returns an enumeration over the specified collection.  This provides
  3641      * interoperability with legacy APIs that require an enumeration
  3642      * as input.
  3643      *
  3644      * @param c the collection for which an enumeration is to be returned.
  3645      * @return an enumeration over the specified collection.
  3646      * @see Enumeration
  3647      */
  3648     public static <T> Enumeration<T> enumeration(final Collection<T> c) {
  3649         return new Enumeration<T>() {
  3650             private final Iterator<T> i = c.iterator();
  3651 
  3652             public boolean hasMoreElements() {
  3653                 return i.hasNext();
  3654             }
  3655 
  3656             public T nextElement() {
  3657                 return i.next();
  3658             }
  3659         };
  3660     }
  3661 
  3662     /**
  3663      * Returns an array list containing the elements returned by the
  3664      * specified enumeration in the order they are returned by the
  3665      * enumeration.  This method provides interoperability between
  3666      * legacy APIs that return enumerations and new APIs that require
  3667      * collections.
  3668      *
  3669      * @param e enumeration providing elements for the returned
  3670      *          array list
  3671      * @return an array list containing the elements returned
  3672      *         by the specified enumeration.
  3673      * @since 1.4
  3674      * @see Enumeration
  3675      * @see ArrayList
  3676      */
  3677     public static <T> ArrayList<T> list(Enumeration<T> e) {
  3678         ArrayList<T> l = new ArrayList<>();
  3679         while (e.hasMoreElements())
  3680             l.add(e.nextElement());
  3681         return l;
  3682     }
  3683 
  3684     /**
  3685      * Returns true if the specified arguments are equal, or both null.
  3686      */
  3687     static boolean eq(Object o1, Object o2) {
  3688         return o1==null ? o2==null : o1.equals(o2);
  3689     }
  3690 
  3691     /**
  3692      * Returns the number of elements in the specified collection equal to the
  3693      * specified object.  More formally, returns the number of elements
  3694      * <tt>e</tt> in the collection such that
  3695      * <tt>(o == null ? e == null : o.equals(e))</tt>.
  3696      *
  3697      * @param c the collection in which to determine the frequency
  3698      *     of <tt>o</tt>
  3699      * @param o the object whose frequency is to be determined
  3700      * @throws NullPointerException if <tt>c</tt> is null
  3701      * @since 1.5
  3702      */
  3703     public static int frequency(Collection<?> c, Object o) {
  3704         int result = 0;
  3705         if (o == null) {
  3706             for (Object e : c)
  3707                 if (e == null)
  3708                     result++;
  3709         } else {
  3710             for (Object e : c)
  3711                 if (o.equals(e))
  3712                     result++;
  3713         }
  3714         return result;
  3715     }
  3716 
  3717     /**
  3718      * Returns {@code true} if the two specified collections have no
  3719      * elements in common.
  3720      *
  3721      * <p>Care must be exercised if this method is used on collections that
  3722      * do not comply with the general contract for {@code Collection}.
  3723      * Implementations may elect to iterate over either collection and test
  3724      * for containment in the other collection (or to perform any equivalent
  3725      * computation).  If either collection uses a nonstandard equality test
  3726      * (as does a {@link SortedSet} whose ordering is not <em>compatible with
  3727      * equals</em>, or the key set of an {@link IdentityHashMap}), both
  3728      * collections must use the same nonstandard equality test, or the
  3729      * result of this method is undefined.
  3730      *
  3731      * <p>Care must also be exercised when using collections that have
  3732      * restrictions on the elements that they may contain. Collection
  3733      * implementations are allowed to throw exceptions for any operation
  3734      * involving elements they deem ineligible. For absolute safety the
  3735      * specified collections should contain only elements which are
  3736      * eligible elements for both collections.
  3737      *
  3738      * <p>Note that it is permissible to pass the same collection in both
  3739      * parameters, in which case the method will return {@code true} if and
  3740      * only if the collection is empty.
  3741      *
  3742      * @param c1 a collection
  3743      * @param c2 a collection
  3744      * @return {@code true} if the two specified collections have no
  3745      * elements in common.
  3746      * @throws NullPointerException if either collection is {@code null}.
  3747      * @throws NullPointerException if one collection contains a {@code null}
  3748      * element and {@code null} is not an eligible element for the other collection.
  3749      * (<a href="Collection.html#optional-restrictions">optional</a>)
  3750      * @throws ClassCastException if one collection contains an element that is
  3751      * of a type which is ineligible for the other collection.
  3752      * (<a href="Collection.html#optional-restrictions">optional</a>)
  3753      * @since 1.5
  3754      */
  3755     public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
  3756         // The collection to be used for contains(). Preference is given to
  3757         // the collection who's contains() has lower O() complexity.
  3758         Collection<?> contains = c2;
  3759         // The collection to be iterated. If the collections' contains() impl
  3760         // are of different O() complexity, the collection with slower
  3761         // contains() will be used for iteration. For collections who's
  3762         // contains() are of the same complexity then best performance is
  3763         // achieved by iterating the smaller collection.
  3764         Collection<?> iterate = c1;
  3765 
  3766         // Performance optimization cases. The heuristics:
  3767         //   1. Generally iterate over c1.
  3768         //   2. If c1 is a Set then iterate over c2.
  3769         //   3. If either collection is empty then result is always true.
  3770         //   4. Iterate over the smaller Collection.
  3771         if (c1 instanceof Set) {
  3772             // Use c1 for contains as a Set's contains() is expected to perform
  3773             // better than O(N/2)
  3774             iterate = c2;
  3775             contains = c1;
  3776         } else if (!(c2 instanceof Set)) {
  3777             // Both are mere Collections. Iterate over smaller collection.
  3778             // Example: If c1 contains 3 elements and c2 contains 50 elements and
  3779             // assuming contains() requires ceiling(N/2) comparisons then
  3780             // checking for all c1 elements in c2 would require 75 comparisons
  3781             // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring
  3782             // 100 comparisons (50 * ceiling(3/2)).
  3783             int c1size = c1.size();
  3784             int c2size = c2.size();
  3785             if (c1size == 0 || c2size == 0) {
  3786                 // At least one collection is empty. Nothing will match.
  3787                 return true;
  3788             }
  3789 
  3790             if (c1size > c2size) {
  3791                 iterate = c2;
  3792                 contains = c1;
  3793             }
  3794         }
  3795 
  3796         for (Object e : iterate) {
  3797             if (contains.contains(e)) {
  3798                // Found a common element. Collections are not disjoint.
  3799                 return false;
  3800             }
  3801         }
  3802 
  3803         // No common elements were found.
  3804         return true;
  3805     }
  3806 
  3807     /**
  3808      * Adds all of the specified elements to the specified collection.
  3809      * Elements to be added may be specified individually or as an array.
  3810      * The behavior of this convenience method is identical to that of
  3811      * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
  3812      * to run significantly faster under most implementations.
  3813      *
  3814      * <p>When elements are specified individually, this method provides a
  3815      * convenient way to add a few elements to an existing collection:
  3816      * <pre>
  3817      *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
  3818      * </pre>
  3819      *
  3820      * @param c the collection into which <tt>elements</tt> are to be inserted
  3821      * @param elements the elements to insert into <tt>c</tt>
  3822      * @return <tt>true</tt> if the collection changed as a result of the call
  3823      * @throws UnsupportedOperationException if <tt>c</tt> does not support
  3824      *         the <tt>add</tt> operation
  3825      * @throws NullPointerException if <tt>elements</tt> contains one or more
  3826      *         null values and <tt>c</tt> does not permit null elements, or
  3827      *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
  3828      * @throws IllegalArgumentException if some property of a value in
  3829      *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
  3830      * @see Collection#addAll(Collection)
  3831      * @since 1.5
  3832      */
  3833     @SafeVarargs
  3834     public static <T> boolean addAll(Collection<? super T> c, T... elements) {
  3835         boolean result = false;
  3836         for (T element : elements)
  3837             result |= c.add(element);
  3838         return result;
  3839     }
  3840 
  3841     /**
  3842      * Returns a set backed by the specified map.  The resulting set displays
  3843      * the same ordering, concurrency, and performance characteristics as the
  3844      * backing map.  In essence, this factory method provides a {@link Set}
  3845      * implementation corresponding to any {@link Map} implementation.  There
  3846      * is no need to use this method on a {@link Map} implementation that
  3847      * already has a corresponding {@link Set} implementation (such as {@link
  3848      * HashMap} or {@link TreeMap}).
  3849      *
  3850      * <p>Each method invocation on the set returned by this method results in
  3851      * exactly one method invocation on the backing map or its <tt>keySet</tt>
  3852      * view, with one exception.  The <tt>addAll</tt> method is implemented
  3853      * as a sequence of <tt>put</tt> invocations on the backing map.
  3854      *
  3855      * <p>The specified map must be empty at the time this method is invoked,
  3856      * and should not be accessed directly after this method returns.  These
  3857      * conditions are ensured if the map is created empty, passed directly
  3858      * to this method, and no reference to the map is retained, as illustrated
  3859      * in the following code fragment:
  3860      * <pre>
  3861      *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
  3862      *        new WeakHashMap&lt;Object, Boolean&gt;());
  3863      * </pre>
  3864      *
  3865      * @param map the backing map
  3866      * @return the set backed by the map
  3867      * @throws IllegalArgumentException if <tt>map</tt> is not empty
  3868      * @since 1.6
  3869      */
  3870     public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
  3871         return new SetFromMap<>(map);
  3872     }
  3873 
  3874     /**
  3875      * @serial include
  3876      */
  3877     private static class SetFromMap<E> extends AbstractSet<E>
  3878         implements Set<E>, Serializable
  3879     {
  3880         private final Map<E, Boolean> m;  // The backing map
  3881         private transient Set<E> s;       // Its keySet
  3882 
  3883         SetFromMap(Map<E, Boolean> map) {
  3884             if (!map.isEmpty())
  3885                 throw new IllegalArgumentException("Map is non-empty");
  3886             m = map;
  3887             s = map.keySet();
  3888         }
  3889 
  3890         public void clear()               {        m.clear(); }
  3891         public int size()                 { return m.size(); }
  3892         public boolean isEmpty()          { return m.isEmpty(); }
  3893         public boolean contains(Object o) { return m.containsKey(o); }
  3894         public boolean remove(Object o)   { return m.remove(o) != null; }
  3895         public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
  3896         public Iterator<E> iterator()     { return s.iterator(); }
  3897         public Object[] toArray()         { return s.toArray(); }
  3898         public <T> T[] toArray(T[] a)     { return s.toArray(a); }
  3899         public String toString()          { return s.toString(); }
  3900         public int hashCode()             { return s.hashCode(); }
  3901         public boolean equals(Object o)   { return o == this || s.equals(o); }
  3902         public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
  3903         public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
  3904         public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
  3905         // addAll is the only inherited implementation
  3906 
  3907         private static final long serialVersionUID = 2454657854757543876L;
  3908 
  3909         private void readObject(java.io.ObjectInputStream stream)
  3910             throws IOException, ClassNotFoundException
  3911         {
  3912             stream.defaultReadObject();
  3913             s = m.keySet();
  3914         }
  3915     }
  3916 
  3917     /**
  3918      * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
  3919      * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
  3920      * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
  3921      * view can be useful when you would like to use a method
  3922      * requiring a <tt>Queue</tt> but you need Lifo ordering.
  3923      *
  3924      * <p>Each method invocation on the queue returned by this method
  3925      * results in exactly one method invocation on the backing deque, with
  3926      * one exception.  The {@link Queue#addAll addAll} method is
  3927      * implemented as a sequence of {@link Deque#addFirst addFirst}
  3928      * invocations on the backing deque.
  3929      *
  3930      * @param deque the deque
  3931      * @return the queue
  3932      * @since  1.6
  3933      */
  3934     public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
  3935         return new AsLIFOQueue<>(deque);
  3936     }
  3937 
  3938     /**
  3939      * @serial include
  3940      */
  3941     static class AsLIFOQueue<E> extends AbstractQueue<E>
  3942         implements Queue<E>, Serializable {
  3943         private static final long serialVersionUID = 1802017725587941708L;
  3944         private final Deque<E> q;
  3945         AsLIFOQueue(Deque<E> q)           { this.q = q; }
  3946         public boolean add(E e)           { q.addFirst(e); return true; }
  3947         public boolean offer(E e)         { return q.offerFirst(e); }
  3948         public E poll()                   { return q.pollFirst(); }
  3949         public E remove()                 { return q.removeFirst(); }
  3950         public E peek()                   { return q.peekFirst(); }
  3951         public E element()                { return q.getFirst(); }
  3952         public void clear()               {        q.clear(); }
  3953         public int size()                 { return q.size(); }
  3954         public boolean isEmpty()          { return q.isEmpty(); }
  3955         public boolean contains(Object o) { return q.contains(o); }
  3956         public boolean remove(Object o)   { return q.remove(o); }
  3957         public Iterator<E> iterator()     { return q.iterator(); }
  3958         public Object[] toArray()         { return q.toArray(); }
  3959         public <T> T[] toArray(T[] a)     { return q.toArray(a); }
  3960         public String toString()          { return q.toString(); }
  3961         public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
  3962         public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
  3963         public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
  3964         // We use inherited addAll; forwarding addAll would be wrong
  3965     }
  3966 }