rt/emul/compact/src/main/java/java/util/LinkedHashMap.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Tue, 17 Jan 2017 07:04:06 +0100
changeset 1985 cd1cc103a03c
parent 557 5be31d9fa455
permissions -rw-r--r--
Implementation of ClassValue for bck2brwsr
     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.util;
    27 import java.io.*;
    28 
    29 /**
    30  * <p>Hash table and linked list implementation of the <tt>Map</tt> interface,
    31  * with predictable iteration order.  This implementation differs from
    32  * <tt>HashMap</tt> in that it maintains a doubly-linked list running through
    33  * all of its entries.  This linked list defines the iteration ordering,
    34  * which is normally the order in which keys were inserted into the map
    35  * (<i>insertion-order</i>).  Note that insertion order is not affected
    36  * if a key is <i>re-inserted</i> into the map.  (A key <tt>k</tt> is
    37  * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when
    38  * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to
    39  * the invocation.)
    40  *
    41  * <p>This implementation spares its clients from the unspecified, generally
    42  * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
    43  * without incurring the increased cost associated with {@link TreeMap}.  It
    44  * can be used to produce a copy of a map that has the same order as the
    45  * original, regardless of the original map's implementation:
    46  * <pre>
    47  *     void foo(Map m) {
    48  *         Map copy = new LinkedHashMap(m);
    49  *         ...
    50  *     }
    51  * </pre>
    52  * This technique is particularly useful if a module takes a map on input,
    53  * copies it, and later returns results whose order is determined by that of
    54  * the copy.  (Clients generally appreciate having things returned in the same
    55  * order they were presented.)
    56  *
    57  * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
    58  * provided to create a linked hash map whose order of iteration is the order
    59  * in which its entries were last accessed, from least-recently accessed to
    60  * most-recently (<i>access-order</i>).  This kind of map is well-suited to
    61  * building LRU caches.  Invoking the <tt>put</tt> or <tt>get</tt> method
    62  * results in an access to the corresponding entry (assuming it exists after
    63  * the invocation completes).  The <tt>putAll</tt> method generates one entry
    64  * access for each mapping in the specified map, in the order that key-value
    65  * mappings are provided by the specified map's entry set iterator.  <i>No
    66  * other methods generate entry accesses.</i> In particular, operations on
    67  * collection-views do <i>not</i> affect the order of iteration of the backing
    68  * map.
    69  *
    70  * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
    71  * impose a policy for removing stale mappings automatically when new mappings
    72  * are added to the map.
    73  *
    74  * <p>This class provides all of the optional <tt>Map</tt> operations, and
    75  * permits null elements.  Like <tt>HashMap</tt>, it provides constant-time
    76  * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
    77  * <tt>remove</tt>), assuming the hash function disperses elements
    78  * properly among the buckets.  Performance is likely to be just slightly
    79  * below that of <tt>HashMap</tt>, due to the added expense of maintaining the
    80  * linked list, with one exception: Iteration over the collection-views
    81  * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i>
    82  * of the map, regardless of its capacity.  Iteration over a <tt>HashMap</tt>
    83  * is likely to be more expensive, requiring time proportional to its
    84  * <i>capacity</i>.
    85  *
    86  * <p>A linked hash map has two parameters that affect its performance:
    87  * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
    88  * as for <tt>HashMap</tt>.  Note, however, that the penalty for choosing an
    89  * excessively high value for initial capacity is less severe for this class
    90  * than for <tt>HashMap</tt>, as iteration times for this class are unaffected
    91  * by capacity.
    92  *
    93  * <p><strong>Note that this implementation is not synchronized.</strong>
    94  * If multiple threads access a linked hash map concurrently, and at least
    95  * one of the threads modifies the map structurally, it <em>must</em> be
    96  * synchronized externally.  This is typically accomplished by
    97  * synchronizing on some object that naturally encapsulates the map.
    98  *
    99  * If no such object exists, the map should be "wrapped" using the
   100  * {@link Collections#synchronizedMap Collections.synchronizedMap}
   101  * method.  This is best done at creation time, to prevent accidental
   102  * unsynchronized access to the map:<pre>
   103  *   Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
   104  *
   105  * A structural modification is any operation that adds or deletes one or more
   106  * mappings or, in the case of access-ordered linked hash maps, affects
   107  * iteration order.  In insertion-ordered linked hash maps, merely changing
   108  * the value associated with a key that is already contained in the map is not
   109  * a structural modification.  <strong>In access-ordered linked hash maps,
   110  * merely querying the map with <tt>get</tt> is a structural
   111  * modification.</strong>)
   112  *
   113  * <p>The iterators returned by the <tt>iterator</tt> method of the collections
   114  * returned by all of this class's collection view methods are
   115  * <em>fail-fast</em>: if the map is structurally modified at any time after
   116  * the iterator is created, in any way except through the iterator's own
   117  * <tt>remove</tt> method, the iterator will throw a {@link
   118  * ConcurrentModificationException}.  Thus, in the face of concurrent
   119  * modification, the iterator fails quickly and cleanly, rather than risking
   120  * arbitrary, non-deterministic behavior at an undetermined time in the future.
   121  *
   122  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
   123  * as it is, generally speaking, impossible to make any hard guarantees in the
   124  * presence of unsynchronized concurrent modification.  Fail-fast iterators
   125  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
   126  * Therefore, it would be wrong to write a program that depended on this
   127  * exception for its correctness:   <i>the fail-fast behavior of iterators
   128  * should be used only to detect bugs.</i>
   129  *
   130  * <p>This class is a member of the
   131  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
   132  * Java Collections Framework</a>.
   133  *
   134  * @param <K> the type of keys maintained by this map
   135  * @param <V> the type of mapped values
   136  *
   137  * @author  Josh Bloch
   138  * @see     Object#hashCode()
   139  * @see     Collection
   140  * @see     Map
   141  * @see     HashMap
   142  * @see     TreeMap
   143  * @see     Hashtable
   144  * @since   1.4
   145  */
   146 
   147 public class LinkedHashMap<K,V>
   148     extends HashMap<K,V>
   149     implements Map<K,V>
   150 {
   151 
   152     private static final long serialVersionUID = 3801124242820219131L;
   153 
   154     /**
   155      * The head of the doubly linked list.
   156      */
   157     private transient Entry<K,V> header;
   158 
   159     /**
   160      * The iteration ordering method for this linked hash map: <tt>true</tt>
   161      * for access-order, <tt>false</tt> for insertion-order.
   162      *
   163      * @serial
   164      */
   165     private final boolean accessOrder;
   166 
   167     /**
   168      * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
   169      * with the specified initial capacity and load factor.
   170      *
   171      * @param  initialCapacity the initial capacity
   172      * @param  loadFactor      the load factor
   173      * @throws IllegalArgumentException if the initial capacity is negative
   174      *         or the load factor is nonpositive
   175      */
   176     public LinkedHashMap(int initialCapacity, float loadFactor) {
   177         super(initialCapacity, loadFactor);
   178         accessOrder = false;
   179     }
   180 
   181     /**
   182      * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
   183      * with the specified initial capacity and a default load factor (0.75).
   184      *
   185      * @param  initialCapacity the initial capacity
   186      * @throws IllegalArgumentException if the initial capacity is negative
   187      */
   188     public LinkedHashMap(int initialCapacity) {
   189         super(initialCapacity);
   190         accessOrder = false;
   191     }
   192 
   193     /**
   194      * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
   195      * with the default initial capacity (16) and load factor (0.75).
   196      */
   197     public LinkedHashMap() {
   198         super();
   199         accessOrder = false;
   200     }
   201 
   202     /**
   203      * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
   204      * the same mappings as the specified map.  The <tt>LinkedHashMap</tt>
   205      * instance is created with a default load factor (0.75) and an initial
   206      * capacity sufficient to hold the mappings in the specified map.
   207      *
   208      * @param  m the map whose mappings are to be placed in this map
   209      * @throws NullPointerException if the specified map is null
   210      */
   211     public LinkedHashMap(Map<? extends K, ? extends V> m) {
   212         super(m);
   213         accessOrder = false;
   214     }
   215 
   216     /**
   217      * Constructs an empty <tt>LinkedHashMap</tt> instance with the
   218      * specified initial capacity, load factor and ordering mode.
   219      *
   220      * @param  initialCapacity the initial capacity
   221      * @param  loadFactor      the load factor
   222      * @param  accessOrder     the ordering mode - <tt>true</tt> for
   223      *         access-order, <tt>false</tt> for insertion-order
   224      * @throws IllegalArgumentException if the initial capacity is negative
   225      *         or the load factor is nonpositive
   226      */
   227     public LinkedHashMap(int initialCapacity,
   228                          float loadFactor,
   229                          boolean accessOrder) {
   230         super(initialCapacity, loadFactor);
   231         this.accessOrder = accessOrder;
   232     }
   233 
   234     /**
   235      * Called by superclass constructors and pseudoconstructors (clone,
   236      * readObject) before any entries are inserted into the map.  Initializes
   237      * the chain.
   238      */
   239     void init() {
   240         header = new Entry<>(-1, null, null, null);
   241         header.before = header.after = header;
   242     }
   243 
   244     /**
   245      * Transfers all entries to new table array.  This method is called
   246      * by superclass resize.  It is overridden for performance, as it is
   247      * faster to iterate using our linked list.
   248      */
   249     void transfer(HashMap.Entry[] newTable) {
   250         int newCapacity = newTable.length;
   251         for (Entry<K,V> e = header.after; e != header; e = e.after) {
   252             int index = indexFor(e.hash, newCapacity);
   253             e.next = newTable[index];
   254             newTable[index] = e;
   255         }
   256     }
   257 
   258 
   259     /**
   260      * Returns <tt>true</tt> if this map maps one or more keys to the
   261      * specified value.
   262      *
   263      * @param value value whose presence in this map is to be tested
   264      * @return <tt>true</tt> if this map maps one or more keys to the
   265      *         specified value
   266      */
   267     public boolean containsValue(Object value) {
   268         // Overridden to take advantage of faster iterator
   269         if (value==null) {
   270             for (Entry e = header.after; e != header; e = e.after)
   271                 if (e.value==null)
   272                     return true;
   273         } else {
   274             for (Entry e = header.after; e != header; e = e.after)
   275                 if (value.equals(e.value))
   276                     return true;
   277         }
   278         return false;
   279     }
   280 
   281     /**
   282      * Returns the value to which the specified key is mapped,
   283      * or {@code null} if this map contains no mapping for the key.
   284      *
   285      * <p>More formally, if this map contains a mapping from a key
   286      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
   287      * key.equals(k))}, then this method returns {@code v}; otherwise
   288      * it returns {@code null}.  (There can be at most one such mapping.)
   289      *
   290      * <p>A return value of {@code null} does not <i>necessarily</i>
   291      * indicate that the map contains no mapping for the key; it's also
   292      * possible that the map explicitly maps the key to {@code null}.
   293      * The {@link #containsKey containsKey} operation may be used to
   294      * distinguish these two cases.
   295      */
   296     public V get(Object key) {
   297         Entry<K,V> e = (Entry<K,V>)getEntry(key);
   298         if (e == null)
   299             return null;
   300         e.recordAccess(this);
   301         return e.value;
   302     }
   303 
   304     /**
   305      * Removes all of the mappings from this map.
   306      * The map will be empty after this call returns.
   307      */
   308     public void clear() {
   309         super.clear();
   310         header.before = header.after = header;
   311     }
   312 
   313     /**
   314      * LinkedHashMap entry.
   315      */
   316     private static class Entry<K,V> extends HashMap.Entry<K,V> {
   317         // These fields comprise the doubly linked list used for iteration.
   318         Entry<K,V> before, after;
   319 
   320         Entry(int hash, K key, V value, HashMap.Entry<K,V> next) {
   321             super(hash, key, value, next);
   322         }
   323 
   324         /**
   325          * Removes this entry from the linked list.
   326          */
   327         private void remove() {
   328             before.after = after;
   329             after.before = before;
   330         }
   331 
   332         /**
   333          * Inserts this entry before the specified existing entry in the list.
   334          */
   335         private void addBefore(Entry<K,V> existingEntry) {
   336             after  = existingEntry;
   337             before = existingEntry.before;
   338             before.after = this;
   339             after.before = this;
   340         }
   341 
   342         /**
   343          * This method is invoked by the superclass whenever the value
   344          * of a pre-existing entry is read by Map.get or modified by Map.set.
   345          * If the enclosing Map is access-ordered, it moves the entry
   346          * to the end of the list; otherwise, it does nothing.
   347          */
   348         void recordAccess(HashMap<K,V> m) {
   349             LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
   350             if (lm.accessOrder) {
   351                 lm.modCount++;
   352                 remove();
   353                 addBefore(lm.header);
   354             }
   355         }
   356 
   357         void recordRemoval(HashMap<K,V> m) {
   358             remove();
   359         }
   360     }
   361 
   362     private abstract class LinkedHashIterator<T> implements Iterator<T> {
   363         Entry<K,V> nextEntry    = header.after;
   364         Entry<K,V> lastReturned = null;
   365 
   366         /**
   367          * The modCount value that the iterator believes that the backing
   368          * List should have.  If this expectation is violated, the iterator
   369          * has detected concurrent modification.
   370          */
   371         int expectedModCount = modCount;
   372 
   373         public boolean hasNext() {
   374             return nextEntry != header;
   375         }
   376 
   377         public void remove() {
   378             if (lastReturned == null)
   379                 throw new IllegalStateException();
   380             if (modCount != expectedModCount)
   381                 throw new ConcurrentModificationException();
   382 
   383             LinkedHashMap.this.remove(lastReturned.key);
   384             lastReturned = null;
   385             expectedModCount = modCount;
   386         }
   387 
   388         Entry<K,V> nextEntry() {
   389             if (modCount != expectedModCount)
   390                 throw new ConcurrentModificationException();
   391             if (nextEntry == header)
   392                 throw new NoSuchElementException();
   393 
   394             Entry<K,V> e = lastReturned = nextEntry;
   395             nextEntry = e.after;
   396             return e;
   397         }
   398     }
   399 
   400     private class KeyIterator extends LinkedHashIterator<K> {
   401         public K next() { return nextEntry().getKey(); }
   402     }
   403 
   404     private class ValueIterator extends LinkedHashIterator<V> {
   405         public V next() { return nextEntry().value; }
   406     }
   407 
   408     private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> {
   409         public Map.Entry<K,V> next() { return nextEntry(); }
   410     }
   411 
   412     // These Overrides alter the behavior of superclass view iterator() methods
   413     Iterator<K> newKeyIterator()   { return new KeyIterator();   }
   414     Iterator<V> newValueIterator() { return new ValueIterator(); }
   415     Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); }
   416 
   417     /**
   418      * This override alters behavior of superclass put method. It causes newly
   419      * allocated entry to get inserted at the end of the linked list and
   420      * removes the eldest entry if appropriate.
   421      */
   422     void addEntry(int hash, K key, V value, int bucketIndex) {
   423         createEntry(hash, key, value, bucketIndex);
   424 
   425         // Remove eldest entry if instructed, else grow capacity if appropriate
   426         Entry<K,V> eldest = header.after;
   427         if (removeEldestEntry(eldest)) {
   428             removeEntryForKey(eldest.key);
   429         } else {
   430             if (size >= threshold)
   431                 resize(2 * table.length);
   432         }
   433     }
   434 
   435     /**
   436      * This override differs from addEntry in that it doesn't resize the
   437      * table or remove the eldest entry.
   438      */
   439     void createEntry(int hash, K key, V value, int bucketIndex) {
   440         HashMap.Entry<K,V> old = table[bucketIndex];
   441         Entry<K,V> e = new Entry<>(hash, key, value, old);
   442         table[bucketIndex] = e;
   443         e.addBefore(header);
   444         size++;
   445     }
   446 
   447     /**
   448      * Returns <tt>true</tt> if this map should remove its eldest entry.
   449      * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
   450      * inserting a new entry into the map.  It provides the implementor
   451      * with the opportunity to remove the eldest entry each time a new one
   452      * is added.  This is useful if the map represents a cache: it allows
   453      * the map to reduce memory consumption by deleting stale entries.
   454      *
   455      * <p>Sample use: this override will allow the map to grow up to 100
   456      * entries and then delete the eldest entry each time a new entry is
   457      * added, maintaining a steady state of 100 entries.
   458      * <pre>
   459      *     private static final int MAX_ENTRIES = 100;
   460      *
   461      *     protected boolean removeEldestEntry(Map.Entry eldest) {
   462      *        return size() > MAX_ENTRIES;
   463      *     }
   464      * </pre>
   465      *
   466      * <p>This method typically does not modify the map in any way,
   467      * instead allowing the map to modify itself as directed by its
   468      * return value.  It <i>is</i> permitted for this method to modify
   469      * the map directly, but if it does so, it <i>must</i> return
   470      * <tt>false</tt> (indicating that the map should not attempt any
   471      * further modification).  The effects of returning <tt>true</tt>
   472      * after modifying the map from within this method are unspecified.
   473      *
   474      * <p>This implementation merely returns <tt>false</tt> (so that this
   475      * map acts like a normal map - the eldest element is never removed).
   476      *
   477      * @param    eldest The least recently inserted entry in the map, or if
   478      *           this is an access-ordered map, the least recently accessed
   479      *           entry.  This is the entry that will be removed it this
   480      *           method returns <tt>true</tt>.  If the map was empty prior
   481      *           to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
   482      *           in this invocation, this will be the entry that was just
   483      *           inserted; in other words, if the map contains a single
   484      *           entry, the eldest entry is also the newest.
   485      * @return   <tt>true</tt> if the eldest entry should be removed
   486      *           from the map; <tt>false</tt> if it should be retained.
   487      */
   488     protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
   489         return false;
   490     }
   491 }