emul/compact/src/main/java/java/math/BigInteger.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sat, 07 Sep 2013 13:51:24 +0200
branchjdk7-b147
changeset 1258 724f3e1ea53e
permissions -rw-r--r--
Additional set of classes to make porting of lookup library more easier
jaroslav@1258
     1
/*
jaroslav@1258
     2
 * Copyright (c) 1996, 2007, Oracle and/or its affiliates. All rights reserved.
jaroslav@1258
     3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
jaroslav@1258
     4
 *
jaroslav@1258
     5
 * This code is free software; you can redistribute it and/or modify it
jaroslav@1258
     6
 * under the terms of the GNU General Public License version 2 only, as
jaroslav@1258
     7
 * published by the Free Software Foundation.  Oracle designates this
jaroslav@1258
     8
 * particular file as subject to the "Classpath" exception as provided
jaroslav@1258
     9
 * by Oracle in the LICENSE file that accompanied this code.
jaroslav@1258
    10
 *
jaroslav@1258
    11
 * This code is distributed in the hope that it will be useful, but WITHOUT
jaroslav@1258
    12
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
jaroslav@1258
    13
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
jaroslav@1258
    14
 * version 2 for more details (a copy is included in the LICENSE file that
jaroslav@1258
    15
 * accompanied this code).
jaroslav@1258
    16
 *
jaroslav@1258
    17
 * You should have received a copy of the GNU General Public License version
jaroslav@1258
    18
 * 2 along with this work; if not, write to the Free Software Foundation,
jaroslav@1258
    19
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
jaroslav@1258
    20
 *
jaroslav@1258
    21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
jaroslav@1258
    22
 * or visit www.oracle.com if you need additional information or have any
jaroslav@1258
    23
 * questions.
jaroslav@1258
    24
 */
jaroslav@1258
    25
jaroslav@1258
    26
/*
jaroslav@1258
    27
 * Portions Copyright (c) 1995  Colin Plumb.  All rights reserved.
jaroslav@1258
    28
 */
jaroslav@1258
    29
jaroslav@1258
    30
package java.math;
jaroslav@1258
    31
jaroslav@1258
    32
import java.util.Random;
jaroslav@1258
    33
import java.io.*;
jaroslav@1258
    34
jaroslav@1258
    35
/**
jaroslav@1258
    36
 * Immutable arbitrary-precision integers.  All operations behave as if
jaroslav@1258
    37
 * BigIntegers were represented in two's-complement notation (like Java's
jaroslav@1258
    38
 * primitive integer types).  BigInteger provides analogues to all of Java's
jaroslav@1258
    39
 * primitive integer operators, and all relevant methods from java.lang.Math.
jaroslav@1258
    40
 * Additionally, BigInteger provides operations for modular arithmetic, GCD
jaroslav@1258
    41
 * calculation, primality testing, prime generation, bit manipulation,
jaroslav@1258
    42
 * and a few other miscellaneous operations.
jaroslav@1258
    43
 *
jaroslav@1258
    44
 * <p>Semantics of arithmetic operations exactly mimic those of Java's integer
jaroslav@1258
    45
 * arithmetic operators, as defined in <i>The Java Language Specification</i>.
jaroslav@1258
    46
 * For example, division by zero throws an {@code ArithmeticException}, and
jaroslav@1258
    47
 * division of a negative by a positive yields a negative (or zero) remainder.
jaroslav@1258
    48
 * All of the details in the Spec concerning overflow are ignored, as
jaroslav@1258
    49
 * BigIntegers are made as large as necessary to accommodate the results of an
jaroslav@1258
    50
 * operation.
jaroslav@1258
    51
 *
jaroslav@1258
    52
 * <p>Semantics of shift operations extend those of Java's shift operators
jaroslav@1258
    53
 * to allow for negative shift distances.  A right-shift with a negative
jaroslav@1258
    54
 * shift distance results in a left shift, and vice-versa.  The unsigned
jaroslav@1258
    55
 * right shift operator ({@code >>>}) is omitted, as this operation makes
jaroslav@1258
    56
 * little sense in combination with the "infinite word size" abstraction
jaroslav@1258
    57
 * provided by this class.
jaroslav@1258
    58
 *
jaroslav@1258
    59
 * <p>Semantics of bitwise logical operations exactly mimic those of Java's
jaroslav@1258
    60
 * bitwise integer operators.  The binary operators ({@code and},
jaroslav@1258
    61
 * {@code or}, {@code xor}) implicitly perform sign extension on the shorter
jaroslav@1258
    62
 * of the two operands prior to performing the operation.
jaroslav@1258
    63
 *
jaroslav@1258
    64
 * <p>Comparison operations perform signed integer comparisons, analogous to
jaroslav@1258
    65
 * those performed by Java's relational and equality operators.
jaroslav@1258
    66
 *
jaroslav@1258
    67
 * <p>Modular arithmetic operations are provided to compute residues, perform
jaroslav@1258
    68
 * exponentiation, and compute multiplicative inverses.  These methods always
jaroslav@1258
    69
 * return a non-negative result, between {@code 0} and {@code (modulus - 1)},
jaroslav@1258
    70
 * inclusive.
jaroslav@1258
    71
 *
jaroslav@1258
    72
 * <p>Bit operations operate on a single bit of the two's-complement
jaroslav@1258
    73
 * representation of their operand.  If necessary, the operand is sign-
jaroslav@1258
    74
 * extended so that it contains the designated bit.  None of the single-bit
jaroslav@1258
    75
 * operations can produce a BigInteger with a different sign from the
jaroslav@1258
    76
 * BigInteger being operated on, as they affect only a single bit, and the
jaroslav@1258
    77
 * "infinite word size" abstraction provided by this class ensures that there
jaroslav@1258
    78
 * are infinitely many "virtual sign bits" preceding each BigInteger.
jaroslav@1258
    79
 *
jaroslav@1258
    80
 * <p>For the sake of brevity and clarity, pseudo-code is used throughout the
jaroslav@1258
    81
 * descriptions of BigInteger methods.  The pseudo-code expression
jaroslav@1258
    82
 * {@code (i + j)} is shorthand for "a BigInteger whose value is
jaroslav@1258
    83
 * that of the BigInteger {@code i} plus that of the BigInteger {@code j}."
jaroslav@1258
    84
 * The pseudo-code expression {@code (i == j)} is shorthand for
jaroslav@1258
    85
 * "{@code true} if and only if the BigInteger {@code i} represents the same
jaroslav@1258
    86
 * value as the BigInteger {@code j}."  Other pseudo-code expressions are
jaroslav@1258
    87
 * interpreted similarly.
jaroslav@1258
    88
 *
jaroslav@1258
    89
 * <p>All methods and constructors in this class throw
jaroslav@1258
    90
 * {@code NullPointerException} when passed
jaroslav@1258
    91
 * a null object reference for any input parameter.
jaroslav@1258
    92
 *
jaroslav@1258
    93
 * @see     BigDecimal
jaroslav@1258
    94
 * @author  Josh Bloch
jaroslav@1258
    95
 * @author  Michael McCloskey
jaroslav@1258
    96
 * @since JDK1.1
jaroslav@1258
    97
 */
jaroslav@1258
    98
jaroslav@1258
    99
public class BigInteger extends Number implements Comparable<BigInteger> {
jaroslav@1258
   100
    /**
jaroslav@1258
   101
     * The signum of this BigInteger: -1 for negative, 0 for zero, or
jaroslav@1258
   102
     * 1 for positive.  Note that the BigInteger zero <i>must</i> have
jaroslav@1258
   103
     * a signum of 0.  This is necessary to ensures that there is exactly one
jaroslav@1258
   104
     * representation for each BigInteger value.
jaroslav@1258
   105
     *
jaroslav@1258
   106
     * @serial
jaroslav@1258
   107
     */
jaroslav@1258
   108
    final int signum;
jaroslav@1258
   109
jaroslav@1258
   110
    /**
jaroslav@1258
   111
     * The magnitude of this BigInteger, in <i>big-endian</i> order: the
jaroslav@1258
   112
     * zeroth element of this array is the most-significant int of the
jaroslav@1258
   113
     * magnitude.  The magnitude must be "minimal" in that the most-significant
jaroslav@1258
   114
     * int ({@code mag[0]}) must be non-zero.  This is necessary to
jaroslav@1258
   115
     * ensure that there is exactly one representation for each BigInteger
jaroslav@1258
   116
     * value.  Note that this implies that the BigInteger zero has a
jaroslav@1258
   117
     * zero-length mag array.
jaroslav@1258
   118
     */
jaroslav@1258
   119
    final int[] mag;
jaroslav@1258
   120
jaroslav@1258
   121
    // These "redundant fields" are initialized with recognizable nonsense
jaroslav@1258
   122
    // values, and cached the first time they are needed (or never, if they
jaroslav@1258
   123
    // aren't needed).
jaroslav@1258
   124
jaroslav@1258
   125
     /**
jaroslav@1258
   126
     * One plus the bitCount of this BigInteger. Zeros means unitialized.
jaroslav@1258
   127
     *
jaroslav@1258
   128
     * @serial
jaroslav@1258
   129
     * @see #bitCount
jaroslav@1258
   130
     * @deprecated Deprecated since logical value is offset from stored
jaroslav@1258
   131
     * value and correction factor is applied in accessor method.
jaroslav@1258
   132
     */
jaroslav@1258
   133
    @Deprecated
jaroslav@1258
   134
    private int bitCount;
jaroslav@1258
   135
jaroslav@1258
   136
    /**
jaroslav@1258
   137
     * One plus the bitLength of this BigInteger. Zeros means unitialized.
jaroslav@1258
   138
     * (either value is acceptable).
jaroslav@1258
   139
     *
jaroslav@1258
   140
     * @serial
jaroslav@1258
   141
     * @see #bitLength()
jaroslav@1258
   142
     * @deprecated Deprecated since logical value is offset from stored
jaroslav@1258
   143
     * value and correction factor is applied in accessor method.
jaroslav@1258
   144
     */
jaroslav@1258
   145
    @Deprecated
jaroslav@1258
   146
    private int bitLength;
jaroslav@1258
   147
jaroslav@1258
   148
    /**
jaroslav@1258
   149
     * Two plus the lowest set bit of this BigInteger, as returned by
jaroslav@1258
   150
     * getLowestSetBit().
jaroslav@1258
   151
     *
jaroslav@1258
   152
     * @serial
jaroslav@1258
   153
     * @see #getLowestSetBit
jaroslav@1258
   154
     * @deprecated Deprecated since logical value is offset from stored
jaroslav@1258
   155
     * value and correction factor is applied in accessor method.
jaroslav@1258
   156
     */
jaroslav@1258
   157
    @Deprecated
jaroslav@1258
   158
    private int lowestSetBit;
jaroslav@1258
   159
jaroslav@1258
   160
    /**
jaroslav@1258
   161
     * Two plus the index of the lowest-order int in the magnitude of this
jaroslav@1258
   162
     * BigInteger that contains a nonzero int, or -2 (either value is acceptable).
jaroslav@1258
   163
     * The least significant int has int-number 0, the next int in order of
jaroslav@1258
   164
     * increasing significance has int-number 1, and so forth.
jaroslav@1258
   165
     * @deprecated Deprecated since logical value is offset from stored
jaroslav@1258
   166
     * value and correction factor is applied in accessor method.
jaroslav@1258
   167
     */
jaroslav@1258
   168
    @Deprecated
jaroslav@1258
   169
    private int firstNonzeroIntNum;
jaroslav@1258
   170
jaroslav@1258
   171
    /**
jaroslav@1258
   172
     * This mask is used to obtain the value of an int as if it were unsigned.
jaroslav@1258
   173
     */
jaroslav@1258
   174
    final static long LONG_MASK = 0xffffffffL;
jaroslav@1258
   175
jaroslav@1258
   176
    //Constructors
jaroslav@1258
   177
jaroslav@1258
   178
    /**
jaroslav@1258
   179
     * Translates a byte array containing the two's-complement binary
jaroslav@1258
   180
     * representation of a BigInteger into a BigInteger.  The input array is
jaroslav@1258
   181
     * assumed to be in <i>big-endian</i> byte-order: the most significant
jaroslav@1258
   182
     * byte is in the zeroth element.
jaroslav@1258
   183
     *
jaroslav@1258
   184
     * @param  val big-endian two's-complement binary representation of
jaroslav@1258
   185
     *         BigInteger.
jaroslav@1258
   186
     * @throws NumberFormatException {@code val} is zero bytes long.
jaroslav@1258
   187
     */
jaroslav@1258
   188
    public BigInteger(byte[] val) {
jaroslav@1258
   189
        if (val.length == 0)
jaroslav@1258
   190
            throw new NumberFormatException("Zero length BigInteger");
jaroslav@1258
   191
jaroslav@1258
   192
        if (val[0] < 0) {
jaroslav@1258
   193
            mag = makePositive(val);
jaroslav@1258
   194
            signum = -1;
jaroslav@1258
   195
        } else {
jaroslav@1258
   196
            mag = stripLeadingZeroBytes(val);
jaroslav@1258
   197
            signum = (mag.length == 0 ? 0 : 1);
jaroslav@1258
   198
        }
jaroslav@1258
   199
    }
jaroslav@1258
   200
jaroslav@1258
   201
    /**
jaroslav@1258
   202
     * This private constructor translates an int array containing the
jaroslav@1258
   203
     * two's-complement binary representation of a BigInteger into a
jaroslav@1258
   204
     * BigInteger. The input array is assumed to be in <i>big-endian</i>
jaroslav@1258
   205
     * int-order: the most significant int is in the zeroth element.
jaroslav@1258
   206
     */
jaroslav@1258
   207
    private BigInteger(int[] val) {
jaroslav@1258
   208
        if (val.length == 0)
jaroslav@1258
   209
            throw new NumberFormatException("Zero length BigInteger");
jaroslav@1258
   210
jaroslav@1258
   211
        if (val[0] < 0) {
jaroslav@1258
   212
            mag = makePositive(val);
jaroslav@1258
   213
            signum = -1;
jaroslav@1258
   214
        } else {
jaroslav@1258
   215
            mag = trustedStripLeadingZeroInts(val);
jaroslav@1258
   216
            signum = (mag.length == 0 ? 0 : 1);
jaroslav@1258
   217
        }
jaroslav@1258
   218
    }
jaroslav@1258
   219
jaroslav@1258
   220
    /**
jaroslav@1258
   221
     * Translates the sign-magnitude representation of a BigInteger into a
jaroslav@1258
   222
     * BigInteger.  The sign is represented as an integer signum value: -1 for
jaroslav@1258
   223
     * negative, 0 for zero, or 1 for positive.  The magnitude is a byte array
jaroslav@1258
   224
     * in <i>big-endian</i> byte-order: the most significant byte is in the
jaroslav@1258
   225
     * zeroth element.  A zero-length magnitude array is permissible, and will
jaroslav@1258
   226
     * result in a BigInteger value of 0, whether signum is -1, 0 or 1.
jaroslav@1258
   227
     *
jaroslav@1258
   228
     * @param  signum signum of the number (-1 for negative, 0 for zero, 1
jaroslav@1258
   229
     *         for positive).
jaroslav@1258
   230
     * @param  magnitude big-endian binary representation of the magnitude of
jaroslav@1258
   231
     *         the number.
jaroslav@1258
   232
     * @throws NumberFormatException {@code signum} is not one of the three
jaroslav@1258
   233
     *         legal values (-1, 0, and 1), or {@code signum} is 0 and
jaroslav@1258
   234
     *         {@code magnitude} contains one or more non-zero bytes.
jaroslav@1258
   235
     */
jaroslav@1258
   236
    public BigInteger(int signum, byte[] magnitude) {
jaroslav@1258
   237
        this.mag = stripLeadingZeroBytes(magnitude);
jaroslav@1258
   238
jaroslav@1258
   239
        if (signum < -1 || signum > 1)
jaroslav@1258
   240
            throw(new NumberFormatException("Invalid signum value"));
jaroslav@1258
   241
jaroslav@1258
   242
        if (this.mag.length==0) {
jaroslav@1258
   243
            this.signum = 0;
jaroslav@1258
   244
        } else {
jaroslav@1258
   245
            if (signum == 0)
jaroslav@1258
   246
                throw(new NumberFormatException("signum-magnitude mismatch"));
jaroslav@1258
   247
            this.signum = signum;
jaroslav@1258
   248
        }
jaroslav@1258
   249
    }
jaroslav@1258
   250
jaroslav@1258
   251
    /**
jaroslav@1258
   252
     * A constructor for internal use that translates the sign-magnitude
jaroslav@1258
   253
     * representation of a BigInteger into a BigInteger. It checks the
jaroslav@1258
   254
     * arguments and copies the magnitude so this constructor would be
jaroslav@1258
   255
     * safe for external use.
jaroslav@1258
   256
     */
jaroslav@1258
   257
    private BigInteger(int signum, int[] magnitude) {
jaroslav@1258
   258
        this.mag = stripLeadingZeroInts(magnitude);
jaroslav@1258
   259
jaroslav@1258
   260
        if (signum < -1 || signum > 1)
jaroslav@1258
   261
            throw(new NumberFormatException("Invalid signum value"));
jaroslav@1258
   262
jaroslav@1258
   263
        if (this.mag.length==0) {
jaroslav@1258
   264
            this.signum = 0;
jaroslav@1258
   265
        } else {
jaroslav@1258
   266
            if (signum == 0)
jaroslav@1258
   267
                throw(new NumberFormatException("signum-magnitude mismatch"));
jaroslav@1258
   268
            this.signum = signum;
jaroslav@1258
   269
        }
jaroslav@1258
   270
    }
jaroslav@1258
   271
jaroslav@1258
   272
    /**
jaroslav@1258
   273
     * Translates the String representation of a BigInteger in the
jaroslav@1258
   274
     * specified radix into a BigInteger.  The String representation
jaroslav@1258
   275
     * consists of an optional minus or plus sign followed by a
jaroslav@1258
   276
     * sequence of one or more digits in the specified radix.  The
jaroslav@1258
   277
     * character-to-digit mapping is provided by {@code
jaroslav@1258
   278
     * Character.digit}.  The String may not contain any extraneous
jaroslav@1258
   279
     * characters (whitespace, for example).
jaroslav@1258
   280
     *
jaroslav@1258
   281
     * @param val String representation of BigInteger.
jaroslav@1258
   282
     * @param radix radix to be used in interpreting {@code val}.
jaroslav@1258
   283
     * @throws NumberFormatException {@code val} is not a valid representation
jaroslav@1258
   284
     *         of a BigInteger in the specified radix, or {@code radix} is
jaroslav@1258
   285
     *         outside the range from {@link Character#MIN_RADIX} to
jaroslav@1258
   286
     *         {@link Character#MAX_RADIX}, inclusive.
jaroslav@1258
   287
     * @see    Character#digit
jaroslav@1258
   288
     */
jaroslav@1258
   289
    public BigInteger(String val, int radix) {
jaroslav@1258
   290
        int cursor = 0, numDigits;
jaroslav@1258
   291
        final int len = val.length();
jaroslav@1258
   292
jaroslav@1258
   293
        if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
jaroslav@1258
   294
            throw new NumberFormatException("Radix out of range");
jaroslav@1258
   295
        if (len == 0)
jaroslav@1258
   296
            throw new NumberFormatException("Zero length BigInteger");
jaroslav@1258
   297
jaroslav@1258
   298
        // Check for at most one leading sign
jaroslav@1258
   299
        int sign = 1;
jaroslav@1258
   300
        int index1 = val.lastIndexOf('-');
jaroslav@1258
   301
        int index2 = val.lastIndexOf('+');
jaroslav@1258
   302
        if ((index1 + index2) <= -1) {
jaroslav@1258
   303
            // No leading sign character or at most one leading sign character
jaroslav@1258
   304
            if (index1 == 0 || index2 == 0) {
jaroslav@1258
   305
                cursor = 1;
jaroslav@1258
   306
                if (len == 1)
jaroslav@1258
   307
                    throw new NumberFormatException("Zero length BigInteger");
jaroslav@1258
   308
            }
jaroslav@1258
   309
            if (index1 == 0)
jaroslav@1258
   310
                sign = -1;
jaroslav@1258
   311
        } else
jaroslav@1258
   312
            throw new NumberFormatException("Illegal embedded sign character");
jaroslav@1258
   313
jaroslav@1258
   314
        // Skip leading zeros and compute number of digits in magnitude
jaroslav@1258
   315
        while (cursor < len &&
jaroslav@1258
   316
               Character.digit(val.charAt(cursor), radix) == 0)
jaroslav@1258
   317
            cursor++;
jaroslav@1258
   318
        if (cursor == len) {
jaroslav@1258
   319
            signum = 0;
jaroslav@1258
   320
            mag = ZERO.mag;
jaroslav@1258
   321
            return;
jaroslav@1258
   322
        }
jaroslav@1258
   323
jaroslav@1258
   324
        numDigits = len - cursor;
jaroslav@1258
   325
        signum = sign;
jaroslav@1258
   326
jaroslav@1258
   327
        // Pre-allocate array of expected size. May be too large but can
jaroslav@1258
   328
        // never be too small. Typically exact.
jaroslav@1258
   329
        int numBits = (int)(((numDigits * bitsPerDigit[radix]) >>> 10) + 1);
jaroslav@1258
   330
        int numWords = (numBits + 31) >>> 5;
jaroslav@1258
   331
        int[] magnitude = new int[numWords];
jaroslav@1258
   332
jaroslav@1258
   333
        // Process first (potentially short) digit group
jaroslav@1258
   334
        int firstGroupLen = numDigits % digitsPerInt[radix];
jaroslav@1258
   335
        if (firstGroupLen == 0)
jaroslav@1258
   336
            firstGroupLen = digitsPerInt[radix];
jaroslav@1258
   337
        String group = val.substring(cursor, cursor += firstGroupLen);
jaroslav@1258
   338
        magnitude[numWords - 1] = Integer.parseInt(group, radix);
jaroslav@1258
   339
        if (magnitude[numWords - 1] < 0)
jaroslav@1258
   340
            throw new NumberFormatException("Illegal digit");
jaroslav@1258
   341
jaroslav@1258
   342
        // Process remaining digit groups
jaroslav@1258
   343
        int superRadix = intRadix[radix];
jaroslav@1258
   344
        int groupVal = 0;
jaroslav@1258
   345
        while (cursor < len) {
jaroslav@1258
   346
            group = val.substring(cursor, cursor += digitsPerInt[radix]);
jaroslav@1258
   347
            groupVal = Integer.parseInt(group, radix);
jaroslav@1258
   348
            if (groupVal < 0)
jaroslav@1258
   349
                throw new NumberFormatException("Illegal digit");
jaroslav@1258
   350
            destructiveMulAdd(magnitude, superRadix, groupVal);
jaroslav@1258
   351
        }
jaroslav@1258
   352
        // Required for cases where the array was overallocated.
jaroslav@1258
   353
        mag = trustedStripLeadingZeroInts(magnitude);
jaroslav@1258
   354
    }
jaroslav@1258
   355
jaroslav@1258
   356
    // Constructs a new BigInteger using a char array with radix=10
jaroslav@1258
   357
    BigInteger(char[] val) {
jaroslav@1258
   358
        int cursor = 0, numDigits;
jaroslav@1258
   359
        int len = val.length;
jaroslav@1258
   360
jaroslav@1258
   361
        // Check for leading minus sign
jaroslav@1258
   362
        int sign = 1;
jaroslav@1258
   363
        if (val[0] == '-') {
jaroslav@1258
   364
            if (len == 1)
jaroslav@1258
   365
                throw new NumberFormatException("Zero length BigInteger");
jaroslav@1258
   366
            sign = -1;
jaroslav@1258
   367
            cursor = 1;
jaroslav@1258
   368
        } else if (val[0] == '+') {
jaroslav@1258
   369
            if (len == 1)
jaroslav@1258
   370
                throw new NumberFormatException("Zero length BigInteger");
jaroslav@1258
   371
            cursor = 1;
jaroslav@1258
   372
        }
jaroslav@1258
   373
jaroslav@1258
   374
        // Skip leading zeros and compute number of digits in magnitude
jaroslav@1258
   375
        while (cursor < len && Character.digit(val[cursor], 10) == 0)
jaroslav@1258
   376
            cursor++;
jaroslav@1258
   377
        if (cursor == len) {
jaroslav@1258
   378
            signum = 0;
jaroslav@1258
   379
            mag = ZERO.mag;
jaroslav@1258
   380
            return;
jaroslav@1258
   381
        }
jaroslav@1258
   382
jaroslav@1258
   383
        numDigits = len - cursor;
jaroslav@1258
   384
        signum = sign;
jaroslav@1258
   385
jaroslav@1258
   386
        // Pre-allocate array of expected size
jaroslav@1258
   387
        int numWords;
jaroslav@1258
   388
        if (len < 10) {
jaroslav@1258
   389
            numWords = 1;
jaroslav@1258
   390
        } else {
jaroslav@1258
   391
            int numBits = (int)(((numDigits * bitsPerDigit[10]) >>> 10) + 1);
jaroslav@1258
   392
            numWords = (numBits + 31) >>> 5;
jaroslav@1258
   393
        }
jaroslav@1258
   394
        int[] magnitude = new int[numWords];
jaroslav@1258
   395
jaroslav@1258
   396
        // Process first (potentially short) digit group
jaroslav@1258
   397
        int firstGroupLen = numDigits % digitsPerInt[10];
jaroslav@1258
   398
        if (firstGroupLen == 0)
jaroslav@1258
   399
            firstGroupLen = digitsPerInt[10];
jaroslav@1258
   400
        magnitude[numWords - 1] = parseInt(val, cursor,  cursor += firstGroupLen);
jaroslav@1258
   401
jaroslav@1258
   402
        // Process remaining digit groups
jaroslav@1258
   403
        while (cursor < len) {
jaroslav@1258
   404
            int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
jaroslav@1258
   405
            destructiveMulAdd(magnitude, intRadix[10], groupVal);
jaroslav@1258
   406
        }
jaroslav@1258
   407
        mag = trustedStripLeadingZeroInts(magnitude);
jaroslav@1258
   408
    }
jaroslav@1258
   409
jaroslav@1258
   410
    // Create an integer with the digits between the two indexes
jaroslav@1258
   411
    // Assumes start < end. The result may be negative, but it
jaroslav@1258
   412
    // is to be treated as an unsigned value.
jaroslav@1258
   413
    private int parseInt(char[] source, int start, int end) {
jaroslav@1258
   414
        int result = Character.digit(source[start++], 10);
jaroslav@1258
   415
        if (result == -1)
jaroslav@1258
   416
            throw new NumberFormatException(new String(source));
jaroslav@1258
   417
jaroslav@1258
   418
        for (int index = start; index<end; index++) {
jaroslav@1258
   419
            int nextVal = Character.digit(source[index], 10);
jaroslav@1258
   420
            if (nextVal == -1)
jaroslav@1258
   421
                throw new NumberFormatException(new String(source));
jaroslav@1258
   422
            result = 10*result + nextVal;
jaroslav@1258
   423
        }
jaroslav@1258
   424
jaroslav@1258
   425
        return result;
jaroslav@1258
   426
    }
jaroslav@1258
   427
jaroslav@1258
   428
    // bitsPerDigit in the given radix times 1024
jaroslav@1258
   429
    // Rounded up to avoid underallocation.
jaroslav@1258
   430
    private static long bitsPerDigit[] = { 0, 0,
jaroslav@1258
   431
        1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
jaroslav@1258
   432
        3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
jaroslav@1258
   433
        4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
jaroslav@1258
   434
                                           5253, 5295};
jaroslav@1258
   435
jaroslav@1258
   436
    // Multiply x array times word y in place, and add word z
jaroslav@1258
   437
    private static void destructiveMulAdd(int[] x, int y, int z) {
jaroslav@1258
   438
        // Perform the multiplication word by word
jaroslav@1258
   439
        long ylong = y & LONG_MASK;
jaroslav@1258
   440
        long zlong = z & LONG_MASK;
jaroslav@1258
   441
        int len = x.length;
jaroslav@1258
   442
jaroslav@1258
   443
        long product = 0;
jaroslav@1258
   444
        long carry = 0;
jaroslav@1258
   445
        for (int i = len-1; i >= 0; i--) {
jaroslav@1258
   446
            product = ylong * (x[i] & LONG_MASK) + carry;
jaroslav@1258
   447
            x[i] = (int)product;
jaroslav@1258
   448
            carry = product >>> 32;
jaroslav@1258
   449
        }
jaroslav@1258
   450
jaroslav@1258
   451
        // Perform the addition
jaroslav@1258
   452
        long sum = (x[len-1] & LONG_MASK) + zlong;
jaroslav@1258
   453
        x[len-1] = (int)sum;
jaroslav@1258
   454
        carry = sum >>> 32;
jaroslav@1258
   455
        for (int i = len-2; i >= 0; i--) {
jaroslav@1258
   456
            sum = (x[i] & LONG_MASK) + carry;
jaroslav@1258
   457
            x[i] = (int)sum;
jaroslav@1258
   458
            carry = sum >>> 32;
jaroslav@1258
   459
        }
jaroslav@1258
   460
    }
jaroslav@1258
   461
jaroslav@1258
   462
    /**
jaroslav@1258
   463
     * Translates the decimal String representation of a BigInteger into a
jaroslav@1258
   464
     * BigInteger.  The String representation consists of an optional minus
jaroslav@1258
   465
     * sign followed by a sequence of one or more decimal digits.  The
jaroslav@1258
   466
     * character-to-digit mapping is provided by {@code Character.digit}.
jaroslav@1258
   467
     * The String may not contain any extraneous characters (whitespace, for
jaroslav@1258
   468
     * example).
jaroslav@1258
   469
     *
jaroslav@1258
   470
     * @param val decimal String representation of BigInteger.
jaroslav@1258
   471
     * @throws NumberFormatException {@code val} is not a valid representation
jaroslav@1258
   472
     *         of a BigInteger.
jaroslav@1258
   473
     * @see    Character#digit
jaroslav@1258
   474
     */
jaroslav@1258
   475
    public BigInteger(String val) {
jaroslav@1258
   476
        this(val, 10);
jaroslav@1258
   477
    }
jaroslav@1258
   478
jaroslav@1258
   479
    /**
jaroslav@1258
   480
     * Constructs a randomly generated BigInteger, uniformly distributed over
jaroslav@1258
   481
     * the range 0 to (2<sup>{@code numBits}</sup> - 1), inclusive.
jaroslav@1258
   482
     * The uniformity of the distribution assumes that a fair source of random
jaroslav@1258
   483
     * bits is provided in {@code rnd}.  Note that this constructor always
jaroslav@1258
   484
     * constructs a non-negative BigInteger.
jaroslav@1258
   485
     *
jaroslav@1258
   486
     * @param  numBits maximum bitLength of the new BigInteger.
jaroslav@1258
   487
     * @param  rnd source of randomness to be used in computing the new
jaroslav@1258
   488
     *         BigInteger.
jaroslav@1258
   489
     * @throws IllegalArgumentException {@code numBits} is negative.
jaroslav@1258
   490
     * @see #bitLength()
jaroslav@1258
   491
     */
jaroslav@1258
   492
    public BigInteger(int numBits, Random rnd) {
jaroslav@1258
   493
        this(1, randomBits(numBits, rnd));
jaroslav@1258
   494
    }
jaroslav@1258
   495
jaroslav@1258
   496
    private static byte[] randomBits(int numBits, Random rnd) {
jaroslav@1258
   497
        if (numBits < 0)
jaroslav@1258
   498
            throw new IllegalArgumentException("numBits must be non-negative");
jaroslav@1258
   499
        int numBytes = (int)(((long)numBits+7)/8); // avoid overflow
jaroslav@1258
   500
        byte[] randomBits = new byte[numBytes];
jaroslav@1258
   501
jaroslav@1258
   502
        // Generate random bytes and mask out any excess bits
jaroslav@1258
   503
        if (numBytes > 0) {
jaroslav@1258
   504
            rnd.nextBytes(randomBits);
jaroslav@1258
   505
            int excessBits = 8*numBytes - numBits;
jaroslav@1258
   506
            randomBits[0] &= (1 << (8-excessBits)) - 1;
jaroslav@1258
   507
        }
jaroslav@1258
   508
        return randomBits;
jaroslav@1258
   509
    }
jaroslav@1258
   510
jaroslav@1258
   511
    /**
jaroslav@1258
   512
     * Constructs a randomly generated positive BigInteger that is probably
jaroslav@1258
   513
     * prime, with the specified bitLength.
jaroslav@1258
   514
     *
jaroslav@1258
   515
     * <p>It is recommended that the {@link #probablePrime probablePrime}
jaroslav@1258
   516
     * method be used in preference to this constructor unless there
jaroslav@1258
   517
     * is a compelling need to specify a certainty.
jaroslav@1258
   518
     *
jaroslav@1258
   519
     * @param  bitLength bitLength of the returned BigInteger.
jaroslav@1258
   520
     * @param  certainty a measure of the uncertainty that the caller is
jaroslav@1258
   521
     *         willing to tolerate.  The probability that the new BigInteger
jaroslav@1258
   522
     *         represents a prime number will exceed
jaroslav@1258
   523
     *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
jaroslav@1258
   524
     *         this constructor is proportional to the value of this parameter.
jaroslav@1258
   525
     * @param  rnd source of random bits used to select candidates to be
jaroslav@1258
   526
     *         tested for primality.
jaroslav@1258
   527
     * @throws ArithmeticException {@code bitLength < 2}.
jaroslav@1258
   528
     * @see    #bitLength()
jaroslav@1258
   529
     */
jaroslav@1258
   530
    public BigInteger(int bitLength, int certainty, Random rnd) {
jaroslav@1258
   531
        BigInteger prime;
jaroslav@1258
   532
jaroslav@1258
   533
        if (bitLength < 2)
jaroslav@1258
   534
            throw new ArithmeticException("bitLength < 2");
jaroslav@1258
   535
        // The cutoff of 95 was chosen empirically for best performance
jaroslav@1258
   536
        prime = (bitLength < 95 ? smallPrime(bitLength, certainty, rnd)
jaroslav@1258
   537
                                : largePrime(bitLength, certainty, rnd));
jaroslav@1258
   538
        signum = 1;
jaroslav@1258
   539
        mag = prime.mag;
jaroslav@1258
   540
    }
jaroslav@1258
   541
jaroslav@1258
   542
    // Minimum size in bits that the requested prime number has
jaroslav@1258
   543
    // before we use the large prime number generating algorithms
jaroslav@1258
   544
    private static final int SMALL_PRIME_THRESHOLD = 95;
jaroslav@1258
   545
jaroslav@1258
   546
    // Certainty required to meet the spec of probablePrime
jaroslav@1258
   547
    private static final int DEFAULT_PRIME_CERTAINTY = 100;
jaroslav@1258
   548
jaroslav@1258
   549
    /**
jaroslav@1258
   550
     * Returns a positive BigInteger that is probably prime, with the
jaroslav@1258
   551
     * specified bitLength. The probability that a BigInteger returned
jaroslav@1258
   552
     * by this method is composite does not exceed 2<sup>-100</sup>.
jaroslav@1258
   553
     *
jaroslav@1258
   554
     * @param  bitLength bitLength of the returned BigInteger.
jaroslav@1258
   555
     * @param  rnd source of random bits used to select candidates to be
jaroslav@1258
   556
     *         tested for primality.
jaroslav@1258
   557
     * @return a BigInteger of {@code bitLength} bits that is probably prime
jaroslav@1258
   558
     * @throws ArithmeticException {@code bitLength < 2}.
jaroslav@1258
   559
     * @see    #bitLength()
jaroslav@1258
   560
     * @since 1.4
jaroslav@1258
   561
     */
jaroslav@1258
   562
    public static BigInteger probablePrime(int bitLength, Random rnd) {
jaroslav@1258
   563
        if (bitLength < 2)
jaroslav@1258
   564
            throw new ArithmeticException("bitLength < 2");
jaroslav@1258
   565
jaroslav@1258
   566
        // The cutoff of 95 was chosen empirically for best performance
jaroslav@1258
   567
        return (bitLength < SMALL_PRIME_THRESHOLD ?
jaroslav@1258
   568
                smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
jaroslav@1258
   569
                largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
jaroslav@1258
   570
    }
jaroslav@1258
   571
jaroslav@1258
   572
    /**
jaroslav@1258
   573
     * Find a random number of the specified bitLength that is probably prime.
jaroslav@1258
   574
     * This method is used for smaller primes, its performance degrades on
jaroslav@1258
   575
     * larger bitlengths.
jaroslav@1258
   576
     *
jaroslav@1258
   577
     * This method assumes bitLength > 1.
jaroslav@1258
   578
     */
jaroslav@1258
   579
    private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
jaroslav@1258
   580
        int magLen = (bitLength + 31) >>> 5;
jaroslav@1258
   581
        int temp[] = new int[magLen];
jaroslav@1258
   582
        int highBit = 1 << ((bitLength+31) & 0x1f);  // High bit of high int
jaroslav@1258
   583
        int highMask = (highBit << 1) - 1;  // Bits to keep in high int
jaroslav@1258
   584
jaroslav@1258
   585
        while(true) {
jaroslav@1258
   586
            // Construct a candidate
jaroslav@1258
   587
            for (int i=0; i<magLen; i++)
jaroslav@1258
   588
                temp[i] = rnd.nextInt();
jaroslav@1258
   589
            temp[0] = (temp[0] & highMask) | highBit;  // Ensure exact length
jaroslav@1258
   590
            if (bitLength > 2)
jaroslav@1258
   591
                temp[magLen-1] |= 1;  // Make odd if bitlen > 2
jaroslav@1258
   592
jaroslav@1258
   593
            BigInteger p = new BigInteger(temp, 1);
jaroslav@1258
   594
jaroslav@1258
   595
            // Do cheap "pre-test" if applicable
jaroslav@1258
   596
            if (bitLength > 6) {
jaroslav@1258
   597
                long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
jaroslav@1258
   598
                if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
jaroslav@1258
   599
                    (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
jaroslav@1258
   600
                    (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
jaroslav@1258
   601
                    continue; // Candidate is composite; try another
jaroslav@1258
   602
            }
jaroslav@1258
   603
jaroslav@1258
   604
            // All candidates of bitLength 2 and 3 are prime by this point
jaroslav@1258
   605
            if (bitLength < 4)
jaroslav@1258
   606
                return p;
jaroslav@1258
   607
jaroslav@1258
   608
            // Do expensive test if we survive pre-test (or it's inapplicable)
jaroslav@1258
   609
            if (p.primeToCertainty(certainty, rnd))
jaroslav@1258
   610
                return p;
jaroslav@1258
   611
        }
jaroslav@1258
   612
    }
jaroslav@1258
   613
jaroslav@1258
   614
    private static final BigInteger SMALL_PRIME_PRODUCT
jaroslav@1258
   615
                       = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);
jaroslav@1258
   616
jaroslav@1258
   617
    /**
jaroslav@1258
   618
     * Find a random number of the specified bitLength that is probably prime.
jaroslav@1258
   619
     * This method is more appropriate for larger bitlengths since it uses
jaroslav@1258
   620
     * a sieve to eliminate most composites before using a more expensive
jaroslav@1258
   621
     * test.
jaroslav@1258
   622
     */
jaroslav@1258
   623
    private static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
jaroslav@1258
   624
        BigInteger p;
jaroslav@1258
   625
        p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
jaroslav@1258
   626
        p.mag[p.mag.length-1] &= 0xfffffffe;
jaroslav@1258
   627
jaroslav@1258
   628
        // Use a sieve length likely to contain the next prime number
jaroslav@1258
   629
        int searchLen = (bitLength / 20) * 64;
jaroslav@1258
   630
        BitSieve searchSieve = new BitSieve(p, searchLen);
jaroslav@1258
   631
        BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);
jaroslav@1258
   632
jaroslav@1258
   633
        while ((candidate == null) || (candidate.bitLength() != bitLength)) {
jaroslav@1258
   634
            p = p.add(BigInteger.valueOf(2*searchLen));
jaroslav@1258
   635
            if (p.bitLength() != bitLength)
jaroslav@1258
   636
                p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
jaroslav@1258
   637
            p.mag[p.mag.length-1] &= 0xfffffffe;
jaroslav@1258
   638
            searchSieve = new BitSieve(p, searchLen);
jaroslav@1258
   639
            candidate = searchSieve.retrieve(p, certainty, rnd);
jaroslav@1258
   640
        }
jaroslav@1258
   641
        return candidate;
jaroslav@1258
   642
    }
jaroslav@1258
   643
jaroslav@1258
   644
   /**
jaroslav@1258
   645
    * Returns the first integer greater than this {@code BigInteger} that
jaroslav@1258
   646
    * is probably prime.  The probability that the number returned by this
jaroslav@1258
   647
    * method is composite does not exceed 2<sup>-100</sup>. This method will
jaroslav@1258
   648
    * never skip over a prime when searching: if it returns {@code p}, there
jaroslav@1258
   649
    * is no prime {@code q} such that {@code this < q < p}.
jaroslav@1258
   650
    *
jaroslav@1258
   651
    * @return the first integer greater than this {@code BigInteger} that
jaroslav@1258
   652
    *         is probably prime.
jaroslav@1258
   653
    * @throws ArithmeticException {@code this < 0}.
jaroslav@1258
   654
    * @since 1.5
jaroslav@1258
   655
    */
jaroslav@1258
   656
    public BigInteger nextProbablePrime() {
jaroslav@1258
   657
        if (this.signum < 0)
jaroslav@1258
   658
            throw new ArithmeticException("start < 0: " + this);
jaroslav@1258
   659
jaroslav@1258
   660
        // Handle trivial cases
jaroslav@1258
   661
        if ((this.signum == 0) || this.equals(ONE))
jaroslav@1258
   662
            return TWO;
jaroslav@1258
   663
jaroslav@1258
   664
        BigInteger result = this.add(ONE);
jaroslav@1258
   665
jaroslav@1258
   666
        // Fastpath for small numbers
jaroslav@1258
   667
        if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
jaroslav@1258
   668
jaroslav@1258
   669
            // Ensure an odd number
jaroslav@1258
   670
            if (!result.testBit(0))
jaroslav@1258
   671
                result = result.add(ONE);
jaroslav@1258
   672
jaroslav@1258
   673
            while(true) {
jaroslav@1258
   674
                // Do cheap "pre-test" if applicable
jaroslav@1258
   675
                if (result.bitLength() > 6) {
jaroslav@1258
   676
                    long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
jaroslav@1258
   677
                    if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
jaroslav@1258
   678
                        (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
jaroslav@1258
   679
                        (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
jaroslav@1258
   680
                        result = result.add(TWO);
jaroslav@1258
   681
                        continue; // Candidate is composite; try another
jaroslav@1258
   682
                    }
jaroslav@1258
   683
                }
jaroslav@1258
   684
jaroslav@1258
   685
                // All candidates of bitLength 2 and 3 are prime by this point
jaroslav@1258
   686
                if (result.bitLength() < 4)
jaroslav@1258
   687
                    return result;
jaroslav@1258
   688
jaroslav@1258
   689
                // The expensive test
jaroslav@1258
   690
                if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null))
jaroslav@1258
   691
                    return result;
jaroslav@1258
   692
jaroslav@1258
   693
                result = result.add(TWO);
jaroslav@1258
   694
            }
jaroslav@1258
   695
        }
jaroslav@1258
   696
jaroslav@1258
   697
        // Start at previous even number
jaroslav@1258
   698
        if (result.testBit(0))
jaroslav@1258
   699
            result = result.subtract(ONE);
jaroslav@1258
   700
jaroslav@1258
   701
        // Looking for the next large prime
jaroslav@1258
   702
        int searchLen = (result.bitLength() / 20) * 64;
jaroslav@1258
   703
jaroslav@1258
   704
        while(true) {
jaroslav@1258
   705
           BitSieve searchSieve = new BitSieve(result, searchLen);
jaroslav@1258
   706
           BigInteger candidate = searchSieve.retrieve(result,
jaroslav@1258
   707
                                                 DEFAULT_PRIME_CERTAINTY, null);
jaroslav@1258
   708
           if (candidate != null)
jaroslav@1258
   709
               return candidate;
jaroslav@1258
   710
           result = result.add(BigInteger.valueOf(2 * searchLen));
jaroslav@1258
   711
        }
jaroslav@1258
   712
    }
jaroslav@1258
   713
jaroslav@1258
   714
    /**
jaroslav@1258
   715
     * Returns {@code true} if this BigInteger is probably prime,
jaroslav@1258
   716
     * {@code false} if it's definitely composite.
jaroslav@1258
   717
     *
jaroslav@1258
   718
     * This method assumes bitLength > 2.
jaroslav@1258
   719
     *
jaroslav@1258
   720
     * @param  certainty a measure of the uncertainty that the caller is
jaroslav@1258
   721
     *         willing to tolerate: if the call returns {@code true}
jaroslav@1258
   722
     *         the probability that this BigInteger is prime exceeds
jaroslav@1258
   723
     *         {@code (1 - 1/2<sup>certainty</sup>)}.  The execution time of
jaroslav@1258
   724
     *         this method is proportional to the value of this parameter.
jaroslav@1258
   725
     * @return {@code true} if this BigInteger is probably prime,
jaroslav@1258
   726
     *         {@code false} if it's definitely composite.
jaroslav@1258
   727
     */
jaroslav@1258
   728
    boolean primeToCertainty(int certainty, Random random) {
jaroslav@1258
   729
        int rounds = 0;
jaroslav@1258
   730
        int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2;
jaroslav@1258
   731
jaroslav@1258
   732
        // The relationship between the certainty and the number of rounds
jaroslav@1258
   733
        // we perform is given in the draft standard ANSI X9.80, "PRIME
jaroslav@1258
   734
        // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
jaroslav@1258
   735
        int sizeInBits = this.bitLength();
jaroslav@1258
   736
        if (sizeInBits < 100) {
jaroslav@1258
   737
            rounds = 50;
jaroslav@1258
   738
            rounds = n < rounds ? n : rounds;
jaroslav@1258
   739
            return passesMillerRabin(rounds, random);
jaroslav@1258
   740
        }
jaroslav@1258
   741
jaroslav@1258
   742
        if (sizeInBits < 256) {
jaroslav@1258
   743
            rounds = 27;
jaroslav@1258
   744
        } else if (sizeInBits < 512) {
jaroslav@1258
   745
            rounds = 15;
jaroslav@1258
   746
        } else if (sizeInBits < 768) {
jaroslav@1258
   747
            rounds = 8;
jaroslav@1258
   748
        } else if (sizeInBits < 1024) {
jaroslav@1258
   749
            rounds = 4;
jaroslav@1258
   750
        } else {
jaroslav@1258
   751
            rounds = 2;
jaroslav@1258
   752
        }
jaroslav@1258
   753
        rounds = n < rounds ? n : rounds;
jaroslav@1258
   754
jaroslav@1258
   755
        return passesMillerRabin(rounds, random) && passesLucasLehmer();
jaroslav@1258
   756
    }
jaroslav@1258
   757
jaroslav@1258
   758
    /**
jaroslav@1258
   759
     * Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
jaroslav@1258
   760
     *
jaroslav@1258
   761
     * The following assumptions are made:
jaroslav@1258
   762
     * This BigInteger is a positive, odd number.
jaroslav@1258
   763
     */
jaroslav@1258
   764
    private boolean passesLucasLehmer() {
jaroslav@1258
   765
        BigInteger thisPlusOne = this.add(ONE);
jaroslav@1258
   766
jaroslav@1258
   767
        // Step 1
jaroslav@1258
   768
        int d = 5;
jaroslav@1258
   769
        while (jacobiSymbol(d, this) != -1) {
jaroslav@1258
   770
            // 5, -7, 9, -11, ...
jaroslav@1258
   771
            d = (d<0) ? Math.abs(d)+2 : -(d+2);
jaroslav@1258
   772
        }
jaroslav@1258
   773
jaroslav@1258
   774
        // Step 2
jaroslav@1258
   775
        BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
jaroslav@1258
   776
jaroslav@1258
   777
        // Step 3
jaroslav@1258
   778
        return u.mod(this).equals(ZERO);
jaroslav@1258
   779
    }
jaroslav@1258
   780
jaroslav@1258
   781
    /**
jaroslav@1258
   782
     * Computes Jacobi(p,n).
jaroslav@1258
   783
     * Assumes n positive, odd, n>=3.
jaroslav@1258
   784
     */
jaroslav@1258
   785
    private static int jacobiSymbol(int p, BigInteger n) {
jaroslav@1258
   786
        if (p == 0)
jaroslav@1258
   787
            return 0;
jaroslav@1258
   788
jaroslav@1258
   789
        // Algorithm and comments adapted from Colin Plumb's C library.
jaroslav@1258
   790
        int j = 1;
jaroslav@1258
   791
        int u = n.mag[n.mag.length-1];
jaroslav@1258
   792
jaroslav@1258
   793
        // Make p positive
jaroslav@1258
   794
        if (p < 0) {
jaroslav@1258
   795
            p = -p;
jaroslav@1258
   796
            int n8 = u & 7;
jaroslav@1258
   797
            if ((n8 == 3) || (n8 == 7))
jaroslav@1258
   798
                j = -j; // 3 (011) or 7 (111) mod 8
jaroslav@1258
   799
        }
jaroslav@1258
   800
jaroslav@1258
   801
        // Get rid of factors of 2 in p
jaroslav@1258
   802
        while ((p & 3) == 0)
jaroslav@1258
   803
            p >>= 2;
jaroslav@1258
   804
        if ((p & 1) == 0) {
jaroslav@1258
   805
            p >>= 1;
jaroslav@1258
   806
            if (((u ^ (u>>1)) & 2) != 0)
jaroslav@1258
   807
                j = -j; // 3 (011) or 5 (101) mod 8
jaroslav@1258
   808
        }
jaroslav@1258
   809
        if (p == 1)
jaroslav@1258
   810
            return j;
jaroslav@1258
   811
        // Then, apply quadratic reciprocity
jaroslav@1258
   812
        if ((p & u & 2) != 0)   // p = u = 3 (mod 4)?
jaroslav@1258
   813
            j = -j;
jaroslav@1258
   814
        // And reduce u mod p
jaroslav@1258
   815
        u = n.mod(BigInteger.valueOf(p)).intValue();
jaroslav@1258
   816
jaroslav@1258
   817
        // Now compute Jacobi(u,p), u < p
jaroslav@1258
   818
        while (u != 0) {
jaroslav@1258
   819
            while ((u & 3) == 0)
jaroslav@1258
   820
                u >>= 2;
jaroslav@1258
   821
            if ((u & 1) == 0) {
jaroslav@1258
   822
                u >>= 1;
jaroslav@1258
   823
                if (((p ^ (p>>1)) & 2) != 0)
jaroslav@1258
   824
                    j = -j;     // 3 (011) or 5 (101) mod 8
jaroslav@1258
   825
            }
jaroslav@1258
   826
            if (u == 1)
jaroslav@1258
   827
                return j;
jaroslav@1258
   828
            // Now both u and p are odd, so use quadratic reciprocity
jaroslav@1258
   829
            assert (u < p);
jaroslav@1258
   830
            int t = u; u = p; p = t;
jaroslav@1258
   831
            if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
jaroslav@1258
   832
                j = -j;
jaroslav@1258
   833
            // Now u >= p, so it can be reduced
jaroslav@1258
   834
            u %= p;
jaroslav@1258
   835
        }
jaroslav@1258
   836
        return 0;
jaroslav@1258
   837
    }
jaroslav@1258
   838
jaroslav@1258
   839
    private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
jaroslav@1258
   840
        BigInteger d = BigInteger.valueOf(z);
jaroslav@1258
   841
        BigInteger u = ONE; BigInteger u2;
jaroslav@1258
   842
        BigInteger v = ONE; BigInteger v2;
jaroslav@1258
   843
jaroslav@1258
   844
        for (int i=k.bitLength()-2; i>=0; i--) {
jaroslav@1258
   845
            u2 = u.multiply(v).mod(n);
jaroslav@1258
   846
jaroslav@1258
   847
            v2 = v.square().add(d.multiply(u.square())).mod(n);
jaroslav@1258
   848
            if (v2.testBit(0))
jaroslav@1258
   849
                v2 = v2.subtract(n);
jaroslav@1258
   850
jaroslav@1258
   851
            v2 = v2.shiftRight(1);
jaroslav@1258
   852
jaroslav@1258
   853
            u = u2; v = v2;
jaroslav@1258
   854
            if (k.testBit(i)) {
jaroslav@1258
   855
                u2 = u.add(v).mod(n);
jaroslav@1258
   856
                if (u2.testBit(0))
jaroslav@1258
   857
                    u2 = u2.subtract(n);
jaroslav@1258
   858
jaroslav@1258
   859
                u2 = u2.shiftRight(1);
jaroslav@1258
   860
                v2 = v.add(d.multiply(u)).mod(n);
jaroslav@1258
   861
                if (v2.testBit(0))
jaroslav@1258
   862
                    v2 = v2.subtract(n);
jaroslav@1258
   863
                v2 = v2.shiftRight(1);
jaroslav@1258
   864
jaroslav@1258
   865
                u = u2; v = v2;
jaroslav@1258
   866
            }
jaroslav@1258
   867
        }
jaroslav@1258
   868
        return u;
jaroslav@1258
   869
    }
jaroslav@1258
   870
jaroslav@1258
   871
    private static volatile Random staticRandom;
jaroslav@1258
   872
jaroslav@1258
   873
    private static Random getSecureRandom() {
jaroslav@1258
   874
        if (staticRandom == null) {
jaroslav@1258
   875
            staticRandom = new java.security.SecureRandom();
jaroslav@1258
   876
        }
jaroslav@1258
   877
        return staticRandom;
jaroslav@1258
   878
    }
jaroslav@1258
   879
jaroslav@1258
   880
    /**
jaroslav@1258
   881
     * Returns true iff this BigInteger passes the specified number of
jaroslav@1258
   882
     * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
jaroslav@1258
   883
     * 186-2).
jaroslav@1258
   884
     *
jaroslav@1258
   885
     * The following assumptions are made:
jaroslav@1258
   886
     * This BigInteger is a positive, odd number greater than 2.
jaroslav@1258
   887
     * iterations<=50.
jaroslav@1258
   888
     */
jaroslav@1258
   889
    private boolean passesMillerRabin(int iterations, Random rnd) {
jaroslav@1258
   890
        // Find a and m such that m is odd and this == 1 + 2**a * m
jaroslav@1258
   891
        BigInteger thisMinusOne = this.subtract(ONE);
jaroslav@1258
   892
        BigInteger m = thisMinusOne;
jaroslav@1258
   893
        int a = m.getLowestSetBit();
jaroslav@1258
   894
        m = m.shiftRight(a);
jaroslav@1258
   895
jaroslav@1258
   896
        // Do the tests
jaroslav@1258
   897
        if (rnd == null) {
jaroslav@1258
   898
            rnd = getSecureRandom();
jaroslav@1258
   899
        }
jaroslav@1258
   900
        for (int i=0; i<iterations; i++) {
jaroslav@1258
   901
            // Generate a uniform random on (1, this)
jaroslav@1258
   902
            BigInteger b;
jaroslav@1258
   903
            do {
jaroslav@1258
   904
                b = new BigInteger(this.bitLength(), rnd);
jaroslav@1258
   905
            } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
jaroslav@1258
   906
jaroslav@1258
   907
            int j = 0;
jaroslav@1258
   908
            BigInteger z = b.modPow(m, this);
jaroslav@1258
   909
            while(!((j==0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
jaroslav@1258
   910
                if (j>0 && z.equals(ONE) || ++j==a)
jaroslav@1258
   911
                    return false;
jaroslav@1258
   912
                z = z.modPow(TWO, this);
jaroslav@1258
   913
            }
jaroslav@1258
   914
        }
jaroslav@1258
   915
        return true;
jaroslav@1258
   916
    }
jaroslav@1258
   917
jaroslav@1258
   918
    /**
jaroslav@1258
   919
     * This internal constructor differs from its public cousin
jaroslav@1258
   920
     * with the arguments reversed in two ways: it assumes that its
jaroslav@1258
   921
     * arguments are correct, and it doesn't copy the magnitude array.
jaroslav@1258
   922
     */
jaroslav@1258
   923
    BigInteger(int[] magnitude, int signum) {
jaroslav@1258
   924
        this.signum = (magnitude.length==0 ? 0 : signum);
jaroslav@1258
   925
        this.mag = magnitude;
jaroslav@1258
   926
    }
jaroslav@1258
   927
jaroslav@1258
   928
    /**
jaroslav@1258
   929
     * This private constructor is for internal use and assumes that its
jaroslav@1258
   930
     * arguments are correct.
jaroslav@1258
   931
     */
jaroslav@1258
   932
    private BigInteger(byte[] magnitude, int signum) {
jaroslav@1258
   933
        this.signum = (magnitude.length==0 ? 0 : signum);
jaroslav@1258
   934
        this.mag = stripLeadingZeroBytes(magnitude);
jaroslav@1258
   935
    }
jaroslav@1258
   936
jaroslav@1258
   937
    //Static Factory Methods
jaroslav@1258
   938
jaroslav@1258
   939
    /**
jaroslav@1258
   940
     * Returns a BigInteger whose value is equal to that of the
jaroslav@1258
   941
     * specified {@code long}.  This "static factory method" is
jaroslav@1258
   942
     * provided in preference to a ({@code long}) constructor
jaroslav@1258
   943
     * because it allows for reuse of frequently used BigIntegers.
jaroslav@1258
   944
     *
jaroslav@1258
   945
     * @param  val value of the BigInteger to return.
jaroslav@1258
   946
     * @return a BigInteger with the specified value.
jaroslav@1258
   947
     */
jaroslav@1258
   948
    public static BigInteger valueOf(long val) {
jaroslav@1258
   949
        // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
jaroslav@1258
   950
        if (val == 0)
jaroslav@1258
   951
            return ZERO;
jaroslav@1258
   952
        if (val > 0 && val <= MAX_CONSTANT)
jaroslav@1258
   953
            return posConst[(int) val];
jaroslav@1258
   954
        else if (val < 0 && val >= -MAX_CONSTANT)
jaroslav@1258
   955
            return negConst[(int) -val];
jaroslav@1258
   956
jaroslav@1258
   957
        return new BigInteger(val);
jaroslav@1258
   958
    }
jaroslav@1258
   959
jaroslav@1258
   960
    /**
jaroslav@1258
   961
     * Constructs a BigInteger with the specified value, which may not be zero.
jaroslav@1258
   962
     */
jaroslav@1258
   963
    private BigInteger(long val) {
jaroslav@1258
   964
        if (val < 0) {
jaroslav@1258
   965
            val = -val;
jaroslav@1258
   966
            signum = -1;
jaroslav@1258
   967
        } else {
jaroslav@1258
   968
            signum = 1;
jaroslav@1258
   969
        }
jaroslav@1258
   970
jaroslav@1258
   971
        int highWord = (int)(val >>> 32);
jaroslav@1258
   972
        if (highWord==0) {
jaroslav@1258
   973
            mag = new int[1];
jaroslav@1258
   974
            mag[0] = (int)val;
jaroslav@1258
   975
        } else {
jaroslav@1258
   976
            mag = new int[2];
jaroslav@1258
   977
            mag[0] = highWord;
jaroslav@1258
   978
            mag[1] = (int)val;
jaroslav@1258
   979
        }
jaroslav@1258
   980
    }
jaroslav@1258
   981
jaroslav@1258
   982
    /**
jaroslav@1258
   983
     * Returns a BigInteger with the given two's complement representation.
jaroslav@1258
   984
     * Assumes that the input array will not be modified (the returned
jaroslav@1258
   985
     * BigInteger will reference the input array if feasible).
jaroslav@1258
   986
     */
jaroslav@1258
   987
    private static BigInteger valueOf(int val[]) {
jaroslav@1258
   988
        return (val[0]>0 ? new BigInteger(val, 1) : new BigInteger(val));
jaroslav@1258
   989
    }
jaroslav@1258
   990
jaroslav@1258
   991
    // Constants
jaroslav@1258
   992
jaroslav@1258
   993
    /**
jaroslav@1258
   994
     * Initialize static constant array when class is loaded.
jaroslav@1258
   995
     */
jaroslav@1258
   996
    private final static int MAX_CONSTANT = 16;
jaroslav@1258
   997
    private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1];
jaroslav@1258
   998
    private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];
jaroslav@1258
   999
    static {
jaroslav@1258
  1000
        for (int i = 1; i <= MAX_CONSTANT; i++) {
jaroslav@1258
  1001
            int[] magnitude = new int[1];
jaroslav@1258
  1002
            magnitude[0] = i;
jaroslav@1258
  1003
            posConst[i] = new BigInteger(magnitude,  1);
jaroslav@1258
  1004
            negConst[i] = new BigInteger(magnitude, -1);
jaroslav@1258
  1005
        }
jaroslav@1258
  1006
    }
jaroslav@1258
  1007
jaroslav@1258
  1008
    /**
jaroslav@1258
  1009
     * The BigInteger constant zero.
jaroslav@1258
  1010
     *
jaroslav@1258
  1011
     * @since   1.2
jaroslav@1258
  1012
     */
jaroslav@1258
  1013
    public static final BigInteger ZERO = new BigInteger(new int[0], 0);
jaroslav@1258
  1014
jaroslav@1258
  1015
    /**
jaroslav@1258
  1016
     * The BigInteger constant one.
jaroslav@1258
  1017
     *
jaroslav@1258
  1018
     * @since   1.2
jaroslav@1258
  1019
     */
jaroslav@1258
  1020
    public static final BigInteger ONE = valueOf(1);
jaroslav@1258
  1021
jaroslav@1258
  1022
    /**
jaroslav@1258
  1023
     * The BigInteger constant two.  (Not exported.)
jaroslav@1258
  1024
     */
jaroslav@1258
  1025
    private static final BigInteger TWO = valueOf(2);
jaroslav@1258
  1026
jaroslav@1258
  1027
    /**
jaroslav@1258
  1028
     * The BigInteger constant ten.
jaroslav@1258
  1029
     *
jaroslav@1258
  1030
     * @since   1.5
jaroslav@1258
  1031
     */
jaroslav@1258
  1032
    public static final BigInteger TEN = valueOf(10);
jaroslav@1258
  1033
jaroslav@1258
  1034
    // Arithmetic Operations
jaroslav@1258
  1035
jaroslav@1258
  1036
    /**
jaroslav@1258
  1037
     * Returns a BigInteger whose value is {@code (this + val)}.
jaroslav@1258
  1038
     *
jaroslav@1258
  1039
     * @param  val value to be added to this BigInteger.
jaroslav@1258
  1040
     * @return {@code this + val}
jaroslav@1258
  1041
     */
jaroslav@1258
  1042
    public BigInteger add(BigInteger val) {
jaroslav@1258
  1043
        if (val.signum == 0)
jaroslav@1258
  1044
            return this;
jaroslav@1258
  1045
        if (signum == 0)
jaroslav@1258
  1046
            return val;
jaroslav@1258
  1047
        if (val.signum == signum)
jaroslav@1258
  1048
            return new BigInteger(add(mag, val.mag), signum);
jaroslav@1258
  1049
jaroslav@1258
  1050
        int cmp = compareMagnitude(val);
jaroslav@1258
  1051
        if (cmp == 0)
jaroslav@1258
  1052
            return ZERO;
jaroslav@1258
  1053
        int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
jaroslav@1258
  1054
                           : subtract(val.mag, mag));
jaroslav@1258
  1055
        resultMag = trustedStripLeadingZeroInts(resultMag);
jaroslav@1258
  1056
jaroslav@1258
  1057
        return new BigInteger(resultMag, cmp == signum ? 1 : -1);
jaroslav@1258
  1058
    }
jaroslav@1258
  1059
jaroslav@1258
  1060
    /**
jaroslav@1258
  1061
     * Adds the contents of the int arrays x and y. This method allocates
jaroslav@1258
  1062
     * a new int array to hold the answer and returns a reference to that
jaroslav@1258
  1063
     * array.
jaroslav@1258
  1064
     */
jaroslav@1258
  1065
    private static int[] add(int[] x, int[] y) {
jaroslav@1258
  1066
        // If x is shorter, swap the two arrays
jaroslav@1258
  1067
        if (x.length < y.length) {
jaroslav@1258
  1068
            int[] tmp = x;
jaroslav@1258
  1069
            x = y;
jaroslav@1258
  1070
            y = tmp;
jaroslav@1258
  1071
        }
jaroslav@1258
  1072
jaroslav@1258
  1073
        int xIndex = x.length;
jaroslav@1258
  1074
        int yIndex = y.length;
jaroslav@1258
  1075
        int result[] = new int[xIndex];
jaroslav@1258
  1076
        long sum = 0;
jaroslav@1258
  1077
jaroslav@1258
  1078
        // Add common parts of both numbers
jaroslav@1258
  1079
        while(yIndex > 0) {
jaroslav@1258
  1080
            sum = (x[--xIndex] & LONG_MASK) +
jaroslav@1258
  1081
                  (y[--yIndex] & LONG_MASK) + (sum >>> 32);
jaroslav@1258
  1082
            result[xIndex] = (int)sum;
jaroslav@1258
  1083
        }
jaroslav@1258
  1084
jaroslav@1258
  1085
        // Copy remainder of longer number while carry propagation is required
jaroslav@1258
  1086
        boolean carry = (sum >>> 32 != 0);
jaroslav@1258
  1087
        while (xIndex > 0 && carry)
jaroslav@1258
  1088
            carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
jaroslav@1258
  1089
jaroslav@1258
  1090
        // Copy remainder of longer number
jaroslav@1258
  1091
        while (xIndex > 0)
jaroslav@1258
  1092
            result[--xIndex] = x[xIndex];
jaroslav@1258
  1093
jaroslav@1258
  1094
        // Grow result if necessary
jaroslav@1258
  1095
        if (carry) {
jaroslav@1258
  1096
            int bigger[] = new int[result.length + 1];
jaroslav@1258
  1097
            System.arraycopy(result, 0, bigger, 1, result.length);
jaroslav@1258
  1098
            bigger[0] = 0x01;
jaroslav@1258
  1099
            return bigger;
jaroslav@1258
  1100
        }
jaroslav@1258
  1101
        return result;
jaroslav@1258
  1102
    }
jaroslav@1258
  1103
jaroslav@1258
  1104
    /**
jaroslav@1258
  1105
     * Returns a BigInteger whose value is {@code (this - val)}.
jaroslav@1258
  1106
     *
jaroslav@1258
  1107
     * @param  val value to be subtracted from this BigInteger.
jaroslav@1258
  1108
     * @return {@code this - val}
jaroslav@1258
  1109
     */
jaroslav@1258
  1110
    public BigInteger subtract(BigInteger val) {
jaroslav@1258
  1111
        if (val.signum == 0)
jaroslav@1258
  1112
            return this;
jaroslav@1258
  1113
        if (signum == 0)
jaroslav@1258
  1114
            return val.negate();
jaroslav@1258
  1115
        if (val.signum != signum)
jaroslav@1258
  1116
            return new BigInteger(add(mag, val.mag), signum);
jaroslav@1258
  1117
jaroslav@1258
  1118
        int cmp = compareMagnitude(val);
jaroslav@1258
  1119
        if (cmp == 0)
jaroslav@1258
  1120
            return ZERO;
jaroslav@1258
  1121
        int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
jaroslav@1258
  1122
                           : subtract(val.mag, mag));
jaroslav@1258
  1123
        resultMag = trustedStripLeadingZeroInts(resultMag);
jaroslav@1258
  1124
        return new BigInteger(resultMag, cmp == signum ? 1 : -1);
jaroslav@1258
  1125
    }
jaroslav@1258
  1126
jaroslav@1258
  1127
    /**
jaroslav@1258
  1128
     * Subtracts the contents of the second int arrays (little) from the
jaroslav@1258
  1129
     * first (big).  The first int array (big) must represent a larger number
jaroslav@1258
  1130
     * than the second.  This method allocates the space necessary to hold the
jaroslav@1258
  1131
     * answer.
jaroslav@1258
  1132
     */
jaroslav@1258
  1133
    private static int[] subtract(int[] big, int[] little) {
jaroslav@1258
  1134
        int bigIndex = big.length;
jaroslav@1258
  1135
        int result[] = new int[bigIndex];
jaroslav@1258
  1136
        int littleIndex = little.length;
jaroslav@1258
  1137
        long difference = 0;
jaroslav@1258
  1138
jaroslav@1258
  1139
        // Subtract common parts of both numbers
jaroslav@1258
  1140
        while(littleIndex > 0) {
jaroslav@1258
  1141
            difference = (big[--bigIndex] & LONG_MASK) -
jaroslav@1258
  1142
                         (little[--littleIndex] & LONG_MASK) +
jaroslav@1258
  1143
                         (difference >> 32);
jaroslav@1258
  1144
            result[bigIndex] = (int)difference;
jaroslav@1258
  1145
        }
jaroslav@1258
  1146
jaroslav@1258
  1147
        // Subtract remainder of longer number while borrow propagates
jaroslav@1258
  1148
        boolean borrow = (difference >> 32 != 0);
jaroslav@1258
  1149
        while (bigIndex > 0 && borrow)
jaroslav@1258
  1150
            borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
jaroslav@1258
  1151
jaroslav@1258
  1152
        // Copy remainder of longer number
jaroslav@1258
  1153
        while (bigIndex > 0)
jaroslav@1258
  1154
            result[--bigIndex] = big[bigIndex];
jaroslav@1258
  1155
jaroslav@1258
  1156
        return result;
jaroslav@1258
  1157
    }
jaroslav@1258
  1158
jaroslav@1258
  1159
    /**
jaroslav@1258
  1160
     * Returns a BigInteger whose value is {@code (this * val)}.
jaroslav@1258
  1161
     *
jaroslav@1258
  1162
     * @param  val value to be multiplied by this BigInteger.
jaroslav@1258
  1163
     * @return {@code this * val}
jaroslav@1258
  1164
     */
jaroslav@1258
  1165
    public BigInteger multiply(BigInteger val) {
jaroslav@1258
  1166
        if (val.signum == 0 || signum == 0)
jaroslav@1258
  1167
            return ZERO;
jaroslav@1258
  1168
jaroslav@1258
  1169
        int[] result = multiplyToLen(mag, mag.length,
jaroslav@1258
  1170
                                     val.mag, val.mag.length, null);
jaroslav@1258
  1171
        result = trustedStripLeadingZeroInts(result);
jaroslav@1258
  1172
        return new BigInteger(result, signum == val.signum ? 1 : -1);
jaroslav@1258
  1173
    }
jaroslav@1258
  1174
jaroslav@1258
  1175
    /**
jaroslav@1258
  1176
     * Package private methods used by BigDecimal code to multiply a BigInteger
jaroslav@1258
  1177
     * with a long. Assumes v is not equal to INFLATED.
jaroslav@1258
  1178
     */
jaroslav@1258
  1179
    BigInteger multiply(long v) {
jaroslav@1258
  1180
        if (v == 0 || signum == 0)
jaroslav@1258
  1181
          return ZERO;
jaroslav@1258
  1182
        if (v == BigDecimal.INFLATED)
jaroslav@1258
  1183
            return multiply(BigInteger.valueOf(v));
jaroslav@1258
  1184
        int rsign = (v > 0 ? signum : -signum);
jaroslav@1258
  1185
        if (v < 0)
jaroslav@1258
  1186
            v = -v;
jaroslav@1258
  1187
        long dh = v >>> 32;      // higher order bits
jaroslav@1258
  1188
        long dl = v & LONG_MASK; // lower order bits
jaroslav@1258
  1189
jaroslav@1258
  1190
        int xlen = mag.length;
jaroslav@1258
  1191
        int[] value = mag;
jaroslav@1258
  1192
        int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]);
jaroslav@1258
  1193
        long carry = 0;
jaroslav@1258
  1194
        int rstart = rmag.length - 1;
jaroslav@1258
  1195
        for (int i = xlen - 1; i >= 0; i--) {
jaroslav@1258
  1196
            long product = (value[i] & LONG_MASK) * dl + carry;
jaroslav@1258
  1197
            rmag[rstart--] = (int)product;
jaroslav@1258
  1198
            carry = product >>> 32;
jaroslav@1258
  1199
        }
jaroslav@1258
  1200
        rmag[rstart] = (int)carry;
jaroslav@1258
  1201
        if (dh != 0L) {
jaroslav@1258
  1202
            carry = 0;
jaroslav@1258
  1203
            rstart = rmag.length - 2;
jaroslav@1258
  1204
            for (int i = xlen - 1; i >= 0; i--) {
jaroslav@1258
  1205
                long product = (value[i] & LONG_MASK) * dh +
jaroslav@1258
  1206
                    (rmag[rstart] & LONG_MASK) + carry;
jaroslav@1258
  1207
                rmag[rstart--] = (int)product;
jaroslav@1258
  1208
                carry = product >>> 32;
jaroslav@1258
  1209
            }
jaroslav@1258
  1210
            rmag[0] = (int)carry;
jaroslav@1258
  1211
        }
jaroslav@1258
  1212
        if (carry == 0L)
jaroslav@1258
  1213
            rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
jaroslav@1258
  1214
        return new BigInteger(rmag, rsign);
jaroslav@1258
  1215
    }
jaroslav@1258
  1216
jaroslav@1258
  1217
    /**
jaroslav@1258
  1218
     * Multiplies int arrays x and y to the specified lengths and places
jaroslav@1258
  1219
     * the result into z. There will be no leading zeros in the resultant array.
jaroslav@1258
  1220
     */
jaroslav@1258
  1221
    private int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
jaroslav@1258
  1222
        int xstart = xlen - 1;
jaroslav@1258
  1223
        int ystart = ylen - 1;
jaroslav@1258
  1224
jaroslav@1258
  1225
        if (z == null || z.length < (xlen+ ylen))
jaroslav@1258
  1226
            z = new int[xlen+ylen];
jaroslav@1258
  1227
jaroslav@1258
  1228
        long carry = 0;
jaroslav@1258
  1229
        for (int j=ystart, k=ystart+1+xstart; j>=0; j--, k--) {
jaroslav@1258
  1230
            long product = (y[j] & LONG_MASK) *
jaroslav@1258
  1231
                           (x[xstart] & LONG_MASK) + carry;
jaroslav@1258
  1232
            z[k] = (int)product;
jaroslav@1258
  1233
            carry = product >>> 32;
jaroslav@1258
  1234
        }
jaroslav@1258
  1235
        z[xstart] = (int)carry;
jaroslav@1258
  1236
jaroslav@1258
  1237
        for (int i = xstart-1; i >= 0; i--) {
jaroslav@1258
  1238
            carry = 0;
jaroslav@1258
  1239
            for (int j=ystart, k=ystart+1+i; j>=0; j--, k--) {
jaroslav@1258
  1240
                long product = (y[j] & LONG_MASK) *
jaroslav@1258
  1241
                               (x[i] & LONG_MASK) +
jaroslav@1258
  1242
                               (z[k] & LONG_MASK) + carry;
jaroslav@1258
  1243
                z[k] = (int)product;
jaroslav@1258
  1244
                carry = product >>> 32;
jaroslav@1258
  1245
            }
jaroslav@1258
  1246
            z[i] = (int)carry;
jaroslav@1258
  1247
        }
jaroslav@1258
  1248
        return z;
jaroslav@1258
  1249
    }
jaroslav@1258
  1250
jaroslav@1258
  1251
    /**
jaroslav@1258
  1252
     * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}.
jaroslav@1258
  1253
     *
jaroslav@1258
  1254
     * @return {@code this<sup>2</sup>}
jaroslav@1258
  1255
     */
jaroslav@1258
  1256
    private BigInteger square() {
jaroslav@1258
  1257
        if (signum == 0)
jaroslav@1258
  1258
            return ZERO;
jaroslav@1258
  1259
        int[] z = squareToLen(mag, mag.length, null);
jaroslav@1258
  1260
        return new BigInteger(trustedStripLeadingZeroInts(z), 1);
jaroslav@1258
  1261
    }
jaroslav@1258
  1262
jaroslav@1258
  1263
    /**
jaroslav@1258
  1264
     * Squares the contents of the int array x. The result is placed into the
jaroslav@1258
  1265
     * int array z.  The contents of x are not changed.
jaroslav@1258
  1266
     */
jaroslav@1258
  1267
    private static final int[] squareToLen(int[] x, int len, int[] z) {
jaroslav@1258
  1268
        /*
jaroslav@1258
  1269
         * The algorithm used here is adapted from Colin Plumb's C library.
jaroslav@1258
  1270
         * Technique: Consider the partial products in the multiplication
jaroslav@1258
  1271
         * of "abcde" by itself:
jaroslav@1258
  1272
         *
jaroslav@1258
  1273
         *               a  b  c  d  e
jaroslav@1258
  1274
         *            *  a  b  c  d  e
jaroslav@1258
  1275
         *          ==================
jaroslav@1258
  1276
         *              ae be ce de ee
jaroslav@1258
  1277
         *           ad bd cd dd de
jaroslav@1258
  1278
         *        ac bc cc cd ce
jaroslav@1258
  1279
         *     ab bb bc bd be
jaroslav@1258
  1280
         *  aa ab ac ad ae
jaroslav@1258
  1281
         *
jaroslav@1258
  1282
         * Note that everything above the main diagonal:
jaroslav@1258
  1283
         *              ae be ce de = (abcd) * e
jaroslav@1258
  1284
         *           ad bd cd       = (abc) * d
jaroslav@1258
  1285
         *        ac bc             = (ab) * c
jaroslav@1258
  1286
         *     ab                   = (a) * b
jaroslav@1258
  1287
         *
jaroslav@1258
  1288
         * is a copy of everything below the main diagonal:
jaroslav@1258
  1289
         *                       de
jaroslav@1258
  1290
         *                 cd ce
jaroslav@1258
  1291
         *           bc bd be
jaroslav@1258
  1292
         *     ab ac ad ae
jaroslav@1258
  1293
         *
jaroslav@1258
  1294
         * Thus, the sum is 2 * (off the diagonal) + diagonal.
jaroslav@1258
  1295
         *
jaroslav@1258
  1296
         * This is accumulated beginning with the diagonal (which
jaroslav@1258
  1297
         * consist of the squares of the digits of the input), which is then
jaroslav@1258
  1298
         * divided by two, the off-diagonal added, and multiplied by two
jaroslav@1258
  1299
         * again.  The low bit is simply a copy of the low bit of the
jaroslav@1258
  1300
         * input, so it doesn't need special care.
jaroslav@1258
  1301
         */
jaroslav@1258
  1302
        int zlen = len << 1;
jaroslav@1258
  1303
        if (z == null || z.length < zlen)
jaroslav@1258
  1304
            z = new int[zlen];
jaroslav@1258
  1305
jaroslav@1258
  1306
        // Store the squares, right shifted one bit (i.e., divided by 2)
jaroslav@1258
  1307
        int lastProductLowWord = 0;
jaroslav@1258
  1308
        for (int j=0, i=0; j<len; j++) {
jaroslav@1258
  1309
            long piece = (x[j] & LONG_MASK);
jaroslav@1258
  1310
            long product = piece * piece;
jaroslav@1258
  1311
            z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
jaroslav@1258
  1312
            z[i++] = (int)(product >>> 1);
jaroslav@1258
  1313
            lastProductLowWord = (int)product;
jaroslav@1258
  1314
        }
jaroslav@1258
  1315
jaroslav@1258
  1316
        // Add in off-diagonal sums
jaroslav@1258
  1317
        for (int i=len, offset=1; i>0; i--, offset+=2) {
jaroslav@1258
  1318
            int t = x[i-1];
jaroslav@1258
  1319
            t = mulAdd(z, x, offset, i-1, t);
jaroslav@1258
  1320
            addOne(z, offset-1, i, t);
jaroslav@1258
  1321
        }
jaroslav@1258
  1322
jaroslav@1258
  1323
        // Shift back up and set low bit
jaroslav@1258
  1324
        primitiveLeftShift(z, zlen, 1);
jaroslav@1258
  1325
        z[zlen-1] |= x[len-1] & 1;
jaroslav@1258
  1326
jaroslav@1258
  1327
        return z;
jaroslav@1258
  1328
    }
jaroslav@1258
  1329
jaroslav@1258
  1330
    /**
jaroslav@1258
  1331
     * Returns a BigInteger whose value is {@code (this / val)}.
jaroslav@1258
  1332
     *
jaroslav@1258
  1333
     * @param  val value by which this BigInteger is to be divided.
jaroslav@1258
  1334
     * @return {@code this / val}
jaroslav@1258
  1335
     * @throws ArithmeticException if {@code val} is zero.
jaroslav@1258
  1336
     */
jaroslav@1258
  1337
    public BigInteger divide(BigInteger val) {
jaroslav@1258
  1338
        MutableBigInteger q = new MutableBigInteger(),
jaroslav@1258
  1339
                          a = new MutableBigInteger(this.mag),
jaroslav@1258
  1340
                          b = new MutableBigInteger(val.mag);
jaroslav@1258
  1341
jaroslav@1258
  1342
        a.divide(b, q);
jaroslav@1258
  1343
        return q.toBigInteger(this.signum == val.signum ? 1 : -1);
jaroslav@1258
  1344
    }
jaroslav@1258
  1345
jaroslav@1258
  1346
    /**
jaroslav@1258
  1347
     * Returns an array of two BigIntegers containing {@code (this / val)}
jaroslav@1258
  1348
     * followed by {@code (this % val)}.
jaroslav@1258
  1349
     *
jaroslav@1258
  1350
     * @param  val value by which this BigInteger is to be divided, and the
jaroslav@1258
  1351
     *         remainder computed.
jaroslav@1258
  1352
     * @return an array of two BigIntegers: the quotient {@code (this / val)}
jaroslav@1258
  1353
     *         is the initial element, and the remainder {@code (this % val)}
jaroslav@1258
  1354
     *         is the final element.
jaroslav@1258
  1355
     * @throws ArithmeticException if {@code val} is zero.
jaroslav@1258
  1356
     */
jaroslav@1258
  1357
    public BigInteger[] divideAndRemainder(BigInteger val) {
jaroslav@1258
  1358
        BigInteger[] result = new BigInteger[2];
jaroslav@1258
  1359
        MutableBigInteger q = new MutableBigInteger(),
jaroslav@1258
  1360
                          a = new MutableBigInteger(this.mag),
jaroslav@1258
  1361
                          b = new MutableBigInteger(val.mag);
jaroslav@1258
  1362
        MutableBigInteger r = a.divide(b, q);
jaroslav@1258
  1363
        result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1);
jaroslav@1258
  1364
        result[1] = r.toBigInteger(this.signum);
jaroslav@1258
  1365
        return result;
jaroslav@1258
  1366
    }
jaroslav@1258
  1367
jaroslav@1258
  1368
    /**
jaroslav@1258
  1369
     * Returns a BigInteger whose value is {@code (this % val)}.
jaroslav@1258
  1370
     *
jaroslav@1258
  1371
     * @param  val value by which this BigInteger is to be divided, and the
jaroslav@1258
  1372
     *         remainder computed.
jaroslav@1258
  1373
     * @return {@code this % val}
jaroslav@1258
  1374
     * @throws ArithmeticException if {@code val} is zero.
jaroslav@1258
  1375
     */
jaroslav@1258
  1376
    public BigInteger remainder(BigInteger val) {
jaroslav@1258
  1377
        MutableBigInteger q = new MutableBigInteger(),
jaroslav@1258
  1378
                          a = new MutableBigInteger(this.mag),
jaroslav@1258
  1379
                          b = new MutableBigInteger(val.mag);
jaroslav@1258
  1380
jaroslav@1258
  1381
        return a.divide(b, q).toBigInteger(this.signum);
jaroslav@1258
  1382
    }
jaroslav@1258
  1383
jaroslav@1258
  1384
    /**
jaroslav@1258
  1385
     * Returns a BigInteger whose value is <tt>(this<sup>exponent</sup>)</tt>.
jaroslav@1258
  1386
     * Note that {@code exponent} is an integer rather than a BigInteger.
jaroslav@1258
  1387
     *
jaroslav@1258
  1388
     * @param  exponent exponent to which this BigInteger is to be raised.
jaroslav@1258
  1389
     * @return <tt>this<sup>exponent</sup></tt>
jaroslav@1258
  1390
     * @throws ArithmeticException {@code exponent} is negative.  (This would
jaroslav@1258
  1391
     *         cause the operation to yield a non-integer value.)
jaroslav@1258
  1392
     */
jaroslav@1258
  1393
    public BigInteger pow(int exponent) {
jaroslav@1258
  1394
        if (exponent < 0)
jaroslav@1258
  1395
            throw new ArithmeticException("Negative exponent");
jaroslav@1258
  1396
        if (signum==0)
jaroslav@1258
  1397
            return (exponent==0 ? ONE : this);
jaroslav@1258
  1398
jaroslav@1258
  1399
        // Perform exponentiation using repeated squaring trick
jaroslav@1258
  1400
        int newSign = (signum<0 && (exponent&1)==1 ? -1 : 1);
jaroslav@1258
  1401
        int[] baseToPow2 = this.mag;
jaroslav@1258
  1402
        int[] result = {1};
jaroslav@1258
  1403
jaroslav@1258
  1404
        while (exponent != 0) {
jaroslav@1258
  1405
            if ((exponent & 1)==1) {
jaroslav@1258
  1406
                result = multiplyToLen(result, result.length,
jaroslav@1258
  1407
                                       baseToPow2, baseToPow2.length, null);
jaroslav@1258
  1408
                result = trustedStripLeadingZeroInts(result);
jaroslav@1258
  1409
            }
jaroslav@1258
  1410
            if ((exponent >>>= 1) != 0) {
jaroslav@1258
  1411
                baseToPow2 = squareToLen(baseToPow2, baseToPow2.length, null);
jaroslav@1258
  1412
                baseToPow2 = trustedStripLeadingZeroInts(baseToPow2);
jaroslav@1258
  1413
            }
jaroslav@1258
  1414
        }
jaroslav@1258
  1415
        return new BigInteger(result, newSign);
jaroslav@1258
  1416
    }
jaroslav@1258
  1417
jaroslav@1258
  1418
    /**
jaroslav@1258
  1419
     * Returns a BigInteger whose value is the greatest common divisor of
jaroslav@1258
  1420
     * {@code abs(this)} and {@code abs(val)}.  Returns 0 if
jaroslav@1258
  1421
     * {@code this==0 && val==0}.
jaroslav@1258
  1422
     *
jaroslav@1258
  1423
     * @param  val value with which the GCD is to be computed.
jaroslav@1258
  1424
     * @return {@code GCD(abs(this), abs(val))}
jaroslav@1258
  1425
     */
jaroslav@1258
  1426
    public BigInteger gcd(BigInteger val) {
jaroslav@1258
  1427
        if (val.signum == 0)
jaroslav@1258
  1428
            return this.abs();
jaroslav@1258
  1429
        else if (this.signum == 0)
jaroslav@1258
  1430
            return val.abs();
jaroslav@1258
  1431
jaroslav@1258
  1432
        MutableBigInteger a = new MutableBigInteger(this);
jaroslav@1258
  1433
        MutableBigInteger b = new MutableBigInteger(val);
jaroslav@1258
  1434
jaroslav@1258
  1435
        MutableBigInteger result = a.hybridGCD(b);
jaroslav@1258
  1436
jaroslav@1258
  1437
        return result.toBigInteger(1);
jaroslav@1258
  1438
    }
jaroslav@1258
  1439
jaroslav@1258
  1440
    /**
jaroslav@1258
  1441
     * Package private method to return bit length for an integer.
jaroslav@1258
  1442
     */
jaroslav@1258
  1443
    static int bitLengthForInt(int n) {
jaroslav@1258
  1444
        return 32 - Integer.numberOfLeadingZeros(n);
jaroslav@1258
  1445
    }
jaroslav@1258
  1446
jaroslav@1258
  1447
    /**
jaroslav@1258
  1448
     * Left shift int array a up to len by n bits. Returns the array that
jaroslav@1258
  1449
     * results from the shift since space may have to be reallocated.
jaroslav@1258
  1450
     */
jaroslav@1258
  1451
    private static int[] leftShift(int[] a, int len, int n) {
jaroslav@1258
  1452
        int nInts = n >>> 5;
jaroslav@1258
  1453
        int nBits = n&0x1F;
jaroslav@1258
  1454
        int bitsInHighWord = bitLengthForInt(a[0]);
jaroslav@1258
  1455
jaroslav@1258
  1456
        // If shift can be done without recopy, do so
jaroslav@1258
  1457
        if (n <= (32-bitsInHighWord)) {
jaroslav@1258
  1458
            primitiveLeftShift(a, len, nBits);
jaroslav@1258
  1459
            return a;
jaroslav@1258
  1460
        } else { // Array must be resized
jaroslav@1258
  1461
            if (nBits <= (32-bitsInHighWord)) {
jaroslav@1258
  1462
                int result[] = new int[nInts+len];
jaroslav@1258
  1463
                for (int i=0; i<len; i++)
jaroslav@1258
  1464
                    result[i] = a[i];
jaroslav@1258
  1465
                primitiveLeftShift(result, result.length, nBits);
jaroslav@1258
  1466
                return result;
jaroslav@1258
  1467
            } else {
jaroslav@1258
  1468
                int result[] = new int[nInts+len+1];
jaroslav@1258
  1469
                for (int i=0; i<len; i++)
jaroslav@1258
  1470
                    result[i] = a[i];
jaroslav@1258
  1471
                primitiveRightShift(result, result.length, 32 - nBits);
jaroslav@1258
  1472
                return result;
jaroslav@1258
  1473
            }
jaroslav@1258
  1474
        }
jaroslav@1258
  1475
    }
jaroslav@1258
  1476
jaroslav@1258
  1477
    // shifts a up to len right n bits assumes no leading zeros, 0<n<32
jaroslav@1258
  1478
    static void primitiveRightShift(int[] a, int len, int n) {
jaroslav@1258
  1479
        int n2 = 32 - n;
jaroslav@1258
  1480
        for (int i=len-1, c=a[i]; i>0; i--) {
jaroslav@1258
  1481
            int b = c;
jaroslav@1258
  1482
            c = a[i-1];
jaroslav@1258
  1483
            a[i] = (c << n2) | (b >>> n);
jaroslav@1258
  1484
        }
jaroslav@1258
  1485
        a[0] >>>= n;
jaroslav@1258
  1486
    }
jaroslav@1258
  1487
jaroslav@1258
  1488
    // shifts a up to len left n bits assumes no leading zeros, 0<=n<32
jaroslav@1258
  1489
    static void primitiveLeftShift(int[] a, int len, int n) {
jaroslav@1258
  1490
        if (len == 0 || n == 0)
jaroslav@1258
  1491
            return;
jaroslav@1258
  1492
jaroslav@1258
  1493
        int n2 = 32 - n;
jaroslav@1258
  1494
        for (int i=0, c=a[i], m=i+len-1; i<m; i++) {
jaroslav@1258
  1495
            int b = c;
jaroslav@1258
  1496
            c = a[i+1];
jaroslav@1258
  1497
            a[i] = (b << n) | (c >>> n2);
jaroslav@1258
  1498
        }
jaroslav@1258
  1499
        a[len-1] <<= n;
jaroslav@1258
  1500
    }
jaroslav@1258
  1501
jaroslav@1258
  1502
    /**
jaroslav@1258
  1503
     * Calculate bitlength of contents of the first len elements an int array,
jaroslav@1258
  1504
     * assuming there are no leading zero ints.
jaroslav@1258
  1505
     */
jaroslav@1258
  1506
    private static int bitLength(int[] val, int len) {
jaroslav@1258
  1507
        if (len == 0)
jaroslav@1258
  1508
            return 0;
jaroslav@1258
  1509
        return ((len - 1) << 5) + bitLengthForInt(val[0]);
jaroslav@1258
  1510
    }
jaroslav@1258
  1511
jaroslav@1258
  1512
    /**
jaroslav@1258
  1513
     * Returns a BigInteger whose value is the absolute value of this
jaroslav@1258
  1514
     * BigInteger.
jaroslav@1258
  1515
     *
jaroslav@1258
  1516
     * @return {@code abs(this)}
jaroslav@1258
  1517
     */
jaroslav@1258
  1518
    public BigInteger abs() {
jaroslav@1258
  1519
        return (signum >= 0 ? this : this.negate());
jaroslav@1258
  1520
    }
jaroslav@1258
  1521
jaroslav@1258
  1522
    /**
jaroslav@1258
  1523
     * Returns a BigInteger whose value is {@code (-this)}.
jaroslav@1258
  1524
     *
jaroslav@1258
  1525
     * @return {@code -this}
jaroslav@1258
  1526
     */
jaroslav@1258
  1527
    public BigInteger negate() {
jaroslav@1258
  1528
        return new BigInteger(this.mag, -this.signum);
jaroslav@1258
  1529
    }
jaroslav@1258
  1530
jaroslav@1258
  1531
    /**
jaroslav@1258
  1532
     * Returns the signum function of this BigInteger.
jaroslav@1258
  1533
     *
jaroslav@1258
  1534
     * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
jaroslav@1258
  1535
     *         positive.
jaroslav@1258
  1536
     */
jaroslav@1258
  1537
    public int signum() {
jaroslav@1258
  1538
        return this.signum;
jaroslav@1258
  1539
    }
jaroslav@1258
  1540
jaroslav@1258
  1541
    // Modular Arithmetic Operations
jaroslav@1258
  1542
jaroslav@1258
  1543
    /**
jaroslav@1258
  1544
     * Returns a BigInteger whose value is {@code (this mod m}).  This method
jaroslav@1258
  1545
     * differs from {@code remainder} in that it always returns a
jaroslav@1258
  1546
     * <i>non-negative</i> BigInteger.
jaroslav@1258
  1547
     *
jaroslav@1258
  1548
     * @param  m the modulus.
jaroslav@1258
  1549
     * @return {@code this mod m}
jaroslav@1258
  1550
     * @throws ArithmeticException {@code m} &le; 0
jaroslav@1258
  1551
     * @see    #remainder
jaroslav@1258
  1552
     */
jaroslav@1258
  1553
    public BigInteger mod(BigInteger m) {
jaroslav@1258
  1554
        if (m.signum <= 0)
jaroslav@1258
  1555
            throw new ArithmeticException("BigInteger: modulus not positive");
jaroslav@1258
  1556
jaroslav@1258
  1557
        BigInteger result = this.remainder(m);
jaroslav@1258
  1558
        return (result.signum >= 0 ? result : result.add(m));
jaroslav@1258
  1559
    }
jaroslav@1258
  1560
jaroslav@1258
  1561
    /**
jaroslav@1258
  1562
     * Returns a BigInteger whose value is
jaroslav@1258
  1563
     * <tt>(this<sup>exponent</sup> mod m)</tt>.  (Unlike {@code pow}, this
jaroslav@1258
  1564
     * method permits negative exponents.)
jaroslav@1258
  1565
     *
jaroslav@1258
  1566
     * @param  exponent the exponent.
jaroslav@1258
  1567
     * @param  m the modulus.
jaroslav@1258
  1568
     * @return <tt>this<sup>exponent</sup> mod m</tt>
jaroslav@1258
  1569
     * @throws ArithmeticException {@code m} &le; 0 or the exponent is
jaroslav@1258
  1570
     *         negative and this BigInteger is not <i>relatively
jaroslav@1258
  1571
     *         prime</i> to {@code m}.
jaroslav@1258
  1572
     * @see    #modInverse
jaroslav@1258
  1573
     */
jaroslav@1258
  1574
    public BigInteger modPow(BigInteger exponent, BigInteger m) {
jaroslav@1258
  1575
        if (m.signum <= 0)
jaroslav@1258
  1576
            throw new ArithmeticException("BigInteger: modulus not positive");
jaroslav@1258
  1577
jaroslav@1258
  1578
        // Trivial cases
jaroslav@1258
  1579
        if (exponent.signum == 0)
jaroslav@1258
  1580
            return (m.equals(ONE) ? ZERO : ONE);
jaroslav@1258
  1581
jaroslav@1258
  1582
        if (this.equals(ONE))
jaroslav@1258
  1583
            return (m.equals(ONE) ? ZERO : ONE);
jaroslav@1258
  1584
jaroslav@1258
  1585
        if (this.equals(ZERO) && exponent.signum >= 0)
jaroslav@1258
  1586
            return ZERO;
jaroslav@1258
  1587
jaroslav@1258
  1588
        if (this.equals(negConst[1]) && (!exponent.testBit(0)))
jaroslav@1258
  1589
            return (m.equals(ONE) ? ZERO : ONE);
jaroslav@1258
  1590
jaroslav@1258
  1591
        boolean invertResult;
jaroslav@1258
  1592
        if ((invertResult = (exponent.signum < 0)))
jaroslav@1258
  1593
            exponent = exponent.negate();
jaroslav@1258
  1594
jaroslav@1258
  1595
        BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
jaroslav@1258
  1596
                           ? this.mod(m) : this);
jaroslav@1258
  1597
        BigInteger result;
jaroslav@1258
  1598
        if (m.testBit(0)) { // odd modulus
jaroslav@1258
  1599
            result = base.oddModPow(exponent, m);
jaroslav@1258
  1600
        } else {
jaroslav@1258
  1601
            /*
jaroslav@1258
  1602
             * Even modulus.  Tear it into an "odd part" (m1) and power of two
jaroslav@1258
  1603
             * (m2), exponentiate mod m1, manually exponentiate mod m2, and
jaroslav@1258
  1604
             * use Chinese Remainder Theorem to combine results.
jaroslav@1258
  1605
             */
jaroslav@1258
  1606
jaroslav@1258
  1607
            // Tear m apart into odd part (m1) and power of 2 (m2)
jaroslav@1258
  1608
            int p = m.getLowestSetBit();   // Max pow of 2 that divides m
jaroslav@1258
  1609
jaroslav@1258
  1610
            BigInteger m1 = m.shiftRight(p);  // m/2**p
jaroslav@1258
  1611
            BigInteger m2 = ONE.shiftLeft(p); // 2**p
jaroslav@1258
  1612
jaroslav@1258
  1613
            // Calculate new base from m1
jaroslav@1258
  1614
            BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
jaroslav@1258
  1615
                                ? this.mod(m1) : this);
jaroslav@1258
  1616
jaroslav@1258
  1617
            // Caculate (base ** exponent) mod m1.
jaroslav@1258
  1618
            BigInteger a1 = (m1.equals(ONE) ? ZERO :
jaroslav@1258
  1619
                             base2.oddModPow(exponent, m1));
jaroslav@1258
  1620
jaroslav@1258
  1621
            // Calculate (this ** exponent) mod m2
jaroslav@1258
  1622
            BigInteger a2 = base.modPow2(exponent, p);
jaroslav@1258
  1623
jaroslav@1258
  1624
            // Combine results using Chinese Remainder Theorem
jaroslav@1258
  1625
            BigInteger y1 = m2.modInverse(m1);
jaroslav@1258
  1626
            BigInteger y2 = m1.modInverse(m2);
jaroslav@1258
  1627
jaroslav@1258
  1628
            result = a1.multiply(m2).multiply(y1).add
jaroslav@1258
  1629
                     (a2.multiply(m1).multiply(y2)).mod(m);
jaroslav@1258
  1630
        }
jaroslav@1258
  1631
jaroslav@1258
  1632
        return (invertResult ? result.modInverse(m) : result);
jaroslav@1258
  1633
    }
jaroslav@1258
  1634
jaroslav@1258
  1635
    static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793,
jaroslav@1258
  1636
                                                Integer.MAX_VALUE}; // Sentinel
jaroslav@1258
  1637
jaroslav@1258
  1638
    /**
jaroslav@1258
  1639
     * Returns a BigInteger whose value is x to the power of y mod z.
jaroslav@1258
  1640
     * Assumes: z is odd && x < z.
jaroslav@1258
  1641
     */
jaroslav@1258
  1642
    private BigInteger oddModPow(BigInteger y, BigInteger z) {
jaroslav@1258
  1643
    /*
jaroslav@1258
  1644
     * The algorithm is adapted from Colin Plumb's C library.
jaroslav@1258
  1645
     *
jaroslav@1258
  1646
     * The window algorithm:
jaroslav@1258
  1647
     * The idea is to keep a running product of b1 = n^(high-order bits of exp)
jaroslav@1258
  1648
     * and then keep appending exponent bits to it.  The following patterns
jaroslav@1258
  1649
     * apply to a 3-bit window (k = 3):
jaroslav@1258
  1650
     * To append   0: square
jaroslav@1258
  1651
     * To append   1: square, multiply by n^1
jaroslav@1258
  1652
     * To append  10: square, multiply by n^1, square
jaroslav@1258
  1653
     * To append  11: square, square, multiply by n^3
jaroslav@1258
  1654
     * To append 100: square, multiply by n^1, square, square
jaroslav@1258
  1655
     * To append 101: square, square, square, multiply by n^5
jaroslav@1258
  1656
     * To append 110: square, square, multiply by n^3, square
jaroslav@1258
  1657
     * To append 111: square, square, square, multiply by n^7
jaroslav@1258
  1658
     *
jaroslav@1258
  1659
     * Since each pattern involves only one multiply, the longer the pattern
jaroslav@1258
  1660
     * the better, except that a 0 (no multiplies) can be appended directly.
jaroslav@1258
  1661
     * We precompute a table of odd powers of n, up to 2^k, and can then
jaroslav@1258
  1662
     * multiply k bits of exponent at a time.  Actually, assuming random
jaroslav@1258
  1663
     * exponents, there is on average one zero bit between needs to
jaroslav@1258
  1664
     * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
jaroslav@1258
  1665
     * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
jaroslav@1258
  1666
     * you have to do one multiply per k+1 bits of exponent.
jaroslav@1258
  1667
     *
jaroslav@1258
  1668
     * The loop walks down the exponent, squaring the result buffer as
jaroslav@1258
  1669
     * it goes.  There is a wbits+1 bit lookahead buffer, buf, that is
jaroslav@1258
  1670
     * filled with the upcoming exponent bits.  (What is read after the
jaroslav@1258
  1671
     * end of the exponent is unimportant, but it is filled with zero here.)
jaroslav@1258
  1672
     * When the most-significant bit of this buffer becomes set, i.e.
jaroslav@1258
  1673
     * (buf & tblmask) != 0, we have to decide what pattern to multiply
jaroslav@1258
  1674
     * by, and when to do it.  We decide, remember to do it in future
jaroslav@1258
  1675
     * after a suitable number of squarings have passed (e.g. a pattern
jaroslav@1258
  1676
     * of "100" in the buffer requires that we multiply by n^1 immediately;
jaroslav@1258
  1677
     * a pattern of "110" calls for multiplying by n^3 after one more
jaroslav@1258
  1678
     * squaring), clear the buffer, and continue.
jaroslav@1258
  1679
     *
jaroslav@1258
  1680
     * When we start, there is one more optimization: the result buffer
jaroslav@1258
  1681
     * is implcitly one, so squaring it or multiplying by it can be
jaroslav@1258
  1682
     * optimized away.  Further, if we start with a pattern like "100"
jaroslav@1258
  1683
     * in the lookahead window, rather than placing n into the buffer
jaroslav@1258
  1684
     * and then starting to square it, we have already computed n^2
jaroslav@1258
  1685
     * to compute the odd-powers table, so we can place that into
jaroslav@1258
  1686
     * the buffer and save a squaring.
jaroslav@1258
  1687
     *
jaroslav@1258
  1688
     * This means that if you have a k-bit window, to compute n^z,
jaroslav@1258
  1689
     * where z is the high k bits of the exponent, 1/2 of the time
jaroslav@1258
  1690
     * it requires no squarings.  1/4 of the time, it requires 1
jaroslav@1258
  1691
     * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
jaroslav@1258
  1692
     * And the remaining 1/2^(k-1) of the time, the top k bits are a
jaroslav@1258
  1693
     * 1 followed by k-1 0 bits, so it again only requires k-2
jaroslav@1258
  1694
     * squarings, not k-1.  The average of these is 1.  Add that
jaroslav@1258
  1695
     * to the one squaring we have to do to compute the table,
jaroslav@1258
  1696
     * and you'll see that a k-bit window saves k-2 squarings
jaroslav@1258
  1697
     * as well as reducing the multiplies.  (It actually doesn't
jaroslav@1258
  1698
     * hurt in the case k = 1, either.)
jaroslav@1258
  1699
     */
jaroslav@1258
  1700
        // Special case for exponent of one
jaroslav@1258
  1701
        if (y.equals(ONE))
jaroslav@1258
  1702
            return this;
jaroslav@1258
  1703
jaroslav@1258
  1704
        // Special case for base of zero
jaroslav@1258
  1705
        if (signum==0)
jaroslav@1258
  1706
            return ZERO;
jaroslav@1258
  1707
jaroslav@1258
  1708
        int[] base = mag.clone();
jaroslav@1258
  1709
        int[] exp = y.mag;
jaroslav@1258
  1710
        int[] mod = z.mag;
jaroslav@1258
  1711
        int modLen = mod.length;
jaroslav@1258
  1712
jaroslav@1258
  1713
        // Select an appropriate window size
jaroslav@1258
  1714
        int wbits = 0;
jaroslav@1258
  1715
        int ebits = bitLength(exp, exp.length);
jaroslav@1258
  1716
        // if exponent is 65537 (0x10001), use minimum window size
jaroslav@1258
  1717
        if ((ebits != 17) || (exp[0] != 65537)) {
jaroslav@1258
  1718
            while (ebits > bnExpModThreshTable[wbits]) {
jaroslav@1258
  1719
                wbits++;
jaroslav@1258
  1720
            }
jaroslav@1258
  1721
        }
jaroslav@1258
  1722
jaroslav@1258
  1723
        // Calculate appropriate table size
jaroslav@1258
  1724
        int tblmask = 1 << wbits;
jaroslav@1258
  1725
jaroslav@1258
  1726
        // Allocate table for precomputed odd powers of base in Montgomery form
jaroslav@1258
  1727
        int[][] table = new int[tblmask][];
jaroslav@1258
  1728
        for (int i=0; i<tblmask; i++)
jaroslav@1258
  1729
            table[i] = new int[modLen];
jaroslav@1258
  1730
jaroslav@1258
  1731
        // Compute the modular inverse
jaroslav@1258
  1732
        int inv = -MutableBigInteger.inverseMod32(mod[modLen-1]);
jaroslav@1258
  1733
jaroslav@1258
  1734
        // Convert base to Montgomery form
jaroslav@1258
  1735
        int[] a = leftShift(base, base.length, modLen << 5);
jaroslav@1258
  1736
jaroslav@1258
  1737
        MutableBigInteger q = new MutableBigInteger(),
jaroslav@1258
  1738
                          a2 = new MutableBigInteger(a),
jaroslav@1258
  1739
                          b2 = new MutableBigInteger(mod);
jaroslav@1258
  1740
jaroslav@1258
  1741
        MutableBigInteger r= a2.divide(b2, q);
jaroslav@1258
  1742
        table[0] = r.toIntArray();
jaroslav@1258
  1743
jaroslav@1258
  1744
        // Pad table[0] with leading zeros so its length is at least modLen
jaroslav@1258
  1745
        if (table[0].length < modLen) {
jaroslav@1258
  1746
           int offset = modLen - table[0].length;
jaroslav@1258
  1747
           int[] t2 = new int[modLen];
jaroslav@1258
  1748
           for (int i=0; i<table[0].length; i++)
jaroslav@1258
  1749
               t2[i+offset] = table[0][i];
jaroslav@1258
  1750
           table[0] = t2;
jaroslav@1258
  1751
        }
jaroslav@1258
  1752
jaroslav@1258
  1753
        // Set b to the square of the base
jaroslav@1258
  1754
        int[] b = squareToLen(table[0], modLen, null);
jaroslav@1258
  1755
        b = montReduce(b, mod, modLen, inv);
jaroslav@1258
  1756
jaroslav@1258
  1757
        // Set t to high half of b
jaroslav@1258
  1758
        int[] t = new int[modLen];
jaroslav@1258
  1759
        for(int i=0; i<modLen; i++)
jaroslav@1258
  1760
            t[i] = b[i];
jaroslav@1258
  1761
jaroslav@1258
  1762
        // Fill in the table with odd powers of the base
jaroslav@1258
  1763
        for (int i=1; i<tblmask; i++) {
jaroslav@1258
  1764
            int[] prod = multiplyToLen(t, modLen, table[i-1], modLen, null);
jaroslav@1258
  1765
            table[i] = montReduce(prod, mod, modLen, inv);
jaroslav@1258
  1766
        }
jaroslav@1258
  1767
jaroslav@1258
  1768
        // Pre load the window that slides over the exponent
jaroslav@1258
  1769
        int bitpos = 1 << ((ebits-1) & (32-1));
jaroslav@1258
  1770
jaroslav@1258
  1771
        int buf = 0;
jaroslav@1258
  1772
        int elen = exp.length;
jaroslav@1258
  1773
        int eIndex = 0;
jaroslav@1258
  1774
        for (int i = 0; i <= wbits; i++) {
jaroslav@1258
  1775
            buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);
jaroslav@1258
  1776
            bitpos >>>= 1;
jaroslav@1258
  1777
            if (bitpos == 0) {
jaroslav@1258
  1778
                eIndex++;
jaroslav@1258
  1779
                bitpos = 1 << (32-1);
jaroslav@1258
  1780
                elen--;
jaroslav@1258
  1781
            }
jaroslav@1258
  1782
        }
jaroslav@1258
  1783
jaroslav@1258
  1784
        int multpos = ebits;
jaroslav@1258
  1785
jaroslav@1258
  1786
        // The first iteration, which is hoisted out of the main loop
jaroslav@1258
  1787
        ebits--;
jaroslav@1258
  1788
        boolean isone = true;
jaroslav@1258
  1789
jaroslav@1258
  1790
        multpos = ebits - wbits;
jaroslav@1258
  1791
        while ((buf & 1) == 0) {
jaroslav@1258
  1792
            buf >>>= 1;
jaroslav@1258
  1793
            multpos++;
jaroslav@1258
  1794
        }
jaroslav@1258
  1795
jaroslav@1258
  1796
        int[] mult = table[buf >>> 1];
jaroslav@1258
  1797
jaroslav@1258
  1798
        buf = 0;
jaroslav@1258
  1799
        if (multpos == ebits)
jaroslav@1258
  1800
            isone = false;
jaroslav@1258
  1801
jaroslav@1258
  1802
        // The main loop
jaroslav@1258
  1803
        while(true) {
jaroslav@1258
  1804
            ebits--;
jaroslav@1258
  1805
            // Advance the window
jaroslav@1258
  1806
            buf <<= 1;
jaroslav@1258
  1807
jaroslav@1258
  1808
            if (elen != 0) {
jaroslav@1258
  1809
                buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
jaroslav@1258
  1810
                bitpos >>>= 1;
jaroslav@1258
  1811
                if (bitpos == 0) {
jaroslav@1258
  1812
                    eIndex++;
jaroslav@1258
  1813
                    bitpos = 1 << (32-1);
jaroslav@1258
  1814
                    elen--;
jaroslav@1258
  1815
                }
jaroslav@1258
  1816
            }
jaroslav@1258
  1817
jaroslav@1258
  1818
            // Examine the window for pending multiplies
jaroslav@1258
  1819
            if ((buf & tblmask) != 0) {
jaroslav@1258
  1820
                multpos = ebits - wbits;
jaroslav@1258
  1821
                while ((buf & 1) == 0) {
jaroslav@1258
  1822
                    buf >>>= 1;
jaroslav@1258
  1823
                    multpos++;
jaroslav@1258
  1824
                }
jaroslav@1258
  1825
                mult = table[buf >>> 1];
jaroslav@1258
  1826
                buf = 0;
jaroslav@1258
  1827
            }
jaroslav@1258
  1828
jaroslav@1258
  1829
            // Perform multiply
jaroslav@1258
  1830
            if (ebits == multpos) {
jaroslav@1258
  1831
                if (isone) {
jaroslav@1258
  1832
                    b = mult.clone();
jaroslav@1258
  1833
                    isone = false;
jaroslav@1258
  1834
                } else {
jaroslav@1258
  1835
                    t = b;
jaroslav@1258
  1836
                    a = multiplyToLen(t, modLen, mult, modLen, a);
jaroslav@1258
  1837
                    a = montReduce(a, mod, modLen, inv);
jaroslav@1258
  1838
                    t = a; a = b; b = t;
jaroslav@1258
  1839
                }
jaroslav@1258
  1840
            }
jaroslav@1258
  1841
jaroslav@1258
  1842
            // Check if done
jaroslav@1258
  1843
            if (ebits == 0)
jaroslav@1258
  1844
                break;
jaroslav@1258
  1845
jaroslav@1258
  1846
            // Square the input
jaroslav@1258
  1847
            if (!isone) {
jaroslav@1258
  1848
                t = b;
jaroslav@1258
  1849
                a = squareToLen(t, modLen, a);
jaroslav@1258
  1850
                a = montReduce(a, mod, modLen, inv);
jaroslav@1258
  1851
                t = a; a = b; b = t;
jaroslav@1258
  1852
            }
jaroslav@1258
  1853
        }
jaroslav@1258
  1854
jaroslav@1258
  1855
        // Convert result out of Montgomery form and return
jaroslav@1258
  1856
        int[] t2 = new int[2*modLen];
jaroslav@1258
  1857
        for(int i=0; i<modLen; i++)
jaroslav@1258
  1858
            t2[i+modLen] = b[i];
jaroslav@1258
  1859
jaroslav@1258
  1860
        b = montReduce(t2, mod, modLen, inv);
jaroslav@1258
  1861
jaroslav@1258
  1862
        t2 = new int[modLen];
jaroslav@1258
  1863
        for(int i=0; i<modLen; i++)
jaroslav@1258
  1864
            t2[i] = b[i];
jaroslav@1258
  1865
jaroslav@1258
  1866
        return new BigInteger(1, t2);
jaroslav@1258
  1867
    }
jaroslav@1258
  1868
jaroslav@1258
  1869
    /**
jaroslav@1258
  1870
     * Montgomery reduce n, modulo mod.  This reduces modulo mod and divides
jaroslav@1258
  1871
     * by 2^(32*mlen). Adapted from Colin Plumb's C library.
jaroslav@1258
  1872
     */
jaroslav@1258
  1873
    private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) {
jaroslav@1258
  1874
        int c=0;
jaroslav@1258
  1875
        int len = mlen;
jaroslav@1258
  1876
        int offset=0;
jaroslav@1258
  1877
jaroslav@1258
  1878
        do {
jaroslav@1258
  1879
            int nEnd = n[n.length-1-offset];
jaroslav@1258
  1880
            int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
jaroslav@1258
  1881
            c += addOne(n, offset, mlen, carry);
jaroslav@1258
  1882
            offset++;
jaroslav@1258
  1883
        } while(--len > 0);
jaroslav@1258
  1884
jaroslav@1258
  1885
        while(c>0)
jaroslav@1258
  1886
            c += subN(n, mod, mlen);
jaroslav@1258
  1887
jaroslav@1258
  1888
        while (intArrayCmpToLen(n, mod, mlen) >= 0)
jaroslav@1258
  1889
            subN(n, mod, mlen);
jaroslav@1258
  1890
jaroslav@1258
  1891
        return n;
jaroslav@1258
  1892
    }
jaroslav@1258
  1893
jaroslav@1258
  1894
jaroslav@1258
  1895
    /*
jaroslav@1258
  1896
     * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than,
jaroslav@1258
  1897
     * equal to, or greater than arg2 up to length len.
jaroslav@1258
  1898
     */
jaroslav@1258
  1899
    private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
jaroslav@1258
  1900
        for (int i=0; i<len; i++) {
jaroslav@1258
  1901
            long b1 = arg1[i] & LONG_MASK;
jaroslav@1258
  1902
            long b2 = arg2[i] & LONG_MASK;
jaroslav@1258
  1903
            if (b1 < b2)
jaroslav@1258
  1904
                return -1;
jaroslav@1258
  1905
            if (b1 > b2)
jaroslav@1258
  1906
                return 1;
jaroslav@1258
  1907
        }
jaroslav@1258
  1908
        return 0;
jaroslav@1258
  1909
    }
jaroslav@1258
  1910
jaroslav@1258
  1911
    /**
jaroslav@1258
  1912
     * Subtracts two numbers of same length, returning borrow.
jaroslav@1258
  1913
     */
jaroslav@1258
  1914
    private static int subN(int[] a, int[] b, int len) {
jaroslav@1258
  1915
        long sum = 0;
jaroslav@1258
  1916
jaroslav@1258
  1917
        while(--len >= 0) {
jaroslav@1258
  1918
            sum = (a[len] & LONG_MASK) -
jaroslav@1258
  1919
                 (b[len] & LONG_MASK) + (sum >> 32);
jaroslav@1258
  1920
            a[len] = (int)sum;
jaroslav@1258
  1921
        }
jaroslav@1258
  1922
jaroslav@1258
  1923
        return (int)(sum >> 32);
jaroslav@1258
  1924
    }
jaroslav@1258
  1925
jaroslav@1258
  1926
    /**
jaroslav@1258
  1927
     * Multiply an array by one word k and add to result, return the carry
jaroslav@1258
  1928
     */
jaroslav@1258
  1929
    static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
jaroslav@1258
  1930
        long kLong = k & LONG_MASK;
jaroslav@1258
  1931
        long carry = 0;
jaroslav@1258
  1932
jaroslav@1258
  1933
        offset = out.length-offset - 1;
jaroslav@1258
  1934
        for (int j=len-1; j >= 0; j--) {
jaroslav@1258
  1935
            long product = (in[j] & LONG_MASK) * kLong +
jaroslav@1258
  1936
                           (out[offset] & LONG_MASK) + carry;
jaroslav@1258
  1937
            out[offset--] = (int)product;
jaroslav@1258
  1938
            carry = product >>> 32;
jaroslav@1258
  1939
        }
jaroslav@1258
  1940
        return (int)carry;
jaroslav@1258
  1941
    }
jaroslav@1258
  1942
jaroslav@1258
  1943
    /**
jaroslav@1258
  1944
     * Add one word to the number a mlen words into a. Return the resulting
jaroslav@1258
  1945
     * carry.
jaroslav@1258
  1946
     */
jaroslav@1258
  1947
    static int addOne(int[] a, int offset, int mlen, int carry) {
jaroslav@1258
  1948
        offset = a.length-1-mlen-offset;
jaroslav@1258
  1949
        long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);
jaroslav@1258
  1950
jaroslav@1258
  1951
        a[offset] = (int)t;
jaroslav@1258
  1952
        if ((t >>> 32) == 0)
jaroslav@1258
  1953
            return 0;
jaroslav@1258
  1954
        while (--mlen >= 0) {
jaroslav@1258
  1955
            if (--offset < 0) { // Carry out of number
jaroslav@1258
  1956
                return 1;
jaroslav@1258
  1957
            } else {
jaroslav@1258
  1958
                a[offset]++;
jaroslav@1258
  1959
                if (a[offset] != 0)
jaroslav@1258
  1960
                    return 0;
jaroslav@1258
  1961
            }
jaroslav@1258
  1962
        }
jaroslav@1258
  1963
        return 1;
jaroslav@1258
  1964
    }
jaroslav@1258
  1965
jaroslav@1258
  1966
    /**
jaroslav@1258
  1967
     * Returns a BigInteger whose value is (this ** exponent) mod (2**p)
jaroslav@1258
  1968
     */
jaroslav@1258
  1969
    private BigInteger modPow2(BigInteger exponent, int p) {
jaroslav@1258
  1970
        /*
jaroslav@1258
  1971
         * Perform exponentiation using repeated squaring trick, chopping off
jaroslav@1258
  1972
         * high order bits as indicated by modulus.
jaroslav@1258
  1973
         */
jaroslav@1258
  1974
        BigInteger result = valueOf(1);
jaroslav@1258
  1975
        BigInteger baseToPow2 = this.mod2(p);
jaroslav@1258
  1976
        int expOffset = 0;
jaroslav@1258
  1977
jaroslav@1258
  1978
        int limit = exponent.bitLength();
jaroslav@1258
  1979
jaroslav@1258
  1980
        if (this.testBit(0))
jaroslav@1258
  1981
           limit = (p-1) < limit ? (p-1) : limit;
jaroslav@1258
  1982
jaroslav@1258
  1983
        while (expOffset < limit) {
jaroslav@1258
  1984
            if (exponent.testBit(expOffset))
jaroslav@1258
  1985
                result = result.multiply(baseToPow2).mod2(p);
jaroslav@1258
  1986
            expOffset++;
jaroslav@1258
  1987
            if (expOffset < limit)
jaroslav@1258
  1988
                baseToPow2 = baseToPow2.square().mod2(p);
jaroslav@1258
  1989
        }
jaroslav@1258
  1990
jaroslav@1258
  1991
        return result;
jaroslav@1258
  1992
    }
jaroslav@1258
  1993
jaroslav@1258
  1994
    /**
jaroslav@1258
  1995
     * Returns a BigInteger whose value is this mod(2**p).
jaroslav@1258
  1996
     * Assumes that this {@code BigInteger >= 0} and {@code p > 0}.
jaroslav@1258
  1997
     */
jaroslav@1258
  1998
    private BigInteger mod2(int p) {
jaroslav@1258
  1999
        if (bitLength() <= p)
jaroslav@1258
  2000
            return this;
jaroslav@1258
  2001
jaroslav@1258
  2002
        // Copy remaining ints of mag
jaroslav@1258
  2003
        int numInts = (p + 31) >>> 5;
jaroslav@1258
  2004
        int[] mag = new int[numInts];
jaroslav@1258
  2005
        for (int i=0; i<numInts; i++)
jaroslav@1258
  2006
            mag[i] = this.mag[i + (this.mag.length - numInts)];
jaroslav@1258
  2007
jaroslav@1258
  2008
        // Mask out any excess bits
jaroslav@1258
  2009
        int excessBits = (numInts << 5) - p;
jaroslav@1258
  2010
        mag[0] &= (1L << (32-excessBits)) - 1;
jaroslav@1258
  2011
jaroslav@1258
  2012
        return (mag[0]==0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
jaroslav@1258
  2013
    }
jaroslav@1258
  2014
jaroslav@1258
  2015
    /**
jaroslav@1258
  2016
     * Returns a BigInteger whose value is {@code (this}<sup>-1</sup> {@code mod m)}.
jaroslav@1258
  2017
     *
jaroslav@1258
  2018
     * @param  m the modulus.
jaroslav@1258
  2019
     * @return {@code this}<sup>-1</sup> {@code mod m}.
jaroslav@1258
  2020
     * @throws ArithmeticException {@code  m} &le; 0, or this BigInteger
jaroslav@1258
  2021
     *         has no multiplicative inverse mod m (that is, this BigInteger
jaroslav@1258
  2022
     *         is not <i>relatively prime</i> to m).
jaroslav@1258
  2023
     */
jaroslav@1258
  2024
    public BigInteger modInverse(BigInteger m) {
jaroslav@1258
  2025
        if (m.signum != 1)
jaroslav@1258
  2026
            throw new ArithmeticException("BigInteger: modulus not positive");
jaroslav@1258
  2027
jaroslav@1258
  2028
        if (m.equals(ONE))
jaroslav@1258
  2029
            return ZERO;
jaroslav@1258
  2030
jaroslav@1258
  2031
        // Calculate (this mod m)
jaroslav@1258
  2032
        BigInteger modVal = this;
jaroslav@1258
  2033
        if (signum < 0 || (this.compareMagnitude(m) >= 0))
jaroslav@1258
  2034
            modVal = this.mod(m);
jaroslav@1258
  2035
jaroslav@1258
  2036
        if (modVal.equals(ONE))
jaroslav@1258
  2037
            return ONE;
jaroslav@1258
  2038
jaroslav@1258
  2039
        MutableBigInteger a = new MutableBigInteger(modVal);
jaroslav@1258
  2040
        MutableBigInteger b = new MutableBigInteger(m);
jaroslav@1258
  2041
jaroslav@1258
  2042
        MutableBigInteger result = a.mutableModInverse(b);
jaroslav@1258
  2043
        return result.toBigInteger(1);
jaroslav@1258
  2044
    }
jaroslav@1258
  2045
jaroslav@1258
  2046
    // Shift Operations
jaroslav@1258
  2047
jaroslav@1258
  2048
    /**
jaroslav@1258
  2049
     * Returns a BigInteger whose value is {@code (this << n)}.
jaroslav@1258
  2050
     * The shift distance, {@code n}, may be negative, in which case
jaroslav@1258
  2051
     * this method performs a right shift.
jaroslav@1258
  2052
     * (Computes <tt>floor(this * 2<sup>n</sup>)</tt>.)
jaroslav@1258
  2053
     *
jaroslav@1258
  2054
     * @param  n shift distance, in bits.
jaroslav@1258
  2055
     * @return {@code this << n}
jaroslav@1258
  2056
     * @throws ArithmeticException if the shift distance is {@code
jaroslav@1258
  2057
     *         Integer.MIN_VALUE}.
jaroslav@1258
  2058
     * @see #shiftRight
jaroslav@1258
  2059
     */
jaroslav@1258
  2060
    public BigInteger shiftLeft(int n) {
jaroslav@1258
  2061
        if (signum == 0)
jaroslav@1258
  2062
            return ZERO;
jaroslav@1258
  2063
        if (n==0)
jaroslav@1258
  2064
            return this;
jaroslav@1258
  2065
        if (n<0) {
jaroslav@1258
  2066
            if (n == Integer.MIN_VALUE) {
jaroslav@1258
  2067
                throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported.");
jaroslav@1258
  2068
            } else {
jaroslav@1258
  2069
                return shiftRight(-n);
jaroslav@1258
  2070
            }
jaroslav@1258
  2071
        }
jaroslav@1258
  2072
jaroslav@1258
  2073
        int nInts = n >>> 5;
jaroslav@1258
  2074
        int nBits = n & 0x1f;
jaroslav@1258
  2075
        int magLen = mag.length;
jaroslav@1258
  2076
        int newMag[] = null;
jaroslav@1258
  2077
jaroslav@1258
  2078
        if (nBits == 0) {
jaroslav@1258
  2079
            newMag = new int[magLen + nInts];
jaroslav@1258
  2080
            for (int i=0; i<magLen; i++)
jaroslav@1258
  2081
                newMag[i] = mag[i];
jaroslav@1258
  2082
        } else {
jaroslav@1258
  2083
            int i = 0;
jaroslav@1258
  2084
            int nBits2 = 32 - nBits;
jaroslav@1258
  2085
            int highBits = mag[0] >>> nBits2;
jaroslav@1258
  2086
            if (highBits != 0) {
jaroslav@1258
  2087
                newMag = new int[magLen + nInts + 1];
jaroslav@1258
  2088
                newMag[i++] = highBits;
jaroslav@1258
  2089
            } else {
jaroslav@1258
  2090
                newMag = new int[magLen + nInts];
jaroslav@1258
  2091
            }
jaroslav@1258
  2092
            int j=0;
jaroslav@1258
  2093
            while (j < magLen-1)
jaroslav@1258
  2094
                newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
jaroslav@1258
  2095
            newMag[i] = mag[j] << nBits;
jaroslav@1258
  2096
        }
jaroslav@1258
  2097
jaroslav@1258
  2098
        return new BigInteger(newMag, signum);
jaroslav@1258
  2099
    }
jaroslav@1258
  2100
jaroslav@1258
  2101
    /**
jaroslav@1258
  2102
     * Returns a BigInteger whose value is {@code (this >> n)}.  Sign
jaroslav@1258
  2103
     * extension is performed.  The shift distance, {@code n}, may be
jaroslav@1258
  2104
     * negative, in which case this method performs a left shift.
jaroslav@1258
  2105
     * (Computes <tt>floor(this / 2<sup>n</sup>)</tt>.)
jaroslav@1258
  2106
     *
jaroslav@1258
  2107
     * @param  n shift distance, in bits.
jaroslav@1258
  2108
     * @return {@code this >> n}
jaroslav@1258
  2109
     * @throws ArithmeticException if the shift distance is {@code
jaroslav@1258
  2110
     *         Integer.MIN_VALUE}.
jaroslav@1258
  2111
     * @see #shiftLeft
jaroslav@1258
  2112
     */
jaroslav@1258
  2113
    public BigInteger shiftRight(int n) {
jaroslav@1258
  2114
        if (n==0)
jaroslav@1258
  2115
            return this;
jaroslav@1258
  2116
        if (n<0) {
jaroslav@1258
  2117
            if (n == Integer.MIN_VALUE) {
jaroslav@1258
  2118
                throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported.");
jaroslav@1258
  2119
            } else {
jaroslav@1258
  2120
                return shiftLeft(-n);
jaroslav@1258
  2121
            }
jaroslav@1258
  2122
        }
jaroslav@1258
  2123
jaroslav@1258
  2124
        int nInts = n >>> 5;
jaroslav@1258
  2125
        int nBits = n & 0x1f;
jaroslav@1258
  2126
        int magLen = mag.length;
jaroslav@1258
  2127
        int newMag[] = null;
jaroslav@1258
  2128
jaroslav@1258
  2129
        // Special case: entire contents shifted off the end
jaroslav@1258
  2130
        if (nInts >= magLen)
jaroslav@1258
  2131
            return (signum >= 0 ? ZERO : negConst[1]);
jaroslav@1258
  2132
jaroslav@1258
  2133
        if (nBits == 0) {
jaroslav@1258
  2134
            int newMagLen = magLen - nInts;
jaroslav@1258
  2135
            newMag = new int[newMagLen];
jaroslav@1258
  2136
            for (int i=0; i<newMagLen; i++)
jaroslav@1258
  2137
                newMag[i] = mag[i];
jaroslav@1258
  2138
        } else {
jaroslav@1258
  2139
            int i = 0;
jaroslav@1258
  2140
            int highBits = mag[0] >>> nBits;
jaroslav@1258
  2141
            if (highBits != 0) {
jaroslav@1258
  2142
                newMag = new int[magLen - nInts];
jaroslav@1258
  2143
                newMag[i++] = highBits;
jaroslav@1258
  2144
            } else {
jaroslav@1258
  2145
                newMag = new int[magLen - nInts -1];
jaroslav@1258
  2146
            }
jaroslav@1258
  2147
jaroslav@1258
  2148
            int nBits2 = 32 - nBits;
jaroslav@1258
  2149
            int j=0;
jaroslav@1258
  2150
            while (j < magLen - nInts - 1)
jaroslav@1258
  2151
                newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
jaroslav@1258
  2152
        }
jaroslav@1258
  2153
jaroslav@1258
  2154
        if (signum < 0) {
jaroslav@1258
  2155
            // Find out whether any one-bits were shifted off the end.
jaroslav@1258
  2156
            boolean onesLost = false;
jaroslav@1258
  2157
            for (int i=magLen-1, j=magLen-nInts; i>=j && !onesLost; i--)
jaroslav@1258
  2158
                onesLost = (mag[i] != 0);
jaroslav@1258
  2159
            if (!onesLost && nBits != 0)
jaroslav@1258
  2160
                onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
jaroslav@1258
  2161
jaroslav@1258
  2162
            if (onesLost)
jaroslav@1258
  2163
                newMag = javaIncrement(newMag);
jaroslav@1258
  2164
        }
jaroslav@1258
  2165
jaroslav@1258
  2166
        return new BigInteger(newMag, signum);
jaroslav@1258
  2167
    }
jaroslav@1258
  2168
jaroslav@1258
  2169
    int[] javaIncrement(int[] val) {
jaroslav@1258
  2170
        int lastSum = 0;
jaroslav@1258
  2171
        for (int i=val.length-1;  i >= 0 && lastSum == 0; i--)
jaroslav@1258
  2172
            lastSum = (val[i] += 1);
jaroslav@1258
  2173
        if (lastSum == 0) {
jaroslav@1258
  2174
            val = new int[val.length+1];
jaroslav@1258
  2175
            val[0] = 1;
jaroslav@1258
  2176
        }
jaroslav@1258
  2177
        return val;
jaroslav@1258
  2178
    }
jaroslav@1258
  2179
jaroslav@1258
  2180
    // Bitwise Operations
jaroslav@1258
  2181
jaroslav@1258
  2182
    /**
jaroslav@1258
  2183
     * Returns a BigInteger whose value is {@code (this & val)}.  (This
jaroslav@1258
  2184
     * method returns a negative BigInteger if and only if this and val are
jaroslav@1258
  2185
     * both negative.)
jaroslav@1258
  2186
     *
jaroslav@1258
  2187
     * @param val value to be AND'ed with this BigInteger.
jaroslav@1258
  2188
     * @return {@code this & val}
jaroslav@1258
  2189
     */
jaroslav@1258
  2190
    public BigInteger and(BigInteger val) {
jaroslav@1258
  2191
        int[] result = new int[Math.max(intLength(), val.intLength())];
jaroslav@1258
  2192
        for (int i=0; i<result.length; i++)
jaroslav@1258
  2193
            result[i] = (getInt(result.length-i-1)
jaroslav@1258
  2194
                         & val.getInt(result.length-i-1));
jaroslav@1258
  2195
jaroslav@1258
  2196
        return valueOf(result);
jaroslav@1258
  2197
    }
jaroslav@1258
  2198
jaroslav@1258
  2199
    /**
jaroslav@1258
  2200
     * Returns a BigInteger whose value is {@code (this | val)}.  (This method
jaroslav@1258
  2201
     * returns a negative BigInteger if and only if either this or val is
jaroslav@1258
  2202
     * negative.)
jaroslav@1258
  2203
     *
jaroslav@1258
  2204
     * @param val value to be OR'ed with this BigInteger.
jaroslav@1258
  2205
     * @return {@code this | val}
jaroslav@1258
  2206
     */
jaroslav@1258
  2207
    public BigInteger or(BigInteger val) {
jaroslav@1258
  2208
        int[] result = new int[Math.max(intLength(), val.intLength())];
jaroslav@1258
  2209
        for (int i=0; i<result.length; i++)
jaroslav@1258
  2210
            result[i] = (getInt(result.length-i-1)
jaroslav@1258
  2211
                         | val.getInt(result.length-i-1));
jaroslav@1258
  2212
jaroslav@1258
  2213
        return valueOf(result);
jaroslav@1258
  2214
    }
jaroslav@1258
  2215
jaroslav@1258
  2216
    /**
jaroslav@1258
  2217
     * Returns a BigInteger whose value is {@code (this ^ val)}.  (This method
jaroslav@1258
  2218
     * returns a negative BigInteger if and only if exactly one of this and
jaroslav@1258
  2219
     * val are negative.)
jaroslav@1258
  2220
     *
jaroslav@1258
  2221
     * @param val value to be XOR'ed with this BigInteger.
jaroslav@1258
  2222
     * @return {@code this ^ val}
jaroslav@1258
  2223
     */
jaroslav@1258
  2224
    public BigInteger xor(BigInteger val) {
jaroslav@1258
  2225
        int[] result = new int[Math.max(intLength(), val.intLength())];
jaroslav@1258
  2226
        for (int i=0; i<result.length; i++)
jaroslav@1258
  2227
            result[i] = (getInt(result.length-i-1)
jaroslav@1258
  2228
                         ^ val.getInt(result.length-i-1));
jaroslav@1258
  2229
jaroslav@1258
  2230
        return valueOf(result);
jaroslav@1258
  2231
    }
jaroslav@1258
  2232
jaroslav@1258
  2233
    /**
jaroslav@1258
  2234
     * Returns a BigInteger whose value is {@code (~this)}.  (This method
jaroslav@1258
  2235
     * returns a negative value if and only if this BigInteger is
jaroslav@1258
  2236
     * non-negative.)
jaroslav@1258
  2237
     *
jaroslav@1258
  2238
     * @return {@code ~this}
jaroslav@1258
  2239
     */
jaroslav@1258
  2240
    public BigInteger not() {
jaroslav@1258
  2241
        int[] result = new int[intLength()];
jaroslav@1258
  2242
        for (int i=0; i<result.length; i++)
jaroslav@1258
  2243
            result[i] = ~getInt(result.length-i-1);
jaroslav@1258
  2244
jaroslav@1258
  2245
        return valueOf(result);
jaroslav@1258
  2246
    }
jaroslav@1258
  2247
jaroslav@1258
  2248
    /**
jaroslav@1258
  2249
     * Returns a BigInteger whose value is {@code (this & ~val)}.  This
jaroslav@1258
  2250
     * method, which is equivalent to {@code and(val.not())}, is provided as
jaroslav@1258
  2251
     * a convenience for masking operations.  (This method returns a negative
jaroslav@1258
  2252
     * BigInteger if and only if {@code this} is negative and {@code val} is
jaroslav@1258
  2253
     * positive.)
jaroslav@1258
  2254
     *
jaroslav@1258
  2255
     * @param val value to be complemented and AND'ed with this BigInteger.
jaroslav@1258
  2256
     * @return {@code this & ~val}
jaroslav@1258
  2257
     */
jaroslav@1258
  2258
    public BigInteger andNot(BigInteger val) {
jaroslav@1258
  2259
        int[] result = new int[Math.max(intLength(), val.intLength())];
jaroslav@1258
  2260
        for (int i=0; i<result.length; i++)
jaroslav@1258
  2261
            result[i] = (getInt(result.length-i-1)
jaroslav@1258
  2262
                         & ~val.getInt(result.length-i-1));
jaroslav@1258
  2263
jaroslav@1258
  2264
        return valueOf(result);
jaroslav@1258
  2265
    }
jaroslav@1258
  2266
jaroslav@1258
  2267
jaroslav@1258
  2268
    // Single Bit Operations
jaroslav@1258
  2269
jaroslav@1258
  2270
    /**
jaroslav@1258
  2271
     * Returns {@code true} if and only if the designated bit is set.
jaroslav@1258
  2272
     * (Computes {@code ((this & (1<<n)) != 0)}.)
jaroslav@1258
  2273
     *
jaroslav@1258
  2274
     * @param  n index of bit to test.
jaroslav@1258
  2275
     * @return {@code true} if and only if the designated bit is set.
jaroslav@1258
  2276
     * @throws ArithmeticException {@code n} is negative.
jaroslav@1258
  2277
     */
jaroslav@1258
  2278
    public boolean testBit(int n) {
jaroslav@1258
  2279
        if (n<0)
jaroslav@1258
  2280
            throw new ArithmeticException("Negative bit address");
jaroslav@1258
  2281
jaroslav@1258
  2282
        return (getInt(n >>> 5) & (1 << (n & 31))) != 0;
jaroslav@1258
  2283
    }
jaroslav@1258
  2284
jaroslav@1258
  2285
    /**
jaroslav@1258
  2286
     * Returns a BigInteger whose value is equivalent to this BigInteger
jaroslav@1258
  2287
     * with the designated bit set.  (Computes {@code (this | (1<<n))}.)
jaroslav@1258
  2288
     *
jaroslav@1258
  2289
     * @param  n index of bit to set.
jaroslav@1258
  2290
     * @return {@code this | (1<<n)}
jaroslav@1258
  2291
     * @throws ArithmeticException {@code n} is negative.
jaroslav@1258
  2292
     */
jaroslav@1258
  2293
    public BigInteger setBit(int n) {
jaroslav@1258
  2294
        if (n<0)
jaroslav@1258
  2295
            throw new ArithmeticException("Negative bit address");
jaroslav@1258
  2296
jaroslav@1258
  2297
        int intNum = n >>> 5;
jaroslav@1258
  2298
        int[] result = new int[Math.max(intLength(), intNum+2)];
jaroslav@1258
  2299
jaroslav@1258
  2300
        for (int i=0; i<result.length; i++)
jaroslav@1258
  2301
            result[result.length-i-1] = getInt(i);
jaroslav@1258
  2302
jaroslav@1258
  2303
        result[result.length-intNum-1] |= (1 << (n & 31));
jaroslav@1258
  2304
jaroslav@1258
  2305
        return valueOf(result);
jaroslav@1258
  2306
    }
jaroslav@1258
  2307
jaroslav@1258
  2308
    /**
jaroslav@1258
  2309
     * Returns a BigInteger whose value is equivalent to this BigInteger
jaroslav@1258
  2310
     * with the designated bit cleared.
jaroslav@1258
  2311
     * (Computes {@code (this & ~(1<<n))}.)
jaroslav@1258
  2312
     *
jaroslav@1258
  2313
     * @param  n index of bit to clear.
jaroslav@1258
  2314
     * @return {@code this & ~(1<<n)}
jaroslav@1258
  2315
     * @throws ArithmeticException {@code n} is negative.
jaroslav@1258
  2316
     */
jaroslav@1258
  2317
    public BigInteger clearBit(int n) {
jaroslav@1258
  2318
        if (n<0)
jaroslav@1258
  2319
            throw new ArithmeticException("Negative bit address");
jaroslav@1258
  2320
jaroslav@1258
  2321
        int intNum = n >>> 5;
jaroslav@1258
  2322
        int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)];
jaroslav@1258
  2323
jaroslav@1258
  2324
        for (int i=0; i<result.length; i++)
jaroslav@1258
  2325
            result[result.length-i-1] = getInt(i);
jaroslav@1258
  2326
jaroslav@1258
  2327
        result[result.length-intNum-1] &= ~(1 << (n & 31));
jaroslav@1258
  2328
jaroslav@1258
  2329
        return valueOf(result);
jaroslav@1258
  2330
    }
jaroslav@1258
  2331
jaroslav@1258
  2332
    /**
jaroslav@1258
  2333
     * Returns a BigInteger whose value is equivalent to this BigInteger
jaroslav@1258
  2334
     * with the designated bit flipped.
jaroslav@1258
  2335
     * (Computes {@code (this ^ (1<<n))}.)
jaroslav@1258
  2336
     *
jaroslav@1258
  2337
     * @param  n index of bit to flip.
jaroslav@1258
  2338
     * @return {@code this ^ (1<<n)}
jaroslav@1258
  2339
     * @throws ArithmeticException {@code n} is negative.
jaroslav@1258
  2340
     */
jaroslav@1258
  2341
    public BigInteger flipBit(int n) {
jaroslav@1258
  2342
        if (n<0)
jaroslav@1258
  2343
            throw new ArithmeticException("Negative bit address");
jaroslav@1258
  2344
jaroslav@1258
  2345
        int intNum = n >>> 5;
jaroslav@1258
  2346
        int[] result = new int[Math.max(intLength(), intNum+2)];
jaroslav@1258
  2347
jaroslav@1258
  2348
        for (int i=0; i<result.length; i++)
jaroslav@1258
  2349
            result[result.length-i-1] = getInt(i);
jaroslav@1258
  2350
jaroslav@1258
  2351
        result[result.length-intNum-1] ^= (1 << (n & 31));
jaroslav@1258
  2352
jaroslav@1258
  2353
        return valueOf(result);
jaroslav@1258
  2354
    }
jaroslav@1258
  2355
jaroslav@1258
  2356
    /**
jaroslav@1258
  2357
     * Returns the index of the rightmost (lowest-order) one bit in this
jaroslav@1258
  2358
     * BigInteger (the number of zero bits to the right of the rightmost
jaroslav@1258
  2359
     * one bit).  Returns -1 if this BigInteger contains no one bits.
jaroslav@1258
  2360
     * (Computes {@code (this==0? -1 : log2(this & -this))}.)
jaroslav@1258
  2361
     *
jaroslav@1258
  2362
     * @return index of the rightmost one bit in this BigInteger.
jaroslav@1258
  2363
     */
jaroslav@1258
  2364
    public int getLowestSetBit() {
jaroslav@1258
  2365
        @SuppressWarnings("deprecation") int lsb = lowestSetBit - 2;
jaroslav@1258
  2366
        if (lsb == -2) {  // lowestSetBit not initialized yet
jaroslav@1258
  2367
            lsb = 0;
jaroslav@1258
  2368
            if (signum == 0) {
jaroslav@1258
  2369
                lsb -= 1;
jaroslav@1258
  2370
            } else {
jaroslav@1258
  2371
                // Search for lowest order nonzero int
jaroslav@1258
  2372
                int i,b;
jaroslav@1258
  2373
                for (i=0; (b = getInt(i))==0; i++)
jaroslav@1258
  2374
                    ;
jaroslav@1258
  2375
                lsb += (i << 5) + Integer.numberOfTrailingZeros(b);
jaroslav@1258
  2376
            }
jaroslav@1258
  2377
            lowestSetBit = lsb + 2;
jaroslav@1258
  2378
        }
jaroslav@1258
  2379
        return lsb;
jaroslav@1258
  2380
    }
jaroslav@1258
  2381
jaroslav@1258
  2382
jaroslav@1258
  2383
    // Miscellaneous Bit Operations
jaroslav@1258
  2384
jaroslav@1258
  2385
    /**
jaroslav@1258
  2386
     * Returns the number of bits in the minimal two's-complement
jaroslav@1258
  2387
     * representation of this BigInteger, <i>excluding</i> a sign bit.
jaroslav@1258
  2388
     * For positive BigIntegers, this is equivalent to the number of bits in
jaroslav@1258
  2389
     * the ordinary binary representation.  (Computes
jaroslav@1258
  2390
     * {@code (ceil(log2(this < 0 ? -this : this+1)))}.)
jaroslav@1258
  2391
     *
jaroslav@1258
  2392
     * @return number of bits in the minimal two's-complement
jaroslav@1258
  2393
     *         representation of this BigInteger, <i>excluding</i> a sign bit.
jaroslav@1258
  2394
     */
jaroslav@1258
  2395
    public int bitLength() {
jaroslav@1258
  2396
        @SuppressWarnings("deprecation") int n = bitLength - 1;
jaroslav@1258
  2397
        if (n == -1) { // bitLength not initialized yet
jaroslav@1258
  2398
            int[] m = mag;
jaroslav@1258
  2399
            int len = m.length;
jaroslav@1258
  2400
            if (len == 0) {
jaroslav@1258
  2401
                n = 0; // offset by one to initialize
jaroslav@1258
  2402
            }  else {
jaroslav@1258
  2403
                // Calculate the bit length of the magnitude
jaroslav@1258
  2404
                int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]);
jaroslav@1258
  2405
                 if (signum < 0) {
jaroslav@1258
  2406
                     // Check if magnitude is a power of two
jaroslav@1258
  2407
                     boolean pow2 = (Integer.bitCount(mag[0]) == 1);
jaroslav@1258
  2408
                     for(int i=1; i< len && pow2; i++)
jaroslav@1258
  2409
                         pow2 = (mag[i] == 0);
jaroslav@1258
  2410
jaroslav@1258
  2411
                     n = (pow2 ? magBitLength -1 : magBitLength);
jaroslav@1258
  2412
                 } else {
jaroslav@1258
  2413
                     n = magBitLength;
jaroslav@1258
  2414
                 }
jaroslav@1258
  2415
            }
jaroslav@1258
  2416
            bitLength = n + 1;
jaroslav@1258
  2417
        }
jaroslav@1258
  2418
        return n;
jaroslav@1258
  2419
    }
jaroslav@1258
  2420
jaroslav@1258
  2421
    /**
jaroslav@1258
  2422
     * Returns the number of bits in the two's complement representation
jaroslav@1258
  2423
     * of this BigInteger that differ from its sign bit.  This method is
jaroslav@1258
  2424
     * useful when implementing bit-vector style sets atop BigIntegers.
jaroslav@1258
  2425
     *
jaroslav@1258
  2426
     * @return number of bits in the two's complement representation
jaroslav@1258
  2427
     *         of this BigInteger that differ from its sign bit.
jaroslav@1258
  2428
     */
jaroslav@1258
  2429
    public int bitCount() {
jaroslav@1258
  2430
        @SuppressWarnings("deprecation") int bc = bitCount - 1;
jaroslav@1258
  2431
        if (bc == -1) {  // bitCount not initialized yet
jaroslav@1258
  2432
            bc = 0;      // offset by one to initialize
jaroslav@1258
  2433
            // Count the bits in the magnitude
jaroslav@1258
  2434
            for (int i=0; i<mag.length; i++)
jaroslav@1258
  2435
                bc += Integer.bitCount(mag[i]);
jaroslav@1258
  2436
            if (signum < 0) {
jaroslav@1258
  2437
                // Count the trailing zeros in the magnitude
jaroslav@1258
  2438
                int magTrailingZeroCount = 0, j;
jaroslav@1258
  2439
                for (j=mag.length-1; mag[j]==0; j--)
jaroslav@1258
  2440
                    magTrailingZeroCount += 32;
jaroslav@1258
  2441
                magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]);
jaroslav@1258
  2442
                bc += magTrailingZeroCount - 1;
jaroslav@1258
  2443
            }
jaroslav@1258
  2444
            bitCount = bc + 1;
jaroslav@1258
  2445
        }
jaroslav@1258
  2446
        return bc;
jaroslav@1258
  2447
    }
jaroslav@1258
  2448
jaroslav@1258
  2449
    // Primality Testing
jaroslav@1258
  2450
jaroslav@1258
  2451
    /**
jaroslav@1258
  2452
     * Returns {@code true} if this BigInteger is probably prime,
jaroslav@1258
  2453
     * {@code false} if it's definitely composite.  If
jaroslav@1258
  2454
     * {@code certainty} is &le; 0, {@code true} is
jaroslav@1258
  2455
     * returned.
jaroslav@1258
  2456
     *
jaroslav@1258
  2457
     * @param  certainty a measure of the uncertainty that the caller is
jaroslav@1258
  2458
     *         willing to tolerate: if the call returns {@code true}
jaroslav@1258
  2459
     *         the probability that this BigInteger is prime exceeds
jaroslav@1258
  2460
     *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
jaroslav@1258
  2461
     *         this method is proportional to the value of this parameter.
jaroslav@1258
  2462
     * @return {@code true} if this BigInteger is probably prime,
jaroslav@1258
  2463
     *         {@code false} if it's definitely composite.
jaroslav@1258
  2464
     */
jaroslav@1258
  2465
    public boolean isProbablePrime(int certainty) {
jaroslav@1258
  2466
        if (certainty <= 0)
jaroslav@1258
  2467
            return true;
jaroslav@1258
  2468
        BigInteger w = this.abs();
jaroslav@1258
  2469
        if (w.equals(TWO))
jaroslav@1258
  2470
            return true;
jaroslav@1258
  2471
        if (!w.testBit(0) || w.equals(ONE))
jaroslav@1258
  2472
            return false;
jaroslav@1258
  2473
jaroslav@1258
  2474
        return w.primeToCertainty(certainty, null);
jaroslav@1258
  2475
    }
jaroslav@1258
  2476
jaroslav@1258
  2477
    // Comparison Operations
jaroslav@1258
  2478
jaroslav@1258
  2479
    /**
jaroslav@1258
  2480
     * Compares this BigInteger with the specified BigInteger.  This
jaroslav@1258
  2481
     * method is provided in preference to individual methods for each
jaroslav@1258
  2482
     * of the six boolean comparison operators ({@literal <}, ==,
jaroslav@1258
  2483
     * {@literal >}, {@literal >=}, !=, {@literal <=}).  The suggested
jaroslav@1258
  2484
     * idiom for performing these comparisons is: {@code
jaroslav@1258
  2485
     * (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
jaroslav@1258
  2486
     * &lt;<i>op</i>&gt; is one of the six comparison operators.
jaroslav@1258
  2487
     *
jaroslav@1258
  2488
     * @param  val BigInteger to which this BigInteger is to be compared.
jaroslav@1258
  2489
     * @return -1, 0 or 1 as this BigInteger is numerically less than, equal
jaroslav@1258
  2490
     *         to, or greater than {@code val}.
jaroslav@1258
  2491
     */
jaroslav@1258
  2492
    public int compareTo(BigInteger val) {
jaroslav@1258
  2493
        if (signum == val.signum) {
jaroslav@1258
  2494
            switch (signum) {
jaroslav@1258
  2495
            case 1:
jaroslav@1258
  2496
                return compareMagnitude(val);
jaroslav@1258
  2497
            case -1:
jaroslav@1258
  2498
                return val.compareMagnitude(this);
jaroslav@1258
  2499
            default:
jaroslav@1258
  2500
                return 0;
jaroslav@1258
  2501
            }
jaroslav@1258
  2502
        }
jaroslav@1258
  2503
        return signum > val.signum ? 1 : -1;
jaroslav@1258
  2504
    }
jaroslav@1258
  2505
jaroslav@1258
  2506
    /**
jaroslav@1258
  2507
     * Compares the magnitude array of this BigInteger with the specified
jaroslav@1258
  2508
     * BigInteger's. This is the version of compareTo ignoring sign.
jaroslav@1258
  2509
     *
jaroslav@1258
  2510
     * @param val BigInteger whose magnitude array to be compared.
jaroslav@1258
  2511
     * @return -1, 0 or 1 as this magnitude array is less than, equal to or
jaroslav@1258
  2512
     *         greater than the magnitude aray for the specified BigInteger's.
jaroslav@1258
  2513
     */
jaroslav@1258
  2514
    final int compareMagnitude(BigInteger val) {
jaroslav@1258
  2515
        int[] m1 = mag;
jaroslav@1258
  2516
        int len1 = m1.length;
jaroslav@1258
  2517
        int[] m2 = val.mag;
jaroslav@1258
  2518
        int len2 = m2.length;
jaroslav@1258
  2519
        if (len1 < len2)
jaroslav@1258
  2520
            return -1;
jaroslav@1258
  2521
        if (len1 > len2)
jaroslav@1258
  2522
            return 1;
jaroslav@1258
  2523
        for (int i = 0; i < len1; i++) {
jaroslav@1258
  2524
            int a = m1[i];
jaroslav@1258
  2525
            int b = m2[i];
jaroslav@1258
  2526
            if (a != b)
jaroslav@1258
  2527
                return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
jaroslav@1258
  2528
        }
jaroslav@1258
  2529
        return 0;
jaroslav@1258
  2530
    }
jaroslav@1258
  2531
jaroslav@1258
  2532
    /**
jaroslav@1258
  2533
     * Compares this BigInteger with the specified Object for equality.
jaroslav@1258
  2534
     *
jaroslav@1258
  2535
     * @param  x Object to which this BigInteger is to be compared.
jaroslav@1258
  2536
     * @return {@code true} if and only if the specified Object is a
jaroslav@1258
  2537
     *         BigInteger whose value is numerically equal to this BigInteger.
jaroslav@1258
  2538
     */
jaroslav@1258
  2539
    public boolean equals(Object x) {
jaroslav@1258
  2540
        // This test is just an optimization, which may or may not help
jaroslav@1258
  2541
        if (x == this)
jaroslav@1258
  2542
            return true;
jaroslav@1258
  2543
jaroslav@1258
  2544
        if (!(x instanceof BigInteger))
jaroslav@1258
  2545
            return false;
jaroslav@1258
  2546
jaroslav@1258
  2547
        BigInteger xInt = (BigInteger) x;
jaroslav@1258
  2548
        if (xInt.signum != signum)
jaroslav@1258
  2549
            return false;
jaroslav@1258
  2550
jaroslav@1258
  2551
        int[] m = mag;
jaroslav@1258
  2552
        int len = m.length;
jaroslav@1258
  2553
        int[] xm = xInt.mag;
jaroslav@1258
  2554
        if (len != xm.length)
jaroslav@1258
  2555
            return false;
jaroslav@1258
  2556
jaroslav@1258
  2557
        for (int i = 0; i < len; i++)
jaroslav@1258
  2558
            if (xm[i] != m[i])
jaroslav@1258
  2559
                return false;
jaroslav@1258
  2560
jaroslav@1258
  2561
        return true;
jaroslav@1258
  2562
    }
jaroslav@1258
  2563
jaroslav@1258
  2564
    /**
jaroslav@1258
  2565
     * Returns the minimum of this BigInteger and {@code val}.
jaroslav@1258
  2566
     *
jaroslav@1258
  2567
     * @param  val value with which the minimum is to be computed.
jaroslav@1258
  2568
     * @return the BigInteger whose value is the lesser of this BigInteger and
jaroslav@1258
  2569
     *         {@code val}.  If they are equal, either may be returned.
jaroslav@1258
  2570
     */
jaroslav@1258
  2571
    public BigInteger min(BigInteger val) {
jaroslav@1258
  2572
        return (compareTo(val)<0 ? this : val);
jaroslav@1258
  2573
    }
jaroslav@1258
  2574
jaroslav@1258
  2575
    /**
jaroslav@1258
  2576
     * Returns the maximum of this BigInteger and {@code val}.
jaroslav@1258
  2577
     *
jaroslav@1258
  2578
     * @param  val value with which the maximum is to be computed.
jaroslav@1258
  2579
     * @return the BigInteger whose value is the greater of this and
jaroslav@1258
  2580
     *         {@code val}.  If they are equal, either may be returned.
jaroslav@1258
  2581
     */
jaroslav@1258
  2582
    public BigInteger max(BigInteger val) {
jaroslav@1258
  2583
        return (compareTo(val)>0 ? this : val);
jaroslav@1258
  2584
    }
jaroslav@1258
  2585
jaroslav@1258
  2586
jaroslav@1258
  2587
    // Hash Function
jaroslav@1258
  2588
jaroslav@1258
  2589
    /**
jaroslav@1258
  2590
     * Returns the hash code for this BigInteger.
jaroslav@1258
  2591
     *
jaroslav@1258
  2592
     * @return hash code for this BigInteger.
jaroslav@1258
  2593
     */
jaroslav@1258
  2594
    public int hashCode() {
jaroslav@1258
  2595
        int hashCode = 0;
jaroslav@1258
  2596
jaroslav@1258
  2597
        for (int i=0; i<mag.length; i++)
jaroslav@1258
  2598
            hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
jaroslav@1258
  2599
jaroslav@1258
  2600
        return hashCode * signum;
jaroslav@1258
  2601
    }
jaroslav@1258
  2602
jaroslav@1258
  2603
    /**
jaroslav@1258
  2604
     * Returns the String representation of this BigInteger in the
jaroslav@1258
  2605
     * given radix.  If the radix is outside the range from {@link
jaroslav@1258
  2606
     * Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
jaroslav@1258
  2607
     * it will default to 10 (as is the case for
jaroslav@1258
  2608
     * {@code Integer.toString}).  The digit-to-character mapping
jaroslav@1258
  2609
     * provided by {@code Character.forDigit} is used, and a minus
jaroslav@1258
  2610
     * sign is prepended if appropriate.  (This representation is
jaroslav@1258
  2611
     * compatible with the {@link #BigInteger(String, int) (String,
jaroslav@1258
  2612
     * int)} constructor.)
jaroslav@1258
  2613
     *
jaroslav@1258
  2614
     * @param  radix  radix of the String representation.
jaroslav@1258
  2615
     * @return String representation of this BigInteger in the given radix.
jaroslav@1258
  2616
     * @see    Integer#toString
jaroslav@1258
  2617
     * @see    Character#forDigit
jaroslav@1258
  2618
     * @see    #BigInteger(java.lang.String, int)
jaroslav@1258
  2619
     */
jaroslav@1258
  2620
    public String toString(int radix) {
jaroslav@1258
  2621
        if (signum == 0)
jaroslav@1258
  2622
            return "0";
jaroslav@1258
  2623
        if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
jaroslav@1258
  2624
            radix = 10;
jaroslav@1258
  2625
jaroslav@1258
  2626
        // Compute upper bound on number of digit groups and allocate space
jaroslav@1258
  2627
        int maxNumDigitGroups = (4*mag.length + 6)/7;
jaroslav@1258
  2628
        String digitGroup[] = new String[maxNumDigitGroups];
jaroslav@1258
  2629
jaroslav@1258
  2630
        // Translate number to string, a digit group at a time
jaroslav@1258
  2631
        BigInteger tmp = this.abs();
jaroslav@1258
  2632
        int numGroups = 0;
jaroslav@1258
  2633
        while (tmp.signum != 0) {
jaroslav@1258
  2634
            BigInteger d = longRadix[radix];
jaroslav@1258
  2635
jaroslav@1258
  2636
            MutableBigInteger q = new MutableBigInteger(),
jaroslav@1258
  2637
                              a = new MutableBigInteger(tmp.mag),
jaroslav@1258
  2638
                              b = new MutableBigInteger(d.mag);
jaroslav@1258
  2639
            MutableBigInteger r = a.divide(b, q);
jaroslav@1258
  2640
            BigInteger q2 = q.toBigInteger(tmp.signum * d.signum);
jaroslav@1258
  2641
            BigInteger r2 = r.toBigInteger(tmp.signum * d.signum);
jaroslav@1258
  2642
jaroslav@1258
  2643
            digitGroup[numGroups++] = Long.toString(r2.longValue(), radix);
jaroslav@1258
  2644
            tmp = q2;
jaroslav@1258
  2645
        }
jaroslav@1258
  2646
jaroslav@1258
  2647
        // Put sign (if any) and first digit group into result buffer
jaroslav@1258
  2648
        StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1);
jaroslav@1258
  2649
        if (signum<0)
jaroslav@1258
  2650
            buf.append('-');
jaroslav@1258
  2651
        buf.append(digitGroup[numGroups-1]);
jaroslav@1258
  2652
jaroslav@1258
  2653
        // Append remaining digit groups padded with leading zeros
jaroslav@1258
  2654
        for (int i=numGroups-2; i>=0; i--) {
jaroslav@1258
  2655
            // Prepend (any) leading zeros for this digit group
jaroslav@1258
  2656
            int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length();
jaroslav@1258
  2657
            if (numLeadingZeros != 0)
jaroslav@1258
  2658
                buf.append(zeros[numLeadingZeros]);
jaroslav@1258
  2659
            buf.append(digitGroup[i]);
jaroslav@1258
  2660
        }
jaroslav@1258
  2661
        return buf.toString();
jaroslav@1258
  2662
    }
jaroslav@1258
  2663
jaroslav@1258
  2664
    /* zero[i] is a string of i consecutive zeros. */
jaroslav@1258
  2665
    private static String zeros[] = new String[64];
jaroslav@1258
  2666
    static {
jaroslav@1258
  2667
        zeros[63] =
jaroslav@1258
  2668
            "000000000000000000000000000000000000000000000000000000000000000";
jaroslav@1258
  2669
        for (int i=0; i<63; i++)
jaroslav@1258
  2670
            zeros[i] = zeros[63].substring(0, i);
jaroslav@1258
  2671
    }
jaroslav@1258
  2672
jaroslav@1258
  2673
    /**
jaroslav@1258
  2674
     * Returns the decimal String representation of this BigInteger.
jaroslav@1258
  2675
     * The digit-to-character mapping provided by
jaroslav@1258
  2676
     * {@code Character.forDigit} is used, and a minus sign is
jaroslav@1258
  2677
     * prepended if appropriate.  (This representation is compatible
jaroslav@1258
  2678
     * with the {@link #BigInteger(String) (String)} constructor, and
jaroslav@1258
  2679
     * allows for String concatenation with Java's + operator.)
jaroslav@1258
  2680
     *
jaroslav@1258
  2681
     * @return decimal String representation of this BigInteger.
jaroslav@1258
  2682
     * @see    Character#forDigit
jaroslav@1258
  2683
     * @see    #BigInteger(java.lang.String)
jaroslav@1258
  2684
     */
jaroslav@1258
  2685
    public String toString() {
jaroslav@1258
  2686
        return toString(10);
jaroslav@1258
  2687
    }
jaroslav@1258
  2688
jaroslav@1258
  2689
    /**
jaroslav@1258
  2690
     * Returns a byte array containing the two's-complement
jaroslav@1258
  2691
     * representation of this BigInteger.  The byte array will be in
jaroslav@1258
  2692
     * <i>big-endian</i> byte-order: the most significant byte is in
jaroslav@1258
  2693
     * the zeroth element.  The array will contain the minimum number
jaroslav@1258
  2694
     * of bytes required to represent this BigInteger, including at
jaroslav@1258
  2695
     * least one sign bit, which is {@code (ceil((this.bitLength() +
jaroslav@1258
  2696
     * 1)/8))}.  (This representation is compatible with the
jaroslav@1258
  2697
     * {@link #BigInteger(byte[]) (byte[])} constructor.)
jaroslav@1258
  2698
     *
jaroslav@1258
  2699
     * @return a byte array containing the two's-complement representation of
jaroslav@1258
  2700
     *         this BigInteger.
jaroslav@1258
  2701
     * @see    #BigInteger(byte[])
jaroslav@1258
  2702
     */
jaroslav@1258
  2703
    public byte[] toByteArray() {
jaroslav@1258
  2704
        int byteLen = bitLength()/8 + 1;
jaroslav@1258
  2705
        byte[] byteArray = new byte[byteLen];
jaroslav@1258
  2706
jaroslav@1258
  2707
        for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i>=0; i--) {
jaroslav@1258
  2708
            if (bytesCopied == 4) {
jaroslav@1258
  2709
                nextInt = getInt(intIndex++);
jaroslav@1258
  2710
                bytesCopied = 1;
jaroslav@1258
  2711
            } else {
jaroslav@1258
  2712
                nextInt >>>= 8;
jaroslav@1258
  2713
                bytesCopied++;
jaroslav@1258
  2714
            }
jaroslav@1258
  2715
            byteArray[i] = (byte)nextInt;
jaroslav@1258
  2716
        }
jaroslav@1258
  2717
        return byteArray;
jaroslav@1258
  2718
    }
jaroslav@1258
  2719
jaroslav@1258
  2720
    /**
jaroslav@1258
  2721
     * Converts this BigInteger to an {@code int}.  This
jaroslav@1258
  2722
     * conversion is analogous to a
jaroslav@1258
  2723
     * <i>narrowing primitive conversion</i> from {@code long} to
jaroslav@1258
  2724
     * {@code int} as defined in section 5.1.3 of
jaroslav@1258
  2725
     * <cite>The Java&trade; Language Specification</cite>:
jaroslav@1258
  2726
     * if this BigInteger is too big to fit in an
jaroslav@1258
  2727
     * {@code int}, only the low-order 32 bits are returned.
jaroslav@1258
  2728
     * Note that this conversion can lose information about the
jaroslav@1258
  2729
     * overall magnitude of the BigInteger value as well as return a
jaroslav@1258
  2730
     * result with the opposite sign.
jaroslav@1258
  2731
     *
jaroslav@1258
  2732
     * @return this BigInteger converted to an {@code int}.
jaroslav@1258
  2733
     */
jaroslav@1258
  2734
    public int intValue() {
jaroslav@1258
  2735
        int result = 0;
jaroslav@1258
  2736
        result = getInt(0);
jaroslav@1258
  2737
        return result;
jaroslav@1258
  2738
    }
jaroslav@1258
  2739
jaroslav@1258
  2740
    /**
jaroslav@1258
  2741
     * Converts this BigInteger to a {@code long}.  This
jaroslav@1258
  2742
     * conversion is analogous to a
jaroslav@1258
  2743
     * <i>narrowing primitive conversion</i> from {@code long} to
jaroslav@1258
  2744
     * {@code int} as defined in section 5.1.3 of
jaroslav@1258
  2745
     * <cite>The Java&trade; Language Specification</cite>:
jaroslav@1258
  2746
     * if this BigInteger is too big to fit in a
jaroslav@1258
  2747
     * {@code long}, only the low-order 64 bits are returned.
jaroslav@1258
  2748
     * Note that this conversion can lose information about the
jaroslav@1258
  2749
     * overall magnitude of the BigInteger value as well as return a
jaroslav@1258
  2750
     * result with the opposite sign.
jaroslav@1258
  2751
     *
jaroslav@1258
  2752
     * @return this BigInteger converted to a {@code long}.
jaroslav@1258
  2753
     */
jaroslav@1258
  2754
    public long longValue() {
jaroslav@1258
  2755
        long result = 0;
jaroslav@1258
  2756
jaroslav@1258
  2757
        for (int i=1; i>=0; i--)
jaroslav@1258
  2758
            result = (result << 32) + (getInt(i) & LONG_MASK);
jaroslav@1258
  2759
        return result;
jaroslav@1258
  2760
    }
jaroslav@1258
  2761
jaroslav@1258
  2762
    /**
jaroslav@1258
  2763
     * Converts this BigInteger to a {@code float}.  This
jaroslav@1258
  2764
     * conversion is similar to the
jaroslav@1258
  2765
     * <i>narrowing primitive conversion</i> from {@code double} to
jaroslav@1258
  2766
     * {@code float} as defined in section 5.1.3 of
jaroslav@1258
  2767
     * <cite>The Java&trade; Language Specification</cite>:
jaroslav@1258
  2768
     * if this BigInteger has too great a magnitude
jaroslav@1258
  2769
     * to represent as a {@code float}, it will be converted to
jaroslav@1258
  2770
     * {@link Float#NEGATIVE_INFINITY} or {@link
jaroslav@1258
  2771
     * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
jaroslav@1258
  2772
     * the return value is finite, this conversion can lose
jaroslav@1258
  2773
     * information about the precision of the BigInteger value.
jaroslav@1258
  2774
     *
jaroslav@1258
  2775
     * @return this BigInteger converted to a {@code float}.
jaroslav@1258
  2776
     */
jaroslav@1258
  2777
    public float floatValue() {
jaroslav@1258
  2778
        // Somewhat inefficient, but guaranteed to work.
jaroslav@1258
  2779
        return Float.parseFloat(this.toString());
jaroslav@1258
  2780
    }
jaroslav@1258
  2781
jaroslav@1258
  2782
    /**
jaroslav@1258
  2783
     * Converts this BigInteger to a {@code double}.  This
jaroslav@1258
  2784
     * conversion is similar to the
jaroslav@1258
  2785
     * <i>narrowing primitive conversion</i> from {@code double} to
jaroslav@1258
  2786
     * {@code float} as defined in section 5.1.3 of
jaroslav@1258
  2787
     * <cite>The Java&trade; Language Specification</cite>:
jaroslav@1258
  2788
     * if this BigInteger has too great a magnitude
jaroslav@1258
  2789
     * to represent as a {@code double}, it will be converted to
jaroslav@1258
  2790
     * {@link Double#NEGATIVE_INFINITY} or {@link
jaroslav@1258
  2791
     * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
jaroslav@1258
  2792
     * the return value is finite, this conversion can lose
jaroslav@1258
  2793
     * information about the precision of the BigInteger value.
jaroslav@1258
  2794
     *
jaroslav@1258
  2795
     * @return this BigInteger converted to a {@code double}.
jaroslav@1258
  2796
     */
jaroslav@1258
  2797
    public double doubleValue() {
jaroslav@1258
  2798
        // Somewhat inefficient, but guaranteed to work.
jaroslav@1258
  2799
        return Double.parseDouble(this.toString());
jaroslav@1258
  2800
    }
jaroslav@1258
  2801
jaroslav@1258
  2802
    /**
jaroslav@1258
  2803
     * Returns a copy of the input array stripped of any leading zero bytes.
jaroslav@1258
  2804
     */
jaroslav@1258
  2805
    private static int[] stripLeadingZeroInts(int val[]) {
jaroslav@1258
  2806
        int vlen = val.length;
jaroslav@1258
  2807
        int keep;
jaroslav@1258
  2808
jaroslav@1258
  2809
        // Find first nonzero byte
jaroslav@1258
  2810
        for (keep = 0; keep < vlen && val[keep] == 0; keep++)
jaroslav@1258
  2811
            ;
jaroslav@1258
  2812
        return java.util.Arrays.copyOfRange(val, keep, vlen);
jaroslav@1258
  2813
    }
jaroslav@1258
  2814
jaroslav@1258
  2815
    /**
jaroslav@1258
  2816
     * Returns the input array stripped of any leading zero bytes.
jaroslav@1258
  2817
     * Since the source is trusted the copying may be skipped.
jaroslav@1258
  2818
     */
jaroslav@1258
  2819
    private static int[] trustedStripLeadingZeroInts(int val[]) {
jaroslav@1258
  2820
        int vlen = val.length;
jaroslav@1258
  2821
        int keep;
jaroslav@1258
  2822
jaroslav@1258
  2823
        // Find first nonzero byte
jaroslav@1258
  2824
        for (keep = 0; keep < vlen && val[keep] == 0; keep++)
jaroslav@1258
  2825
            ;
jaroslav@1258
  2826
        return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);
jaroslav@1258
  2827
    }
jaroslav@1258
  2828
jaroslav@1258
  2829
    /**
jaroslav@1258
  2830
     * Returns a copy of the input array stripped of any leading zero bytes.
jaroslav@1258
  2831
     */
jaroslav@1258
  2832
    private static int[] stripLeadingZeroBytes(byte a[]) {
jaroslav@1258
  2833
        int byteLength = a.length;
jaroslav@1258
  2834
        int keep;
jaroslav@1258
  2835
jaroslav@1258
  2836
        // Find first nonzero byte
jaroslav@1258
  2837
        for (keep = 0; keep < byteLength && a[keep]==0; keep++)
jaroslav@1258
  2838
            ;
jaroslav@1258
  2839
jaroslav@1258
  2840
        // Allocate new array and copy relevant part of input array
jaroslav@1258
  2841
        int intLength = ((byteLength - keep) + 3) >>> 2;
jaroslav@1258
  2842
        int[] result = new int[intLength];
jaroslav@1258
  2843
        int b = byteLength - 1;
jaroslav@1258
  2844
        for (int i = intLength-1; i >= 0; i--) {
jaroslav@1258
  2845
            result[i] = a[b--] & 0xff;
jaroslav@1258
  2846
            int bytesRemaining = b - keep + 1;
jaroslav@1258
  2847
            int bytesToTransfer = Math.min(3, bytesRemaining);
jaroslav@1258
  2848
            for (int j=8; j <= (bytesToTransfer << 3); j += 8)
jaroslav@1258
  2849
                result[i] |= ((a[b--] & 0xff) << j);
jaroslav@1258
  2850
        }
jaroslav@1258
  2851
        return result;
jaroslav@1258
  2852
    }
jaroslav@1258
  2853
jaroslav@1258
  2854
    /**
jaroslav@1258
  2855
     * Takes an array a representing a negative 2's-complement number and
jaroslav@1258
  2856
     * returns the minimal (no leading zero bytes) unsigned whose value is -a.
jaroslav@1258
  2857
     */
jaroslav@1258
  2858
    private static int[] makePositive(byte a[]) {
jaroslav@1258
  2859
        int keep, k;
jaroslav@1258
  2860
        int byteLength = a.length;
jaroslav@1258
  2861
jaroslav@1258
  2862
        // Find first non-sign (0xff) byte of input
jaroslav@1258
  2863
        for (keep=0; keep<byteLength && a[keep]==-1; keep++)
jaroslav@1258
  2864
            ;
jaroslav@1258
  2865
jaroslav@1258
  2866
jaroslav@1258
  2867
        /* Allocate output array.  If all non-sign bytes are 0x00, we must
jaroslav@1258
  2868
         * allocate space for one extra output byte. */
jaroslav@1258
  2869
        for (k=keep; k<byteLength && a[k]==0; k++)
jaroslav@1258
  2870
            ;
jaroslav@1258
  2871
jaroslav@1258
  2872
        int extraByte = (k==byteLength) ? 1 : 0;
jaroslav@1258
  2873
        int intLength = ((byteLength - keep + extraByte) + 3)/4;
jaroslav@1258
  2874
        int result[] = new int[intLength];
jaroslav@1258
  2875
jaroslav@1258
  2876
        /* Copy one's complement of input into output, leaving extra
jaroslav@1258
  2877
         * byte (if it exists) == 0x00 */
jaroslav@1258
  2878
        int b = byteLength - 1;
jaroslav@1258
  2879
        for (int i = intLength-1; i >= 0; i--) {
jaroslav@1258
  2880
            result[i] = a[b--] & 0xff;
jaroslav@1258
  2881
            int numBytesToTransfer = Math.min(3, b-keep+1);
jaroslav@1258
  2882
            if (numBytesToTransfer < 0)
jaroslav@1258
  2883
                numBytesToTransfer = 0;
jaroslav@1258
  2884
            for (int j=8; j <= 8*numBytesToTransfer; j += 8)
jaroslav@1258
  2885
                result[i] |= ((a[b--] & 0xff) << j);
jaroslav@1258
  2886
jaroslav@1258
  2887
            // Mask indicates which bits must be complemented
jaroslav@1258
  2888
            int mask = -1 >>> (8*(3-numBytesToTransfer));
jaroslav@1258
  2889
            result[i] = ~result[i] & mask;
jaroslav@1258
  2890
        }
jaroslav@1258
  2891
jaroslav@1258
  2892
        // Add one to one's complement to generate two's complement
jaroslav@1258
  2893
        for (int i=result.length-1; i>=0; i--) {
jaroslav@1258
  2894
            result[i] = (int)((result[i] & LONG_MASK) + 1);
jaroslav@1258
  2895
            if (result[i] != 0)
jaroslav@1258
  2896
                break;
jaroslav@1258
  2897
        }
jaroslav@1258
  2898
jaroslav@1258
  2899
        return result;
jaroslav@1258
  2900
    }
jaroslav@1258
  2901
jaroslav@1258
  2902
    /**
jaroslav@1258
  2903
     * Takes an array a representing a negative 2's-complement number and
jaroslav@1258
  2904
     * returns the minimal (no leading zero ints) unsigned whose value is -a.
jaroslav@1258
  2905
     */
jaroslav@1258
  2906
    private static int[] makePositive(int a[]) {
jaroslav@1258
  2907
        int keep, j;
jaroslav@1258
  2908
jaroslav@1258
  2909
        // Find first non-sign (0xffffffff) int of input
jaroslav@1258
  2910
        for (keep=0; keep<a.length && a[keep]==-1; keep++)
jaroslav@1258
  2911
            ;
jaroslav@1258
  2912
jaroslav@1258
  2913
        /* Allocate output array.  If all non-sign ints are 0x00, we must
jaroslav@1258
  2914
         * allocate space for one extra output int. */
jaroslav@1258
  2915
        for (j=keep; j<a.length && a[j]==0; j++)
jaroslav@1258
  2916
            ;
jaroslav@1258
  2917
        int extraInt = (j==a.length ? 1 : 0);
jaroslav@1258
  2918
        int result[] = new int[a.length - keep + extraInt];
jaroslav@1258
  2919
jaroslav@1258
  2920
        /* Copy one's complement of input into output, leaving extra
jaroslav@1258
  2921
         * int (if it exists) == 0x00 */
jaroslav@1258
  2922
        for (int i = keep; i<a.length; i++)
jaroslav@1258
  2923
            result[i - keep + extraInt] = ~a[i];
jaroslav@1258
  2924
jaroslav@1258
  2925
        // Add one to one's complement to generate two's complement
jaroslav@1258
  2926
        for (int i=result.length-1; ++result[i]==0; i--)
jaroslav@1258
  2927
            ;
jaroslav@1258
  2928
jaroslav@1258
  2929
        return result;
jaroslav@1258
  2930
    }
jaroslav@1258
  2931
jaroslav@1258
  2932
    /*
jaroslav@1258
  2933
     * The following two arrays are used for fast String conversions.  Both
jaroslav@1258
  2934
     * are indexed by radix.  The first is the number of digits of the given
jaroslav@1258
  2935
     * radix that can fit in a Java long without "going negative", i.e., the
jaroslav@1258
  2936
     * highest integer n such that radix**n < 2**63.  The second is the
jaroslav@1258
  2937
     * "long radix" that tears each number into "long digits", each of which
jaroslav@1258
  2938
     * consists of the number of digits in the corresponding element in
jaroslav@1258
  2939
     * digitsPerLong (longRadix[i] = i**digitPerLong[i]).  Both arrays have
jaroslav@1258
  2940
     * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
jaroslav@1258
  2941
     * used.
jaroslav@1258
  2942
     */
jaroslav@1258
  2943
    private static int digitsPerLong[] = {0, 0,
jaroslav@1258
  2944
        62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14,
jaroslav@1258
  2945
        14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};
jaroslav@1258
  2946
jaroslav@1258
  2947
    private static BigInteger longRadix[] = {null, null,
jaroslav@1258
  2948
        valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
jaroslav@1258
  2949
        valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
jaroslav@1258
  2950
        valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
jaroslav@1258
  2951
        valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
jaroslav@1258
  2952
        valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
jaroslav@1258
  2953
        valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
jaroslav@1258
  2954
        valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
jaroslav@1258
  2955
        valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
jaroslav@1258
  2956
        valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L),
jaroslav@1258
  2957
        valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
jaroslav@1258
  2958
        valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L),
jaroslav@1258
  2959
        valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
jaroslav@1258
  2960
        valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
jaroslav@1258
  2961
        valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L),
jaroslav@1258
  2962
        valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L),
jaroslav@1258
  2963
        valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
jaroslav@1258
  2964
        valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
jaroslav@1258
  2965
        valueOf(0x41c21cb8e1000000L)};
jaroslav@1258
  2966
jaroslav@1258
  2967
    /*
jaroslav@1258
  2968
     * These two arrays are the integer analogue of above.
jaroslav@1258
  2969
     */
jaroslav@1258
  2970
    private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11,
jaroslav@1258
  2971
        11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
jaroslav@1258
  2972
        6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};
jaroslav@1258
  2973
jaroslav@1258
  2974
    private static int intRadix[] = {0, 0,
jaroslav@1258
  2975
        0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800,
jaroslav@1258
  2976
        0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61,
jaroslav@1258
  2977
        0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f,  0x10000000,
jaroslav@1258
  2978
        0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
jaroslav@1258
  2979
        0x6c20a40,  0x8d2d931,  0xb640000,  0xe8d4a51,  0x1269ae40,
jaroslav@1258
  2980
        0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41,
jaroslav@1258
  2981
        0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400
jaroslav@1258
  2982
    };
jaroslav@1258
  2983
jaroslav@1258
  2984
    /**
jaroslav@1258
  2985
     * These routines provide access to the two's complement representation
jaroslav@1258
  2986
     * of BigIntegers.
jaroslav@1258
  2987
     */
jaroslav@1258
  2988
jaroslav@1258
  2989
    /**
jaroslav@1258
  2990
     * Returns the length of the two's complement representation in ints,
jaroslav@1258
  2991
     * including space for at least one sign bit.
jaroslav@1258
  2992
     */
jaroslav@1258
  2993
    private int intLength() {
jaroslav@1258
  2994
        return (bitLength() >>> 5) + 1;
jaroslav@1258
  2995
    }
jaroslav@1258
  2996
jaroslav@1258
  2997
    /* Returns sign bit */
jaroslav@1258
  2998
    private int signBit() {
jaroslav@1258
  2999
        return signum < 0 ? 1 : 0;
jaroslav@1258
  3000
    }
jaroslav@1258
  3001
jaroslav@1258
  3002
    /* Returns an int of sign bits */
jaroslav@1258
  3003
    private int signInt() {
jaroslav@1258
  3004
        return signum < 0 ? -1 : 0;
jaroslav@1258
  3005
    }
jaroslav@1258
  3006
jaroslav@1258
  3007
    /**
jaroslav@1258
  3008
     * Returns the specified int of the little-endian two's complement
jaroslav@1258
  3009
     * representation (int 0 is the least significant).  The int number can
jaroslav@1258
  3010
     * be arbitrarily high (values are logically preceded by infinitely many
jaroslav@1258
  3011
     * sign ints).
jaroslav@1258
  3012
     */
jaroslav@1258
  3013
    private int getInt(int n) {
jaroslav@1258
  3014
        if (n < 0)
jaroslav@1258
  3015
            return 0;
jaroslav@1258
  3016
        if (n >= mag.length)
jaroslav@1258
  3017
            return signInt();
jaroslav@1258
  3018
jaroslav@1258
  3019
        int magInt = mag[mag.length-n-1];
jaroslav@1258
  3020
jaroslav@1258
  3021
        return (signum >= 0 ? magInt :
jaroslav@1258
  3022
                (n <= firstNonzeroIntNum() ? -magInt : ~magInt));
jaroslav@1258
  3023
    }
jaroslav@1258
  3024
jaroslav@1258
  3025
    /**
jaroslav@1258
  3026
     * Returns the index of the int that contains the first nonzero int in the
jaroslav@1258
  3027
     * little-endian binary representation of the magnitude (int 0 is the
jaroslav@1258
  3028
     * least significant). If the magnitude is zero, return value is undefined.
jaroslav@1258
  3029
     */
jaroslav@1258
  3030
     private int firstNonzeroIntNum() {
jaroslav@1258
  3031
         int fn = firstNonzeroIntNum - 2;
jaroslav@1258
  3032
         if (fn == -2) { // firstNonzeroIntNum not initialized yet
jaroslav@1258
  3033
             fn = 0;
jaroslav@1258
  3034
jaroslav@1258
  3035
             // Search for the first nonzero int
jaroslav@1258
  3036
             int i;
jaroslav@1258
  3037
             int mlen = mag.length;
jaroslav@1258
  3038
             for (i = mlen - 1; i >= 0 && mag[i] == 0; i--)
jaroslav@1258
  3039
                 ;
jaroslav@1258
  3040
             fn = mlen - i - 1;
jaroslav@1258
  3041
             firstNonzeroIntNum = fn + 2; // offset by two to initialize
jaroslav@1258
  3042
         }
jaroslav@1258
  3043
         return fn;
jaroslav@1258
  3044
     }
jaroslav@1258
  3045
jaroslav@1258
  3046
    /** use serialVersionUID from JDK 1.1. for interoperability */
jaroslav@1258
  3047
    private static final long serialVersionUID = -8287574255936472291L;
jaroslav@1258
  3048
jaroslav@1258
  3049
    /**
jaroslav@1258
  3050
     * Serializable fields for BigInteger.
jaroslav@1258
  3051
     *
jaroslav@1258
  3052
     * @serialField signum  int
jaroslav@1258
  3053
     *              signum of this BigInteger.
jaroslav@1258
  3054
     * @serialField magnitude int[]
jaroslav@1258
  3055
     *              magnitude array of this BigInteger.
jaroslav@1258
  3056
     * @serialField bitCount  int
jaroslav@1258
  3057
     *              number of bits in this BigInteger
jaroslav@1258
  3058
     * @serialField bitLength int
jaroslav@1258
  3059
     *              the number of bits in the minimal two's-complement
jaroslav@1258
  3060
     *              representation of this BigInteger
jaroslav@1258
  3061
     * @serialField lowestSetBit int
jaroslav@1258
  3062
     *              lowest set bit in the twos complement representation
jaroslav@1258
  3063
     */
jaroslav@1258
  3064
    private static final ObjectStreamField[] serialPersistentFields = {
jaroslav@1258
  3065
        new ObjectStreamField("signum", Integer.TYPE),
jaroslav@1258
  3066
        new ObjectStreamField("magnitude", byte[].class),
jaroslav@1258
  3067
        new ObjectStreamField("bitCount", Integer.TYPE),
jaroslav@1258
  3068
        new ObjectStreamField("bitLength", Integer.TYPE),
jaroslav@1258
  3069
        new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE),
jaroslav@1258
  3070
        new ObjectStreamField("lowestSetBit", Integer.TYPE)
jaroslav@1258
  3071
        };
jaroslav@1258
  3072
jaroslav@1258
  3073
    /**
jaroslav@1258
  3074
     * Reconstitute the {@code BigInteger} instance from a stream (that is,
jaroslav@1258
  3075
     * deserialize it). The magnitude is read in as an array of bytes
jaroslav@1258
  3076
     * for historical reasons, but it is converted to an array of ints
jaroslav@1258
  3077
     * and the byte array is discarded.
jaroslav@1258
  3078
     * Note:
jaroslav@1258
  3079
     * The current convention is to initialize the cache fields, bitCount,
jaroslav@1258
  3080
     * bitLength and lowestSetBit, to 0 rather than some other marker value.
jaroslav@1258
  3081
     * Therefore, no explicit action to set these fields needs to be taken in
jaroslav@1258
  3082
     * readObject because those fields already have a 0 value be default since
jaroslav@1258
  3083
     * defaultReadObject is not being used.
jaroslav@1258
  3084
     */
jaroslav@1258
  3085
    private void readObject(java.io.ObjectInputStream s)
jaroslav@1258
  3086
        throws java.io.IOException, ClassNotFoundException {
jaroslav@1258
  3087
        /*
jaroslav@1258
  3088
         * In order to maintain compatibility with previous serialized forms,
jaroslav@1258
  3089
         * the magnitude of a BigInteger is serialized as an array of bytes.
jaroslav@1258
  3090
         * The magnitude field is used as a temporary store for the byte array
jaroslav@1258
  3091
         * that is deserialized. The cached computation fields should be
jaroslav@1258
  3092
         * transient but are serialized for compatibility reasons.
jaroslav@1258
  3093
         */
jaroslav@1258
  3094
jaroslav@1258
  3095
        // prepare to read the alternate persistent fields
jaroslav@1258
  3096
        ObjectInputStream.GetField fields = s.readFields();
jaroslav@1258
  3097
jaroslav@1258
  3098
        // Read the alternate persistent fields that we care about
jaroslav@1258
  3099
        int sign = fields.get("signum", -2);
jaroslav@1258
  3100
        byte[] magnitude = (byte[])fields.get("magnitude", null);
jaroslav@1258
  3101
jaroslav@1258
  3102
        // Validate signum
jaroslav@1258
  3103
        if (sign < -1 || sign > 1) {
jaroslav@1258
  3104
            String message = "BigInteger: Invalid signum value";
jaroslav@1258
  3105
            if (fields.defaulted("signum"))
jaroslav@1258
  3106
                message = "BigInteger: Signum not present in stream";
jaroslav@1258
  3107
            throw new java.io.StreamCorruptedException(message);
jaroslav@1258
  3108
        }
jaroslav@1258
  3109
        if ((magnitude.length == 0) != (sign == 0)) {
jaroslav@1258
  3110
            String message = "BigInteger: signum-magnitude mismatch";
jaroslav@1258
  3111
            if (fields.defaulted("magnitude"))
jaroslav@1258
  3112
                message = "BigInteger: Magnitude not present in stream";
jaroslav@1258
  3113
            throw new java.io.StreamCorruptedException(message);
jaroslav@1258
  3114
        }
jaroslav@1258
  3115
jaroslav@1258
  3116
        // Commit final fields via Unsafe
jaroslav@1258
  3117
        unsafe.putIntVolatile(this, signumOffset, sign);
jaroslav@1258
  3118
jaroslav@1258
  3119
        // Calculate mag field from magnitude and discard magnitude
jaroslav@1258
  3120
        unsafe.putObjectVolatile(this, magOffset,
jaroslav@1258
  3121
                                 stripLeadingZeroBytes(magnitude));
jaroslav@1258
  3122
    }
jaroslav@1258
  3123
jaroslav@1258
  3124
    // Support for resetting final fields while deserializing
jaroslav@1258
  3125
    private static final sun.misc.Unsafe unsafe = sun.misc.Unsafe.getUnsafe();
jaroslav@1258
  3126
    private static final long signumOffset;
jaroslav@1258
  3127
    private static final long magOffset;
jaroslav@1258
  3128
    static {
jaroslav@1258
  3129
        try {
jaroslav@1258
  3130
            signumOffset = unsafe.objectFieldOffset
jaroslav@1258
  3131
                (BigInteger.class.getDeclaredField("signum"));
jaroslav@1258
  3132
            magOffset = unsafe.objectFieldOffset
jaroslav@1258
  3133
                (BigInteger.class.getDeclaredField("mag"));
jaroslav@1258
  3134
        } catch (Exception ex) {
jaroslav@1258
  3135
            throw new Error(ex);
jaroslav@1258
  3136
        }
jaroslav@1258
  3137
    }
jaroslav@1258
  3138
jaroslav@1258
  3139
    /**
jaroslav@1258
  3140
     * Save the {@code BigInteger} instance to a stream.
jaroslav@1258
  3141
     * The magnitude of a BigInteger is serialized as a byte array for
jaroslav@1258
  3142
     * historical reasons.
jaroslav@1258
  3143
     *
jaroslav@1258
  3144
     * @serialData two necessary fields are written as well as obsolete
jaroslav@1258
  3145
     *             fields for compatibility with older versions.
jaroslav@1258
  3146
     */
jaroslav@1258
  3147
    private void writeObject(ObjectOutputStream s) throws IOException {
jaroslav@1258
  3148
        // set the values of the Serializable fields
jaroslav@1258
  3149
        ObjectOutputStream.PutField fields = s.putFields();
jaroslav@1258
  3150
        fields.put("signum", signum);
jaroslav@1258
  3151
        fields.put("magnitude", magSerializedForm());
jaroslav@1258
  3152
        // The values written for cached fields are compatible with older
jaroslav@1258
  3153
        // versions, but are ignored in readObject so don't otherwise matter.
jaroslav@1258
  3154
        fields.put("bitCount", -1);
jaroslav@1258
  3155
        fields.put("bitLength", -1);
jaroslav@1258
  3156
        fields.put("lowestSetBit", -2);
jaroslav@1258
  3157
        fields.put("firstNonzeroByteNum", -2);
jaroslav@1258
  3158
jaroslav@1258
  3159
        // save them
jaroslav@1258
  3160
        s.writeFields();
jaroslav@1258
  3161
}
jaroslav@1258
  3162
jaroslav@1258
  3163
    /**
jaroslav@1258
  3164
     * Returns the mag array as an array of bytes.
jaroslav@1258
  3165
     */
jaroslav@1258
  3166
    private byte[] magSerializedForm() {
jaroslav@1258
  3167
        int len = mag.length;
jaroslav@1258
  3168
jaroslav@1258
  3169
        int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0]));
jaroslav@1258
  3170
        int byteLen = (bitLen + 7) >>> 3;
jaroslav@1258
  3171
        byte[] result = new byte[byteLen];
jaroslav@1258
  3172
jaroslav@1258
  3173
        for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0;
jaroslav@1258
  3174
             i>=0; i--) {
jaroslav@1258
  3175
            if (bytesCopied == 4) {
jaroslav@1258
  3176
                nextInt = mag[intIndex--];
jaroslav@1258
  3177
                bytesCopied = 1;
jaroslav@1258
  3178
            } else {
jaroslav@1258
  3179
                nextInt >>>= 8;
jaroslav@1258
  3180
                bytesCopied++;
jaroslav@1258
  3181
            }
jaroslav@1258
  3182
            result[i] = (byte)nextInt;
jaroslav@1258
  3183
        }
jaroslav@1258
  3184
        return result;
jaroslav@1258
  3185
    }
jaroslav@1258
  3186
}